SY BCA SEM-3

UNIT-1

oopP

1.1 Procedure Oriented Programming (POP) Vs Object Oriented Programming (OOP)

Features Procedure Oriented Programming |Object Oriented Programming
Structure — .
i Object B
,/ | \\ [Data | |
| ||
Ii. _*— ’xj Commumication T [
Function - 1 | Function - 2 Function - 3 +—=t Funclions | |
| Lo ;] !
‘\\ f,/{i\'\l\ ; I
. & | \)
| Function - 4 | \\DD|ECI c //
Fy , . ! ’ I
//'K \‘\\ ! /// \ ?:—A'—lm l
S W b
Function - & Function - T I | Function - ‘
TH 1IN |
Data

Divided Into |In POP, program is divided into small |In OOP, program is divided into parts
parts called functions. called objects.

Importance |In POP, Importance is not given tgln OOP, Importance is given to the data
data but to functions as well adrather than procedures or functiong
sequence of actions to be done. because it works as a real world.

Approach POP follows Top Down approach. OOP follows Bottom Up approach.

Access POP does Not have any|lOOP has access specifiers namedPublic,

Specifiers access specifiers. Private, Protected, etc.

Data Moving |In POP, Data can move freely from In OOP, objects can move and
function to function in the system. communicate with each other through

member functions.

Expansion To add new data and function in POP |OOP provides an easy way to add new
is not so easy. data and function.

Data Access [In POP, Most function uses Globalin OOP, data cannot move easily from
data for sharing that can be accessedlfunction to function, it can be kept publig
freely from function to function in theJor private so we can control the access of
system. data.

Khyati Solanki,

Page 1 of 30

SY BCA SEM-3 UNIT-1 oopP

a1

Funefion -1 Funetion -2 Function -3

Local data Local data Local data

C, VB, FORTRAN, and Pascal.

Data Hiding |POP does not have any proper way |OOP provides Data Hiding S
for hiding data so it is less secure. provides more security. o
Overloading |In POP, Overloading is not possible. [In OOP, overloading is possible in the form
of Function Overloading and Operator
Overloading.
Examples Example of POP is: Example of OOP is:

C++, JAVA, VB.NET, C#.NET.

1.2 Basic Concepts of Object Oriented Programming

The major motivating factor in the invention of object-oriented approach is to remove
some of the flaws encountered in the procedural approach. OOP treats data as a critical
element in the program development and does not allow it to flow freely around the system.

It ties data more closely to the function that operate on it, and protects it from accidental

modification from outside function. OOP allows decomposition of a problem into a number of

entities called objects and then builds data and function around these objects.
Some of the features of object oriented programming are:

AN NI NI N N Y NN

Emphasis is on data rather than procedure.

Programs are divided into what are known as objects.

Data structures are designed such that they characterize the objects.

Functions that operate on the data of an object are ties together in the data structure.
Data is hidden and cannot be accessed by external function.

Objects may communicate with each other through function.

New data and functions can be easily added whenever necessary.

Follows bottom up approach in program design.

“Object Originated Programming is an approach that provides a way of modularizing
programs by creating partitioned memory area for both data and function that can be used as
templates for creating copies of such modules on demand.”

Khyati Solanki,

Page 2 of 30

SY BCA SEM-3 UNIT-1 oopP

4+ Basic Concepts of Object Oriented Programming

AN NN YN NN

Objects

Classes

Data abstraction and encapsulation
Inheritance

Polymorphism

Dynamic binding

Message passing

» Objects

Objects are the basic runtime entities in object oriented system. Objects are also called
Instance of the class.

An object represents a person, Bank-account, Vehicle, Book, products, Employee, etc...
Programming problem is analyze in terms of object and nature of communication between
them

In program objects should choose and design in such a way that they match closely with
real world object

Objects occupies memory and they have associated address

| Object: STUDENT STUDEMT
[DATA ' | Totar |
Mame
Duate=of=hbirth
i - L
Marks Average

FLIMNCTIOMS |
Toda -
Avarage | Display
Display N

(Two ways to represent object)

> Classes

The general meaning of class is category. Class is a pro-forma or blue-print that represents
particular category.

Class contains data and code (function) that operate on that data.

It is user defined data type and object are variable of class.

Once we define a class we can create any number of objects belonging to that class.

So object is associated with data of type class thus, class is collection of similar type of
objects.

If fruit has been defines as a class, then the statement Fruit Mango; Will create an object mango
belonging to the class fruit.

Khyati Solanki, Page 3 of 30

SY BCA SEM-3 UNIT-1 oopP

» Data Abstraction and Encapsulation
e The wrapping up of data and function into a single unit (called class) is known as encapsulation.

e Data encapsulation is the most important feature of class with this concept data is not accessible
to the outside class definition and only those functions which are wrapped in the class can access
it for this to happen data members must be declare as private.

e Public members provides interface between the object, data and the program.

e ltis also called “Data hiding” or “Information hiding”.

e Data abstraction refers to, providing only essential information to the outside world and hiding
their background details, i.e., to represent the needed information in program without
presenting the details.

e Abstraction and encapsulation are related features in object oriented programming. Abstraction
allows making relevant information visible and encapsulation enables a programmer to
implement the desired level of abstraction.

e (Classes use the concept of abstraction and are defined as a list of abstract attributes such as size, weight,
and cost and function operate on these attributes. They encapsulate all the essential properties of the
object that are to be created.

e The attributes are some time called data members because they hold information. The functions
that operate on these data are sometimes called methods or member function.

» Inheritance

e Inheritance is the process by which the objects of one class acquire the properties of object of
another class.

e |t supports the concept of hierarchical — classification.

e In Oop, the concept of inheritance provides the idea of Reusability. It means that we can add
additional features to an existing class without modifying it.

e |t is possible by deriving a new class from existing class and new class will have combined
features of both the class

Aftributes
Faeathars
Lay eggs
o~
o s —
Flying Bird o
Aftriboutas
-~
— . - S .. B "—
Robin Sweat | o | P ervg uin e~
APrributes Afributes | Aitmibutes Aitributes

Khyati Solanki, Page 4 of 30

SY BCA SEM-3 UNIT-1 oopP

» Polymorphism

e Polymorphism simply means “One name And Multiple behavior”.

e Polymorphism, a Greek term, means the ability to take more than on form. An operation may exhibit
different behavior is different instances. The behavior depends upon the types of data used in the
operation.

e Polymorphism plays an important role in allowing objects having different internal structures to share
the same external interface. This means that a general class of operations may be accessed in the
same manner even though specific action associated with each operation may differ.

e Polymorphism is extensively used in implementing inheritance.

Shapea
D ()
N S o Sw
Circle object Box object Triangle object
Dwaw (circle) Diraw (B | Dwaw (triangle)

For example, consider the operation of addition. For two numbers, the operation will generate
a sum. If the operands are strings, then the operation would produce a third string by
concatenation. The process of making an operator to exhibit different behaviors in different
instances is known as operator overloading.

A single function name can be used to handle different number and different types of
argument. This is something similar to a particular word having several different meanings
depending upon the context. Using a single function name to perform different type of task is
known as function overloading.

Polymorphism

A 4

\ 4

Compile time polymorphism Run time polyrr'mrphlsm
(Static) (Dynamic)
A 4
Y ¥ y Virtual
. g I u
Operator Function Overriding Function
overloading overloading

Khyati Solanki, Page 5 of 30

SY BCA SEM-3 UNIT-1 oopP

» Dynamic Binding (Late binding)
Binding refers to the process of converting identifiers (such as variable and performance

names) into addresses. Binding is done for each variable and functions

Dynamic binding also called dynamic dispatch is the process of linking procedure
call to a specific sequence of code (method) at run-time. It means that the code to

be executed for a specific procedure call is not known until run-time. Dynamic

binding is also known as late binding or run-time binding

» Message Passing

An object oriented program consists of set of objects that communicate with each other
Message Passing is nothing but sending and receiving of information by the objects same
as people exchange information. So this helps in building systems that simulate real life.
Following are the basic steps in message passing.

1. Creating classes that define objects and its behavior.
2. Creating objects from class definitions
3. Establishing communication among objects

In OOPs, Message Passing involves specifying the name of objects, the name of the
function, and the information to be sent

Objects have a life cycle. They can be created and destroyed. Communication with an
object is feasible as long as it is alive.

ampioyes. s5aiary (nama |
b4

objact 'I informaticn

Mmessage

1.3 Benefits of Object Oriented Programming

Through inheritance, we can eliminate redundant (repeated) code and extend the use of
existing classes which is not possible in procedure oriented approach.

We can build programs from the standard working modules that communicate with one
another, rather than having to start writing the code from scratch which happens
procedure oriented approach. This leads to saving of development time and higher
productivity.

The principle of data hiding helps the programmer to build secure programs that cannot be
invaded by code in other parts of the program.

It is possible to have multiple instances of object to co-exist without any interference.

Khyati Solanki, Page 6 of 30

SY BCA SEM-3

It is possible to map objects in the problem domain to those in the computer program.

UNIT-1

oopP

It is easy to partition the work in a project based on objects.
Object oriented systems can be easily upgraded from small to large systems.

Message passing techniques for communication between objects makes the interface

descriptions with external systems much simpler.
Software complexity can be easily managed.

APPLICATION OF OBJECT ORIENTED PROGRAMMING

System software
Application software
Real time systems

Object oriented database
Operating system
Compiler

Device driver

C VS. C++:

C++

Cis Procedural Language.

C++ is non Procedural i.e Object
oriented Language.

No virtual Functions are present in C.

The concept of virtual Functions is used
in C++.

In C, Polymorphism is not possible.

The concept of polymorphism is used in
C++.Polymorphism is the most
Important Feature of OOPS.

Operator overloading is not possible in C.

Operator overloading is one of the
greatest Feature of C++.

Top down approach is used in Program
Design.

Bottom up approach adopted in
Program Design.

Multiple Declarations of global variables
are allowed.

Multiple Declarations of global variables
are not allowed.

InC
scanf() Function used for Input.
printf() Function used for output.

In C++
cin>> Function used for Input.
cout<< Function used for output.

Khyati Solanki,

Page 7 of 30

SY BCA SEM-3

UNIT-1

oopP

Mapping between Data and Function is
difficult and complicated.

Mapping between Data and Function
can be used using "Objects".

In C, we can call main() Function through
other Functions.

In C++, we cannot call main() Function
through other functions.

C requires all the variables to be defined
at the starting of a scope.

C++ allows the declaration of variable
anywhere in the scope i.e at time of its
First use.

No inheritance is possible in C.

Inheritance is possible in C++.

In C, malloc() and calloc() Functions are
used for Memory Allocation and free()
function for memory Deallocating.

In C++, new and delete operators are
used for Memory Allocating and
Deallocating.

It supports built-in and primitive data
types.

It support both built-in and user define
data types.

In C, Exception Handling is not present.

In C++, Exception Handling is done with

Try and Catch block.

1.4 Structure & Classes

> StructureinC

Structure provides a method to packing together data of different. Structure is user
defined data type that serves to define its data properties. Once the structure is defined we can
create variables of that type using declarations that are similar to built-in type declarations.

Example:

struct student
{
char name[20];
int roll_number;
float total_marks;
}
The keyword “struct” declares student as a new data type that can hold three of
different data types. These fields are known as structure members, structure name can be used
to create variables of type student as follows:

struct student A; // C declaration

Member variables can be accessed as follows:

Khyati Solanki, Page 8 of 30

SY BCA SEM-3 UNIT-1 oopP

Strcpy(A.name,”John”);
A.roll_number =999;
A.total_marks = 595.5;

Structure can have arrays, Pointers or structures as members.

Extensions to Structures in C++
v C++ supports all the features of structures as defined in C.
v/ C++ provides facility to hide data (Using private) which is one of the main principal of
OOP.
v In C++ a structure can have both variables and function as member.
v In C++ the structure names are stand alone and can be used like any other type name in
following way :

student A;// C++ declaration

“C++ incorporated all these extensions in another user-defined type Known as CLASS”
There is a little syntactical difference in structure and Classes in C++ therefore; they can be used
interchangeably with minor modification.

Note :The only difference between structure and classes in C++ is that ,by default, the
member of a class are private, while by default the members of structure are public.

» Specifying a Class

A class in C++ combines related data and functions together. It makes a data type which
is used for creating objects of this type.

Classes represent real world entities that have both data type properties
(characteristics) and associated operations (behavior).
Generally a class specification has two parts:

v" Class Declaration
v" Class Function definition

Class Declaration

The syntax of a class definition is shown below:
Class name_of class

{

private :

variable declaration; // data member
Function declaration; // Member Function (Method)

Khyati Solanki, Page 9 of 30

SY BCA SEM-3 UNIT-1 oopP

protected:

Variable declaration;
Function declaration;
public :

variable declaration;
Function declaration;

|5

Here, the keyword class specifies that we are using a new data type and is followed by the class
name.

The body of the class has two keywords namely:

(i) private
(ii) (i) public

In C++, the keywords private and public are called access specifiers. The data hiding
concept in C++ is achieved by using the keyword private. Private data and functions can only be
accessed from within the class itself. Public data and functions are accessible outside the class
also.

The data declared under Private section are hidden and safe from accidental
manipulation. Though the user can use the private data but not by accident.

The functions that operate on the data are generally public so that they can be accessed from
outside the class but this is not a rule that we must follow.

» Class Function definition
In C++, the member functions can be coded in two ways:

(a) Inside class definition (IMPLICIT)
(b) Outside class definition using scope resolution operator (::) (EXPLICIT)

The code of the function is same in both the cases, but the function header is different as
Inside Class Definition:

When a member function is defined inside a class, we do not require to place a
membership label along with the function name. We use only small functions inside the class
definition and such functions are known as inline functions. In case of inline function the
compiler inserts the code of the body of the function at the place where it is invoked (called)
and in doing so the program execution is faster.

Khyati Solanki, Page 10 of 30

SY BCA SEM-3 UNIT-1 oopP

Outside Class Definition Using Scope Resolution Operator (::) :
e In this case the function’s full name (qualified_name) is written as shown:
Name_of the_class :: function_name
e The syntax for a member function definition outside the class definition is
return_type name_of_the_class::function_name (argument list)
{ body of function }
Here the operator:: known as scope resolution operator helps in defining the member function
outside the class. Earlier the scope resolution operator (::) was use in situations where a global

variable exists with the same name as a local variable and it identifies the global variable.

Example of Class :
Class student

{

private:

char reg_no;
char name[30];
int age;

public :

void init_data() //Inside Class Defenation

void display_data();

17

void student :: display_data() //Outside class Defination
{

---------- //body of function -------

}

Student ob; //class variable (object) created
Ob.init_data(); //Access the member function

Khyati Solanki, Page 11 of 30

SY BCA SEM-3 UNIT-1 oopP

ob.display_data();//Access the member function

+ <lostream.h> file

=>» iostream.h is the header file

=>» It is generally included at the beginning of all c++ programs that use input and output
statements.

=>» This file contains declarations for cin and cout objects and << (insertion)and >>(extraction)
operators

4+ Output operator

=>» cout << “Hellocpp”;

=>» Identifier cout is pre-defined object that represents standard output stream in c++.

=>» In this example, by default standard output device is monitor or screen

=>» Itis also possible to redirect the output to other output device and it does not need format
specifier

=>» The operator << is called “insertion” or “put to” operator.

+ Input operator

cin >> number ;

Identifier cin is pre-defined object that represents standard input stream in c++.

In this example , by default standard input device is keyboard

This input statement causes the program to wait for the user to type value for number and
user entered number is placed in any variable with the help of cin object and extraction
operator.

=>» The operator >> is called “extraction” or “get from” operator.

vV

4+ Local And Global Variable declaration

=> In c++ if we have global variable with the same name as local variable then to access the

global variable c++ provides a special operator known as scope resolution operator (::)
= Example:

Int x=10;

Void main()

{

Int x=3;

Cout << x; // print local variable x value 3

Cout << ::x; // print global variable x value 10

getch();

}

+ References

Khyati Solanki, Page 12 of 30

SY BCA SEM-3 UNIT-1 oopP

In c++ references are variable that contains link to specific value

References variable permits us to pass parameters to the function by reference

When we pass argument by reference the formal argument in call function becomes Elias to
the actual argument in calling function

It means that , when function is working with its own argument it is actually working on
original data.

A reference variable always created by & in front of any variable

A reference variable points to the same address as the variable

Reference variable does not utilize any additional space like pointer variable and still provides
the functionality of pointer.

L2 20 L L

5

X
100
&y
Reference of x

Program 1 : Program 2 : (swapping of value)

void main()

{ void swap Cint &pl,int &p2):
int x=5,&y=x: void main()
clrscr(): {
cout{<y << ; int x=3,y=4;
. clrscr():;
K+, swap (x,y);
cout <<y << : cout<<x <<
W cout{{y <<
tch():
cout <<y: g
getch(): void swap Cint &pl, int &p2)
¥ {
int t=pil:
pl=p:
p2=t:
¥
Output: 5 Output : x=4
6 Y=3
7

+ Class with array (array of object) (sorting according to price in ascending order)
Khyati Solanki, Page 13 of 30

SY BCA SEM-3 UNIT-1 oopP

int price:

woid inputdata()

i

cout <<

cin »> nm >> price;

)

void show()

{

cout ¢ < nm K {{ price <{endl:

FforCint i=0:i<5:i++)
;[i].inputdata():
;nr(i=9:i{5:i++]

;ur Cint j=i+1l: j<5: j++)

ff (slil.price > sLjl.pricel

Khyati Solanki, Page 14 of 30

SY BCA SEM-3 UNIT-1 OOoP

ENTER NAME AND PRICE

ENTER HAME AND PRICE
pencil 5
ENTER HAME AND PRICE

FNTER NAME AND PRICE
<harpner 7
FNTER NAME AND PRICE

: eraser PRICE :
: pencil PRICE :
: sharpner PRICE :
I pen PRICE :
: notebook PRICE :

4+ Local class

=>» Itis the class which is defined inside the function or block
=>» Local classes can use global variables and static variable declare inside the function but cannot
use automatic local variables
=>» Local classes cannot have static data members
=>» Member function must be define inside the class
=>» Enclosing function cannot access private members of a local class
=>» You can create and use object of local class only inside enclosing function
= Example:
void fun()
{
// Local class
class Test
{
/¥ .*/
2

Test t; // Fine
Test *tp; // Fine
}

void main()

{
Testt; // Error

Test *tp; // Error
getch();
}

Khyati Solanki, Page 15 of 30

SY BCA SEM-3 UNIT-1 oopP

+ Static keyword

=> In c++ “static” keyword can be used with variable as well as function
=>» We can access static variable and function using scope resolution operator (::)

1. Static data members:

=>» Data members of class can be declared as static the main characteristic of static member
variables are similar to characteristic of ¢ programming static variable.

Characteristics:

It is initialize with O (zero) when the first time object of class is created

Only one copy of that members is created for the entire class and it is shared by all the
objects

It is visible only within the class but its life time is entire program

Static variables are normally used to maintain values common to entire class

Data type and scope of each static member variable must define outside of the class
definition its necessary because static data members are stored separately rather than as
part of object like,

Int test :: count;

Static variables are associated with class rather than any object so they are called class
variables

L7 2

v

2. Static member function:

=>» Like static member variables we can also have static member function

=>» Characteristics:

=>» Static function can have access to only other static data members and static member
function declare in the same class

=>» Static member function can be called using class name instead with the name of object like,

test :: getent();

clas=s college

i
int ‘ee=s:
static int total:
public
college (2
i
fees=0:;
¥
void get()
i

cout <<

cin »>» fees:

total= total + fees:

¥

static wid collection()

i

cout << << total

Khyati Solanki, Page 16 of 30

SY BCA SEM-3 UNIT-1 oopP

woid show ()
{
cout << << fees <<
¥
X
int college :: total = S000;

Did mainC)
i

ollege s1,s2,83;

Irscr():
=1.qet(];
= . gqet();

ollege :: collection():
=3 .get():

ollege :: collection():
=1 .show():
= . show()
=3 . show():
etch():

Output :
enter fees

)

enter fees

f1e 8]

otal amount in college 59600
enter fees

50

otal amount in college GHEE
ees of students 560

ees of students 400

ees of students 700

1.5 Encapsulation and Data Hiding

Refer “Data abstraction and encapsulation” inBasic Concepts of Object Oriented
Programming.

1.6 Constructors And Destructors

e A constructor (having the same name as that of the class) is a special member function
which is automatically initializing the data-members (variables) of the class type with legal
initial values.

e [t called automatically when the object of class is created

e It’s called constructor because it construct values of data members of the class

Khyati Solanki, Page 17 of 30

SY BCA SEM-3 UNIT-1 OoOoP
Declaration and Definition of a Constructor:

e [t is defined like other member functions of the class, i.e., either inside the class
definition or outside the class definition. For example, the following program
illustrates the concept of a constructor:

//To demonstrate a constructor
Class rectangle

{

private :
float length, breadth;

public:

rectangle () //constructor definition

{

//displayed whenever an object is created

cout<< ”l am in the constructor”;
length=10.0;
breadth=20.5;

}

float area()

{

return (length*breadth);
}

2

void main()

{

clrscr();

rectangle rect; //object declared
cout<< ”\nThe area of the rectangle with default parameters is:”"<< rect.area();

getch();}
> SPECIAL CHARACTERISTICS OF CONSTRUCTORS

These have some special characteristics. These are given below:
v" These are called automatically when the objects are created.
v All objects of the class having a constructor are initialized before some use.
v" These should be declared in the public section for availability to all the functions.
v Return type (not even void) cannot be specified for constructors.
v" These cannot be inherited, but a derived class can call the base class constructor.

Khyati Solanki, Page 18 of 30

SY BCA SEM-3 UNIT-1 oopP

v" These cannot be static.

v Default and copy constructors are generated by the compiler wherever required.
Generated constructors are public.

These can have default arguments as other C++ functions.

A constructor can call member functions of its class.

An object of a class with a constructor cannot be used as a member of a union.

AN NN

> Types of Constructors

1. Default constructor:
e Constructor does not accept any argument is called default constructor

2. Parameterized constructor

e C++ allows us to initialize objects by passing argument to constructor function when
objects are created

e S0, the constructor that can take argument is called parameterized constructor

e |t can be invoke implicitly or explicitly

e Like function you can pass default argument in constructor also which known as
constructor with default argument

o All the rules of default argument passing apply to parameterized constructor with
default argument

e Constructor overloading means when we have more than one constructors in a same
class

e When you overload constructor and pass default argument at that time you need to
take care that all the parameters are not given default values if default constructor
exists otherwise, compiler will raise the error of ambiguity

e To overcome error of ambiguity there are two alternatives

1. Omit default constructor if all the argument are default
2. Keep at least one argument mandatory if you want to define default constructor
also
3. Copy constructor

e Copy constructor is used to declare and initialize object from another object

e Eg. Number objl (5), obj2(obj1) ,obj3=0bjl

e Copy constructor takes a reference of an object of the same class as an argument.

e We can pass argument by value to copy constructor

+ Destructor:

e The name of the class and destructor is same but it is prefixed with a ~ (tilde).
e |t does not take any parameter nor does it return any value.

e Overloading a destructor is not possible and can be explicitly invoked.

e In other words, a class can have only one destructor.

e Adestructor can be defined outside the class.

Khyati Solanki, Page 19 of 30

SY BCA SEM-3 UNIT-1 0]0] 3
Declaration and Definition of a Destructor
The syntax for declaring a destructor is:
~name_of_the_class() {}
Special Characteristics of Destructors

Some of the characteristics associated with destructors are:

These are called automatically when the objects are destroyed.

Destructor functions follow the usual access rules as other member functions.
These de-initialize each object before the object goes out of scope.

No argument and return type (even void) permitted with destructors.

These cannot be inherited.

Static destructors are not allowed.

Address of a destructor cannot be taken.

A destructor can call member functions of its class.

An object of a class having a destructor cannot be a member of a union.

ASRNE N N NE N NENEN

Note: The this pointer holds the address of current object, in simple words you can say that
this pointer points to the current object of the class

lass rect

rect(int 1,int b , int h=6)

his->h=h:

Khyati Solanki, Page 20 of 30

https://beginnersbook.com/2017/08/cpp-pointers/

Khyati Solanki,

SY BCA SEM-3 UNIT-1

int show()
i
return (1=h=h):
1

“rect()

cout<{ r.show():
cout <
rect r2(3);
cout << << rZ.show():
cout <<
rect r30(3,4);
cout << << r3.show();
cout <<
rect r4(3,4,2):
<< r4.show():

rect r?(5),r8(r?) ,r9=r7:
cout << <<r?.show() :
cout << <<r?.show();
getch():

b

default

parameterized constructor

default argument

2
without default argument

oopP

Page 21 of 30

SY BCA SEM-3 UNIT-1 oopP

1.7 Friend Function

e Private members cannot be access outside of the class so; non-member functions cannot
have access to private data of the class. But there can be a situation we would like to classes
to share a particular function in such situation c++ allows common function to be made
friendly with both classes.

e To make outside function friendly to the class we need to simply declare that function as a
friend of the class

e For this function declaration should be presided by keyword friend

e A friend function of a class is defined outside that class' scope but it has the right to access all
private and protected members of the class.

e Even though the prototypes for friend functions appear in the class definition, friends are not
member functions.

e A friend can be a function, function template, or member function, or a class or class
template, in which case the entire class and all of its members are friends.

e A friend function can be declare as friend in any number of classes

e It has full access rights to private members of the class

Characteristics of Friend Function

A friend function is not in the scope of the class n which it has been declared as friend.
It cannot be called using the object of that class.

It can be invoked like a normal function without any object.

Unlike member functions, it cannot use the member names directly.

It can be declared in public or private part without affecting its meaning.

Usually, it has objects as arguments.

ASENENENENEN

e To declare a function as a friend of a class, precede the function prototype in the class
definition with keyword friend as follows:

friend void square (maths m);
1

void square (maths m)
{

cout << m.x * m.x:
h

Khyati Solanki, Page 22 of 30

SY BCA SEM-3 UNIT-1 oopP

woid main()

FRIEND CLASS:

As we know that a class cannot access the private members of other class.
Similarly a class that doesn’t inherit another class cannot access its protected
members.

A friend class is a class that can access the private and protected members of a
class in which it is declared as friend. This is needed when we want to allow a
particular class to access the private and protected members of a class.

public :

AC): =x(5)
i

¥

friend class B:

Khyati Solanki, Page 23 of 30

SY BCA SEM-3 UNIT-1 oopP

class B

i
public:

void display(a a)l
i
cout<{<

clrscr():
b.di=playlal;
getch():

lue of x is @ 5_

FRIEND FUNCTION SHARING BOTH CLASS:

private:
int numd:

public:
void getnum()
i

cout <<
cin>» numd:
H

Khyati Solanki, Page 24 of 30

SY BCA SEM-3

friend int add(a, B):
¥

class B
i
private:
int numB:

public:

void getnum()

UNIT-1

oopP

i

cout <<
cin>» numB:
H

friend int addd(a , B):

int add(fA objecthA, B objectB)

i

¥

return (objectin.numfi + ob jectB.numB):

woid maind)

{

A objectnA:
B ob jectB:
clrscr();

ob jecthA.getnum(]
ob jectB.getnum();

cout << << addfobjecth, objectB):

getch():

1.8 Inline Function

The main objective of using function in program is to save memory space when function is
likely to be called many times

Whenever function is called it takes lot of extra time in executing a series of instruction
for task such as, jumping to the function, returning to the function call, saving register,
pushing argument in to stack ,etc

When function is small it takes a lot of time for all these procedure to happen

One solution of these is, Macros but, major drawback of macros is that they are actually
not a function so, usual error checking does not occur during compilation

In c++ solution for these is INLINE FUNCTION ,these are the functions designed to speed
up program execution

An inline function is a function that is expanded in line when it is invoked, means the
compiler replaces the function call with corresponding function code

Khyati Solanki, Page 25 of 30

SY BCA SEM-3 UNIT -1 0]0] 3
The syntex of inline function is as follows:

inline function_name()

{
body of the function

}
For example,
//function definition min()

inline void min (int x, int y)
{

cout<< (x<Y? x:y);

}

Void main()

{

int numl1, numz2;

cout<<”\n enter two integers\n;
cin>>numl>>num?2;

min (numi,num?2);

//function code inserted here

e An inline function definition must be defined before being invoked as shown in the above
example. Here min () being inline will not be called during execution, but its code would be
inserted into main () as shown and then it would be compiled.

e Inline sends Request to compiler not command

o |f the size of the inline function is large then heavy memory penalty makes it not so useful
and in that case normal function use is more useful.

The inline function does not work for the following situations:

For functions returning values and having a loop or a switch or a goto statement.

For functions that do not return value and having a return statement.
For functions having static variable(s).

AN NI NN

If the inline functions are recursive (i.e. a function defined in terms of itself).

The benefits of inline functions are as follows:

Khyati Solanki, Page 26 of 30

SY BCA SEM-3 UNIT-1 oopP

Better than a macro.

Function call overheads are eliminated.
Program becomes more readable.
Program executes more efficiently.

AN

1.9 Dynamic Object Creation & destruction (new and delete)

e Dynamic objects are used when the object to be created is not predictable enough

e _Thisis usually when we cannot determine at compile time
v Object Identities
v' Object Quantities
v' Object Lifetimes

e Therefore when creating Dynamic Objects they cannot be given unique names, so we

have to give them some other identities In this case we use pointers.
Creating Dynamic Objects Dynamic

e Objects use dynamic memory allocation In C++ a pointer can be directed to an area of
dynamically allocated memory at runtime this can then be made to point to a newly
created object.

e To do this we use the new operator in the following way

Point2D *pointl;
pointl = new Point2D();

e First we create a pointer to the Point2D Class using the *, Then we use the new
operator to construct a new instance to the class Using Dynamic Objects

e To call a user defined constructor we use the following syntax:
Point2D *point1 = new Point2D(100.0,100.0);

e To send a message (i.e. use a method) we use the -> 'pointed to' delimiter as follows
cout <<GetY();
e Apart from these distinctions dynamic Objects behave in the same as static

Destroying a Dynamic Object

e To create an Object we use a constructor, conversely to destroy an object we use a
destructor.

e As there is a default constructor which the programmer does not define, there is also a
default destructor which the programmer does not define.

e However it is also possible to define a default destructor this will either be called by the
programmer or by the program when the object falls out of scope

Khyati Solanki, Page 27 of 30

SY BCA SEM-3 UNIT-1

e To destroy a dynamic Object the destructor must be called. This is done by using the

delete operator as follows

Point2D *point = new Point2D(100.0,12.0);
// now do some thing with the object
delete point; // now we destroy the object

Operator New and Delete

+ New: it is used for allocating the memory at run time which generally allocated as

pointer. It helps in dynamic initialization.

+ Delete: it is used for de-allocating the memory allocated with new operator. it can only

remove the variables which are allocated by new operator.

Example 1: (with class)

#include<iostream.h>
#tinclude<conio.h>

class colour
{

intr,g,b;
public:

colour(int m,int n,int o)

= —~

m;

7’

n
o

w—'?m

void print()
{
cout<< "RBG :"<<r<<bh<<g;

}
|3

Khyati Solanki,

Page 28 of 30

SY BCA SEM-3 UNIT-1 oopP

void main()

{

colour *current;
clrscr();

current = new colour(1,0,0);
current-> print();
delete current;

current = new colour(1,1,1);
current-> print();
delete current;

getch();
}

Example 2: (without class) sorting of data in ascending order

woid main()

i
int =a,n:
clrscr():
cout <<
cin *»> n
a—new int [nl:

for(Cint i=0i{n:i++)
i

cout<<

cin »» alil ;

Hy

for(i=0:i<n:i++)

i

forCint j=i+l: j<m: j++)
i

ifcalil > aljl1)
i

int t=alil:
alil=aljl:
al jl=t:

1

cout<< << alil:
1

delete(al:

Khyati Solanki, Page 29 of 30

SY BCA SEM-3 UNIT-1 OOoP

Khyati Solanki, Page 30 of 30

C++ Data Types

Data types specify the type of data that a variable can store. Whenever a variable is defined
in C++, the compiler allocates some memory for that variable based on the data type with
which it is declared as every data type requires a different amount of memory.

C++ supports a wide variety of data types, and the programmer can select the data type
appropriate to the needs of the application.

Example:
#include <iostream>
using namespace std,;

int main() {

// Creating a variable to store integer
int var = 10;

cout << var;
return 0;
J
Output
10

Explanation: In the above code, we needed to store the value 10 in our program, so we
created a variable var. But before var, we have used the keyword 'int'. This keyword is used
to define that the variable var will store data of type integer.

Classification of Datatypes
In C++, different data types are classified into the following categories:

Description Data Types

Basic Data Built-in or primitive data types that are | int, float, double,
Types used to store simple values. char, bool, void

array, pointer,
reference, function

Data types derived from basic types.

Custom data types created by the class, struct, union,
programmer according to their need. typedef, using

Let's see how to use some primitive data types in C++ program.
1. Character Data Type (char)
The character data type is used to store a single character. The keyword used to define a

character is char. Its size is 1 byte, and it stores characters enclosed in single quotes (' '). It
can generally store upto 256 characters according to their ASCII codes.

https://www.geeksforgeeks.org/derived-data-types-in-c/
https://www.geeksforgeeks.org/derived-data-types-in-c/
https://www.geeksforgeeks.org/user-defined-data-types-in-c/
https://www.geeksforgeeks.org/user-defined-data-types-in-c/
https://www.geeksforgeeks.org/cpp-char-data-types/
https://www.geeksforgeeks.org/what-is-ascii-a-complete-guide-to-generating-ascii-code/

Example:
#include <iostream>
using namespace std;

int main() {

// Character variable
char c ='A";
cout << ¢c;

return 0;

}

Output
A

2. Integer Data Type (int)

Integer data type denotes that the given variable can store the integer numbers. The keyword
used to define integers is int. Its size is 4-bytes (for 64-bit) systems and can store numbers
for binary, octal, decimal and hexadecimal base systems in the range from -2,147,483,648 to
2,147,483,647.

Example:
#include <iostream>
using namespace std,

int main() {

/I Creating an integer variable
int x =25;
cout << “value of x is :” << x << endl;

// ' Using hexadecimal base value
x =0x15;
cout << x;

return 0;

}

Output
25
21

To know more about different base values in C++, refer to the article - Literals in C++

3. Boolean Data Type (bool)

The boolean data type is used to store logical values: true(1) or false(0). The keyword used
to define a boolean variable is bool. Its size is 1 byte.

Example:
#include <iostream>
using namespace std,;

https://www.geeksforgeeks.org/cpp-literals/
https://www.geeksforgeeks.org/cpp-booleans/

int main() {

// Creating a boolean variable
bool isTrue = true;

cout << isTrue;

return 0;

}

Output
1

4. Floating Point Data Type (float)

Floating-point data type is used to store numbers with decimal points. The keyword used to
define floating-point numbers is float. Its size is 4 bytes (on 64-bit systems) and can store
values in the range from 1.2E-38 to 3.4e+38.

Example:
#include <iostream>
using namespace std,;

int main() {

// Floating point variable with a decimal value
float f=36.5;
cout << f;

return 0;

}

Output
36.5

5. Double Data Type (double)

The double data type is used to store decimal numbers with higher precision. The keyword
used to define double-precision floating-point numbers is double. Its size is 8 bytes (on 64-
bit systems) and can store the values in the range from 1.7e-308 to 1.7e+308

Example:
#include <iostream>
using namespace std;

int main() {
/I double precision floating point variable
double pi = 3.1415926535;

cout << pi;

return 0;

}

Output
3.14159

6. Void Data Type (void)

The void data type represents the absence of value. We cannot create a variable of void type.
It is used for pointer and functions that do not return any value using the keyword void.

Type Safety in C++

C++is a strongly typed language. It means that all variables' data type should be specified
at the declaration, and it does not change throughout the program. Moreover, we can only
assign the values that are of the same type as that of the variable.

Example: If we try to assign floating point value to a boolean variable, it may result in data
corruption, runtime errors, or undefined behaviour.

#include <iostream>
using namespace std,;

int main() {

/I Assigning float value to isTrue
bool a = 10.248f;

cout << isTrue;

return 0;

}

Output
1

As we see, the floating-point value is not stored in the bool variable a. It just stores 1. This
type checking is not only done for fundamental types, but for all data types to ensure valid
operations and no data corruptions.

Data Type Conversion

Type conversion refers to the process of changing one data type into another compatible one
without losing its original meaning. It's an important concept for handling different data types
in C++.

#include <iostream>
using namespace std;

int main() {
intn=3;
char ¢ ="'C';

// Convert char data type into integer
cout << (int)c << endl;

int sum =n + c;

cout << sum;

return 0;

}

Output
67
70

https://www.geeksforgeeks.org/type-conversion-in-c/

Size of Data Types in C++

Earlier, we mentioned that the size of the data types is according to the 64-bit systems. Does
it mean that the size of C++ data types is different for different computers?

Actually, it is partially true. The size of C++ data types can vary across different systems,
depending on the architecture of the computer (e.g., 32-bit vs. 64-bit systems) and the
compiler being used. But if the architecture of the computer is same, then the size across
different computers remains same.

We can find the size of the data type using sizeof operator. According to this type, the range
of values that a variable of given data types can store are decided.

Example:

#include <iostream>
using namespace std,;

int main() {

// Printing the size of each data type

cout << "Size of int: " << sizeof(int) << " bytes" << end];
cout << "Size of char: " << sizeof(char) << " byte" << endl;
cout << "Size of float: " << sizeof(float) <<" bytes" << endl;
cout << "Size of double: " << sizeof(double) << " bytes";

return 0;

}

Output

Size of int: 4 bytes
Size of char: 1 byte
Size of float: 4 bytes
Size of double: 8 bytes

Derived Data Types in C++

The data types that are derived from the primitive or built-in datatypes are referred to as
Derived Data Types. They are generally the data types that are created from the primitive data
types and provide some additional functionality.

In C++, there are four different derived data types:

Table of Content
e Functions
o Arrays
o Pointers

e References
Functions
A function is a block of code or program segment that is defined to perform a specific well-
defined task. It is generally defined to save the user from writing the same lines of code again

and again for the same input. All the lines of code are put together inside a single function
and this can be called anywhere required.

Let's take a look at example that demonstrates the use of function in C++:

https://www.geeksforgeeks.org/cpp-sizeof-operator/
https://www.geeksforgeeks.org/data-type-ranges-and-their-macros-in-c/
https://www.geeksforgeeks.org/data-type-ranges-and-their-macros-in-c/
https://www.geeksforgeeks.org/cpp/derived-data-types-in-c/#1-function
https://www.geeksforgeeks.org/cpp/derived-data-types-in-c/#2-array
https://www.geeksforgeeks.org/cpp/derived-data-types-in-c/#3-pointers
https://www.geeksforgeeks.org/cpp/derived-data-types-in-c/#4-reference
https://www.geeksforgeeks.org/functions-in-c/

#include <iostream>
using namespace std;

// max here is a function which is a derived type
int max(int x, int y) {
if (x>y)
return Xx;
else
return y;

// main function is also a derived type
int main() {
inta=10, b =20;

// Calling above function to
// find max of 'a' and 'b'
int m = max(a, b);

cout<<"mis" <<m;
return 0;

}

Output
m is 20

Explanation: This above program demonstrates the use of function derived types It defines a
function called max this function returns the maximum of two integers provided as input. In
the main function, max function is called to find the maximum of variables a and b and store

it in m and finally print m(max number).

Arrays

An array is a collection of items stored at continuous memory locations. The idea of array is
to represent many variables using a single name. The below example demonstrates the use of

array in C++.

#include <iostream>
using namespace std,;

int main() {

/I Array Derived Type

int arr[5] = {1, 2, 3,4, 5};
arr[0] = 5;

arr[2] =-10;

arr[3] = arr[0];

// Printing the data
for (inti=0; 1 <5; i++)
printf("%d ", arr[i]);

return 0;

https://www.geeksforgeeks.org/cpp-arrays/

Output
52-1055

Explanation: This above program shows the use of array-derived type. It creates an integer
array arr and assigns values using indices. Then it prints all the array elements.

Pointers

Pointers are symbolic representation of addresses. They can be said as the variables that can
store the address of another variable as its value. The below example demonstrates the use of
pointer in C++.

#include <iostream>
using namespace std;

int main() {
int var = 20;

// Pointers Derived Type
// declare pointer variable

int* ptr;

/I note that data type of ptr
// and var must be same

ptr = &var;

// assign the address of a variable
// to a pointer

cout << "Value at ptr =" << ptr << end];
cout << "Value at var =" << var << endl;
cout << "Value at *ptr =" << *ptr;

return 0;

}

Output

Value at ptr = Ox7fffaSbef2cc
Value at var =20

Value at *ptr = 20

Explanation: This above program demonstrates the use of pointers as a derived type. It
declares pointer variable ptr and assigning the address of a variable var to it. It then prints
the values of the pointer, the variable, and the dereferenced pointer, showcasing the basics of
pointer usage in C++.

References
When a variable is declared as reference, it becomes an alternative name for an existing

variable. A variable can be declared as reference by putting ‘&’ in the declaration.
The below example demonstrates the use of reference in C++.

https://www.geeksforgeeks.org/pointers-c-examples/
https://www.geeksforgeeks.org/references-in-c/

#include <iostream>
using namespace std;
int main() {

int x = 10;

// Reference Derived Type
// ref is a reference to X.
int& ref = x;

// Value of x is now changed to 20
ref=20;
cout << "x =" <<x <<endl;

// Value of x is now changed to 30
x =30;

cout << "ref =" <<ref <<endl;

return 0;

}

Output
x =20
ref =30

Explanation: The above program demonstrates the use of reference-derived type. A

reference ref to an integer variable x. is created. If the value of ref is changed the value x, is
also modified and vice versa.

User Defined Data Types in C++

User defined data types are those data types that are defined by the user himself. In C++,
these data types allow programmers to extend the basic data types provided and create new
types that are more suited to their specific needs. C++ supports 5 user-defined data types:

o Class
e Structure
e Union
e Enumeration
o Typedef
1. Class

A Class is the building block of C++'s Object-Oriented programming paradigm. It is a user-
defined data type, which holds its own data members and member functions, which can be
accessed and used by creating an instance of that class. A class is like a blueprint for an
object.

Example
#include <bits/stdc++.h>
using namespace std;

class abc {

/I Access specifier

https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#1-class
https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#2-structure
https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#3-union
https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#4-enumeration
https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#5-typedef
https://www.geeksforgeeks.org/c-classes-and-objects/

public:

// Data Member
string name;

// Member Function
void printname() {
cout << name;

}
}s

int main() {

// Declare an object of class geeks
abc a;

/I Accessing data member
a.name = "khyati";

/I Accessing member function
a.printname();

return 0;

}

Output
khyati

Explanation: The above program defines a class named abc with a name attribute and a
function printname() to print the name. In the main function, it creates an object named a,
sets the geekname as "khyati", and calls the printname() function to display it.

2. Structure

A Structure is a user-defined data type like class. A structure creates a data type that can be
used to group items of possibly different types into a single type.

Example
#include <iostream>
using namespace std,;

// Declaring structure
struct A {

inti;

char c;

53
int main() {

// Create an instance of structure
A a;

// Initialize structure members
a.i1=65;
a.c="A";

https://www.geeksforgeeks.org/structures-in-cpp/

cout << a.c <<": " <<a.i;

return 0;

}

Output
A: 65

Explanation: The above demonstrates program demonstrates the use of structures by
defining a structure named A having i and ¢ members. It then creates an instance if structure
in the main function, sets the members' values, and prints them.

Structures in C++ are different from structures in C and resembles classes.

3. Union

Like structures , union is also user-defined data type used to group data of different type into
a single type. But in union, all members share the same memory location.

Example
#include <iostream>
using namespace std,;

// Declaration of union is same as the structures
union A {

int i;

char c;

}s

int main() {
// A union variable t
A a;

// Assigning value to c, i will also
// assigned the same
a.c="A";

cout << "a.i: " << a.i <<endl;
cout << "a.c: " <<a.c;

return 0;

}

Output
a.i: 65
a.c:A

Explanation: The above program demonstrates the use of unions. Union named A with
members i and c¢ is defined that shares the same memory space. It is shown that when we only
assign ¢ some value, the i also stores the same value.

4. Enumeration

Enumeration (or enum) is a user-defined data type in C++ mainly used to assign names to
integral constants, the names make a program easy to read and maintain.

https://www.geeksforgeeks.org/structures-c/
https://www.geeksforgeeks.org/cpp-unions/
https://www.geeksforgeeks.org/enumeration-enum-c/

Example
#include <iostream>
using namespace std;

// Declaring enum
enum Week { Mon, Tue, Wed, Thur, Fri, Sat, Sun };

int main() {

// Creating enum variable
enum Week day;

// Assigning value to the variabe
day = Wed,

cout << day;
return 0;

}

Output
2

S. Typedef and Using

C++ allows you to define explicitly new data type names by using the

keywords typedef or using. They do not create a new data class, rather, defines a name for an
existing type. This can increase the portability (the ability of a program to be used across
different types of machines; i.e., mini, mainframe, micro, etc; without many changes to the
code) of a program as only the typedef statements would have to be changed.

Example
#include <iostream>
using namespace std;

// Using typedef to define a new name for existing type
typedef float f;

// Using 'using' to define a new name for existing type
using integer = int;

int main() {
/I Declaring variables using new type names
fx=3.14;
integer y = 42;

cout << "Float Value: " << x << end];
cout << "Integer Value: " <<y;

return 0;

}

Output
Float Value: 3.14
Integer Value: 42

https://www.geeksforgeeks.org/typedef-in-cpp/
https://www.geeksforgeeks.org/using-keyword-in-cpp-stl/

String:

C++ Strings

A string is a collection of characters. There are two types of strings commonly used in C++ :
o Strings that are objects of string class (The Standard C++ Library String Class)
e (C-strings (C-style Strings)

C-strings

In C programming, the collection of characters is stored in the form of arrays. This is also
supported in C++ programming. Hence, it's called C-strings.

C-strings are arrays of type char terminated with a null character, that is, \O (ASCII value of
null character is 0).

How to define a C-string?

char str[] ="C++";

In the above code, str is a string and it holds 4 characters.

Although "C++" has three characters, the null character \0 is added to the end of the string
automatically.

Alternative ways of defining a string
char str[4] = "C++";

char str[] = {'C',+',+'\0'};
char str[4] = {'C",'+,'"+',\0'};
Like arrays, it is not necessary to use all the space allocated for the string. For example:

char str[100] = "C++";

The C-Style Character String

The C-style character string originated within the C language and continues to be supported
within C++. This string is actually a one-dimensional array of characters which is terminated
by a null character \0'. Thus a null-terminated string contains the characters that comprise the
string followed by a null.

The following declaration and initialization create a string consisting of the word "Hello". To
hold the null character at the end of the array, the size of the character array containing the
string 1s one more than the number of characters in the word "Hello."

char greeting[6] = {'H', 'e', "I, 'I', '0', "\0'};

If you follow the rule of array initialization, then you can write the above statement as
follows —

char greeting[] = "Hello";

Following is the memory presentation of above defined string in C/C++ —

https://www.programiz.com/cpp-programming/string-class
https://www.programiz.com/c-programming/c-arrays

Variable H “ l I 0 \O
Address 0x23451 | ox23452 | ox23453 0x23454 | ox23455 | Ox23456

Actually, you do not place the null character at the end of a string constant. The C++
compiler automatically places the \0' at the end of the string when it initializes the array. Let
us try to print above-mentioned string —

Example

#include <iostream>

using namespace std;

int main () {
char greeting[6] = {'H", '¢', 'T', 'I', '0', "\0'};
cout << "Greeting message: ";
cout << greeting << endl;

return 0;
}

When the above code is compiled and executed, it produces the following result —

Greeting message: Hello

Character Arrays

We can declare strings using the C-type arrays in the format of characters. This is done using
the following syntax —

Syntax
char variable name[len_value] ;

Here, len_value is the length of the character array.

Example of Creating String using Character Array

In the following examples, we are declaring a character array, and assigning values to it.

#include <iostream>
using namespace std;

int main() {
char s[5]={'h",'e','1''1','0'};
cout<<s<<endl;
return 0;

}

https://www.tutorialspoint.com/cprogramming/c_arrays.htm

C Style String Functions

C++ supports a wide range of functions that manipulate null-terminated strings. These
functions are defined in <string.h> header file.

Sr.No Function & Purpose

1 strepy(sl, s2);

Copies string s2 into string s1.

strecat(s1, s2);
) strcat(sl, s2

Concatenates string s2 onto the end of string s1.

3 strlen(s1);
Returns the length of string s1.

stremp(sl, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5 strrev(sl);

Returns a s1 string in reverse order

Example
Following example makes use of few of the above-mentioned functions —

#include <iostream>
#include <string>
using namespace std;
int main () {

char str1[10] = "Hello";
char str2[10] = "World";
char str3[10];

int len ;

// copy strl into str3
strepy(str3, strl);
cout << "strcpy(str3, strl) : " <<str3 << end];

// concatenates strl and str2
strcat(strl, str2);
cout << "strcat(strl, str2): " <<str]l << endl;

// total lenghth of strl after concatenation
len = strlen(strl);
cout << "strlen(strl) : " <<len << end];

return O;

}

When the above code is compiled and executed, it produces result something as follows —
strepy(str3, strl) : Hello

strcat(strl, str2): HelloWorld

strlen(strl) : 10

https://www.tutorialspoint.com/c_standard_library/string_h.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcpy.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcat.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strlen.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcmp.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strchr.htm

C++ stremp()

The stremp() function in C++ compares two null-terminating strings (C-strings). The
comparison is done lexicographically. It is defined in the cstring header file.

Example

#include <cstring>
#include <iostream>
using namespace std;

int main() {
char strl[] = "Megadeth";
char str2[] = "Metallica";

// compare strl and str2 lexicographically
int result = stremp(strl, str2);

cout << result;

return 0;

}

// Output: -1

stremp() Return Value
The stremp() function returns:
e apositive value if the first differing character in lhs is greater than the corresponding
character in rhs.
e anegative value if the first differing character in lhs is less than the corresponding
character in rhs.
e 0 iflhs and rhs are equal.

https://www.programiz.com/cpp-programming/library-function/cstring

The String Class in C++

We can declare a String variable using the 'string' keyword. This is included in the <string.h>
header file. The syntax of declaring a string is explained as follows —

Syntax
string variable name = [value];
Here, [value] is an optional and can be used to assign value during the declaration.

Example
In the following examples, we are declaring a string variable, assigning a value to it.

#include <iostream>
using namespace std,;

int main() {
string s="a merry tale";
cout<<s;
return 0;

}

Output
a merry tale

Example of String Class

#include <iostream>
#include <string>

using namespace std;
int main () {

string strl = "Hello";

string str2 = "World";
char str1[6]={};

string str3;

int len ;

// copy strl into str3
str3 = strl;
cout << "str3 : " <<str3 << endl;

// concatenates strl and str2
str3 = strl + str2;
cout << "strl + str2 : " <<str3 << endl;

// total length of str3 after concatenation
len = str3.size();

cout << "str3.size() : " <<len << end];
return 0;

https://www.tutorialspoint.com/cplusplus/cpp_strings.htm
https://www.tutorialspoint.com/cplusplus/cpp_strings.htm

When the above code is compiled and executed, it produces result something as follows —

str3 : Hello
str] + str2 : HelloWorld
str3.size() : 10

Traversing a String

Using looping statements

We can traverse a string using for loops, while loops and do while loops using a pointer to the
first and the last index in the string.

#include <iostream>
using namespace std,;

int main() {
string s="Hey, [am at TP.";

for(int i=0;i<s.length();i++){
cout<<s[i]<<"";
}

cout<<endl;

}

return O;

}

Output

Hey, I am at TP.

Example 1: C++ String to Read a Word
C++ program to display a string entered by user.

#include <iostream>
using namespace std;

int main()

{
char str[100];

cout << "Enter a string: ";
cin >> str;
cout << "You entered: " << str << endl;

cout << "\nEnter another string: ";
cin >> str;

cout << "You entered: " << str << endl;

return 0;

Output
Enter a string: C++
You entered: C++

Enter another string: Programming is fun.
You entered: Programming

Notice that, in the second example, only "Programming" is displayed instead
of "Programming is fun".

This is because the extraction operator >> works as scanf() in C and considers a
space " " as a terminating character.

Example 2: C++ String to read a line of text
C++ program to read and display an entire line entered by the user.

#include <iostream>

using namespace std,;

int main()

{
char str[100];
cout << "Enter a string: ";
cin.get(str, 100);

cout << "You entered: " << str << endl;
return 0;

}

Output

Enter a string: Programming is fun.

You entered: Programming is fun.

To read the text containing blank space, cin.get function can be used. This function takes two
arguments.

The first argument is the name of the string (address of the first element of the string), and the
second argument is the maximum size of the array.
In the above program, str is the name of the string and 100 is the maximum size of the array.

pointer to a character array
(often used to represent C-style strings) is a char® type variable that stores the memory
address of the first character in the array.

Declaration and Initialization:

Directly pointing to the first element.
char myCharArray[] = "Hello";
char* ptr = myCharArray; // ptr now points to 'H'

The name of a character array, when used without an index, decays into a pointer to its first
element. Using the address-of operator.

char myCharArray[] = "World";
char* ptr = &myCharArray[0]; // ptr now points to 'W'

Pointing to a string literal.
char* ptr = "C++"; // ptr points to the first character of the string literal "C++"
Note that string literals are typically stored in read-only memory, so attempting to modify the

characters through ptr in this case would lead to undefined behavior.

Accessing Characters:

Once a char* points to a character array, you can access individual characters
using: Dereference operator (*).

char firstChar = *ptr; // Gets the character pointed to by ptr
Pointer arithmetic and dereference.

char secondChar = *(ptr + 1); // Gets the second character in the array
Array-like indexing.
C++

char thirdChar = ptr[2]; // Gets the third character in the array (equivalent to *(ptr + 2))

Traversing the Array:
You can iterate through the characters of a C-style string using pointer arithmetic:

char myString[] = "Example";
char* currentPtr = myString;

while (*currentPtr !="0") { // lterate until the null terminator is found
// Process *currentPtr
currentPtr++; // Move to the next character

}

Type Conversion in C++

The conversion of one data type into another in the C++ programming
language.

Type conversion is the process that converts the predefined data type of one
variable into an appropriate data type.

The main idea behind type conversion is to convert two different data type
variables into a single data type to solve mathematical and logical expressions
easily without any data loss.

For example, we are adding two numbers, where one variable is of int type and
another of float type; we need to convert or typecast the int variable into a
float to make them both float data types to add them.

Type conversion can be done in two ways in C++,

1) Implicit type conversion
2) Explicit type conversion.

Those conversions are done by the compiler itself, called the implicit type or
automatic type conversion.

The conversion, which is done by the user or requires user interferences called
the explicit or user define type conversion

Implicit Type Conversion

The implicit type conversion is the type of conversion done automatically by
the compiler without any human effort.

It means an implicit conversion automatically converts one data type into
another type based on some predefined rules of the C++ compiler. Hence, it
is also known as the automatic type conversion.

For example:

int x = 20;
short inty = 5;
intz=x+y;,

In the above example, there are two different data type variables, x, and vy,
where x is an int type, and the y is of short int data type. And the resultant
variable z is also an integer type that stores x and y variables. But the C++
compiler automatically converts the lower rank data type (short int) value into
higher type (int) before resulting the sum of two numbers. Thus, it avoids the
data loss, overflow, or sign loss in implicit type conversion of C++.

Order of the typecast in implicit conversion

Higher Data Type

4 longdouble

!

double

!

float

!

No Loss in Data Long Loss in Data

!

int

!

short

!

char v

Lower Data Type

SCALER

Topues

The following is the correct order of data types from lower rank to higher rank:

1. bool -> char -> short int -> int -> unsigned int -> long int -
> unsigned long int -> long long int -> float -> double -
> long double

Program to convert int to float type using implicit type conversion

Let's create a program to convert smaller rank data types into higher types using implicit type conversion.

Program1.cpp

#include <iostream>

using namespace std;

int main ()

{

// assign the integer value

int num1 = 25;

// declare a float variable

float numz2;

// convert int value into float variable using implicit conversion
num2 = numT,;

cout << " The value of num1is: " << num1 << end|;
cout << " The value of num2 is: " << num?2 << endl;
return O;

}

Output

The value of numl is: 25
The value of num?2 is: 25

Program to convert double to int data type using implicit type conversion

Let's create a program to convert the higher data type into lower type using
implicit type conversion.

Program2.cpp

#include <iostream>

using namespace std;

int main()

{

int num; // declare int type variable

double num?2 = 15.25; // declare and assign the double variable

// use implicit type conversion to assign a double value to int variable
num = numze;

cout << " The value of the int variable is: " << num << end!;
cout << " The value of the double variable is: " << num?2 << endl;
return O;

}

Output

The value of the int variable is: 15
The value of the double wvariable is: 15.25

In the above program, we have declared num as an integer type and num2 as
the double data type variable and then assigned num2 as 15.25. After this, we
assign numz2 value to num variable using the assignment operator. So, a C++
compiler automatically converts the double data value to the integer type
before assigning it to the num variable and print the truncate value as 15.

Explicit type conversion

Conversions that require user intervention to change the data type of one
variable to another, is called the explicit type conversion.

In other words, an explicit conversion allows the programmer to manually
changes or typecasts the data type from one variable to another type. Hence,
it is also known as typecasting.

Generally, we force the explicit type conversion to convert data from one type
to another because it does not follow the implicit conversion rule.

The explicit type conversion is divided into two ways:

1. Explicit conversion using the cast operator
2. Explicit conversion using the assignment operator

Program to convert float value into int type using the cast operator

Cast operator: In C++ language, a cast operator is a unary operator who
forcefully converts one type into another type.

Let's consider an example to convert the float data type into int type using the
cast operator of the explicit conversion in C++ language.

Program3.cpp

#include <iostream>

using namespace std;

int main ()

{

float f2 = 6.7;

// use cast operator to convert data from one type to another
int x = static_cast <int> (f2);

cout << " The value of xis: " << x;

return O;

}
Output

The value of x 1s: 6
Program to convert one data type into another using the assignment operator

Let's consider an example to convert the data type of one variable into another
using the assignment operator in the C++ program.

Program4.cpp

#include <iostream>
using namespace std;
int main ()

{

// declare a float variable
float numz2;

// initialize an int variable
int num1 = 25;

// convert data type from int to float

num?2 = (float) num1;

cout << " The value of int num1is: " << num1 << endl;
cout << " The value of float num2 is: " << num2 << endl;
return O;

} Output

The value of int numl is: 25
The value of float num?2 is: 25.0

SY BCA SEM-3 UNIT -2 oopP

2.1 Introduction to OOP properties

2>

>

>

>

The main purpose of C++ programming was to add object orientation to the C programming
language, which is in itself one of the most powerful programming languages.

The core of the pure object-oriented programming is to create an object in code that has
certain properties and methods. While designing C++ modules, we try to see whole world in
the form of objects.

For example a car is an object which has certain properties such as color, number of doors,
and the like. It also has certain methods such as accelerate, break, and so on.

There are a few principle concepts that form the foundation of object-oriented programming:

Object

Class
Abstraction
Encapsulation
Inheritance
Polymorphism

VVVVYVYY

NOTE: refer all the properties describe in UNIT-1

2.2 Abstraction

>

4

>

Data abstraction refers to, providing only essential information to the outside world and
hiding their background details, i.e., to represent the needed information in program without
presenting the details.

Data abstraction is a programming (and design) technique that relies on the separation of
interface and implementation.

Let's take one real life example of a TV, which you can turn on and off, change the channel,
adjust the volume, and add external components such as speakers, VCRs, and DVD players,
BUT you do not know its internal details, that is, you do not know how it receives signals over
the air or through a cable, how it translates them, and finally displays them on the screen
Thus, we can say a television clearly separates its internal implementation from its external
interface and you can play with its interfaces like the power button, channel changer, and
volume control without having zero knowledge of its internals.

Now, if we talk in terms of C++ Programming, C++ classes provides great level of data
abstraction. They provide sufficient public methods to the outside world to play with the
functionality of the object and to manipulate object data, i.e., state without actually knowing
how class has been implemented internally.

For example, your program can make a call to the sort() function without knowing what
algorithm the function actually uses to sort the given values. In fact, the underlying

Khyati Solanki Page 1 of 32

SY BCA SEM-3 UNIT -2 oopP

implementation of the sorting functionality could change between releases of the library, and
as long as the interface stays the same, your function call will still work.

=>» In C++, we use classes to define our own abstract data types (ADT). You can use the coutobject
of class ostream to stream data to standard output like this:

int main()
{
cout << "Hello C++" <<endl;

returnO;

}

=>» Here, you don't need to understand how cout displays the text on the user's screen. You
need to only know the public interface and the underlying implementation of cout are free to
change.

Access Labels Enforce Abstraction:

=>» In C++, we use access labels to define the abstract interface to the class. A class may contain
zero or more access labels:

= Members defined with a public label are accessible to all parts of the program. The data-
abstraction view of a type is defined by its public members.

=>» Members defined with a private label are not accessible to code that uses the class. The
private sections hide the implementation from code that uses the type.

=>» There are no restrictions on how often an access label may appear. Each access label specifies
the access level of the succeeding member definitions. The specified access level remains in
effect until the next access label is encountered or the closing right brace of the class body is
seen.

Benefits of Data Abstraction:

=>» Data abstraction provides two important advantages:

- Classinternals are protected from inadvertent user-level errors, which might corrupt the state
of the object.

- The class implementation may evolve over time in response to changing requirements or bug
reports without requiring change in user-level code.

=>» By defining data members only in the private section of the class, the class author is free to
make changes in the data. If the implementation changes, only the class code needs to be
examined to see what affect the change may have.

Khyati Solanki Page 2 of 32

SY BCA SEM-3 UNIT -2 oopP

=>» If data are public, then any function that directly accesses the data members of the old
representation might be broken.

Data Abstraction Example:

Any C++ program where you implement a class with public and private members is an example
of data abstraction. Consider the following example:

Example 1: Example 2 :

int a, b
public:

wid setlint x, int y)
{

]

a=x
b =uy;

¥
woid display()

woid addMumCint number) {
{ cout{¢ <{a <{ endl:

total += number:; cout<< <{ b < endl:
¥

int getTotal ()

woid main()

i
abc A:
clrscr():

int total: fA.zet(10, 20):
fA.display();
3 getch():

wvoid main(

Khyati Solanki Page 3 of 32

SY BCA SEM-3 UNIT -2 oopP

a .addNum {1607 ;
a . addNum(20) :

<{ a.getTotal() <<endl:

When the above code is compiled and executed, it produces the following
result: Total 60

Above class adds numbers together, and returns the sum. The public members addNumand
getTotal are the interfaces to the outside world and a user needs to know them to use the class.
The private member total is something that the user doesn't need to know about, but is needed for
the class to operate properly.

Access Modifiers/Specifier in C++

=>» Access modifiers are used to implement an important feature of Object-Oriented Programming
known as Data Hiding. Consider a real-life example:

=>» The Indian secret informatic system having 10 senior members have some top secret regarding
national security. So we can think that 10 people as class data members or member functions
who can directly access secret information from each other but anyone can’t access this
information other than these 10 members i.e. outside people can’t access information directly
without having any privileges. This is what data hiding is.

=>» Access Modifiers or Access Specifiers in a class are used to set the accessibility of the class
members. That is, it sets some restrictions on the class members not to get directly accessed by
the outside functions.

There are 3 types of access modifiers available in C++:

1. Public

2. Private

3. Protected
Note: If we do not specify any access modifiers for the members inside the class then by default
the access modifier for the members will be Private.

Khyati Solanki Page 4 of 32

https://practice.geeksforgeeks.org/problems/what-is-data-hiding
https://www.geeksforgeeks.org/c-classes-and-objects/

SY BCA SEM-3 UNIT -2 oopP

Let us now look at each one these access modifiers in details:

I. Public: All the class members declared under public will be available to everyone. The data
members and member functions declared public can be accessed by other classes too. The
public members of a class can be accessed from anywhere in the program using the direct
member access operator (.) with the object of that class.

// class definition

class Circle

{
public:
double radius;

double compute_area()

{

return 3.14*radius*radius;

}
|7
// main function

void main()

{

Circle obj;

// accessing public datamember outside class
obj.radius = 5.5;

cout << "Radius is: " << obj.radius << "\n";
cout << "Area is: " << obj.compute_area();
getch();

Output:

Radius is: 5.5

Area is: 94.985

In the above program the data member radius is public so we are allowed to access it outside the
class.

II. Private: The class members declared as private can be accessed only by the functions inside
the class. They are not allowed to be accessed directly by any object or function outside the
class. Only the member functions or the friend functions are allowed to access the private
data members of a class.

Khyati Solanki Page 5 of 32

https://www.geeksforgeeks.org/friend-class-function-cpp/

SY BCA SEM-3 UNIT -2 oopP

class Circle

{

// private data member

private:
double radius;

// public member function

public:
double compute_area()
{ // member function can access private
// data member radius
return 3.14*radius*radius;

}
|3
// main function

void main()

{
// creating object of the class
Circle obj;

// trying to access private data member
// directly outside the class
obj.radius = 1.5;

cout << "Area is:" << obj.compute_area();
getch();
}

The output of above program will be a compile time error because we are not allowed
to access the private data members of a class directly outside the class.

Output:

In function 'int main()":
11:16: error: 'double Circle::radius' is private
double radius;
A
31:9: error: within this context

obj.radius = 1.5;

Khyati Solanki Page 6 of 32

SY BCA SEM-3

oopP

lll. Protected: Protected access modifier is similar to that of private access modifiers, the
difference is that the class member declared as Protected are inaccessible outside the class

but they can be accessed by any sub class(derived class) of that class.

// base class

class Parent

{

// protected data members
protected:
int id_protected;

|3
// sub class or derived class

class Child : public Parent
{

public:
void setld(int id)
{

// Child class is able to access the inherited
// protected data members of base class

id_protected = id;

}

void displayld()
{

cout << "id_protected is: " << id_protected << endl;
}
L

// main function

void main() {

Child obj1;
// member function of the derived class can
// access the protected data members of the base class

objl.setld(81);
objl.displayld();
getch();
}
Output:
id_protected is: 81

2.3 Inheritance
Khyati Solanki

Page 7 of 32

SY BCA SEM-3 UNIT -2 oopP

=>» One of the most important concepts in object-oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class, which makes it easier to
create and maintain an application. This also provides an opportunity to reuse the code
functionality and fast implementation time.

= When creating a class, instead of writing completely new data members and member

functions, the programmer can designate that the new class should inherit the members of an

existing class. This existing class is called the base class, and the new class is referred to as the

derived class.

Inheritance is the process by which the objects of one class acquire the properties of object of

another class.

It supports the concept of hierarchical — classification.

In Oop, the concept of inheritance provides the idea of Reusability. It means that we can add

additional features to an existing class without modifying it.

It is possible by deriving a new class from existing class and new class will have combine

features of both the class

L L

Bird

Aftrbutes

Faeathers

Lay eggs=

P
- T S
Flying Bird Monfhyving Bird
Annbules A bl
e
— . . V— ' -
R i Swwaallone F | AT
A P fers A tribites Afrbulfes Attribufes

Base& Derived Classes:

=» A class can be derived from more than one classes, which means it can inherit data and
functions from multiple base classes. To define a derived class, we use a class derivation list to
specify the base class(es). A class derivation list names one or more base classes and has the
form:

Class derived-class: access-specifier base-class

=>» Where access-specifier is one of public, protected, or private, and base-class is the name of a
previously defined class. If the access-specifier is not used, then it is private by default.

=>» Base class / super class / parent class: The class whose properties are inherited by sub class is
called Base Class or Super class or Parent class.

=> Derive class / sub class / child class :The class that inherits properties from another class is
Khyati Solanki Page 8 of 32

SY BCA SEM-3

UNIT -2

called Sub class or Derived Class or Child class

Access Control and Inheritance:

oopP

A derived class can access all the non-private members of its base class. Thus base-class
members that should not be accessible to the member functions of derived classes should be

declared private in the base class.

Rules for inheritance:

W=

Private variables/methods will not be accessed in child class.

Child inherits parent = protected;[parent protected &public]=protected
Child inherits parent = private;[parent protected &public]=private

Child inherits parent = public;[parent protected & public]=[protected &public]

We can summarize the different access types according to who can access them in the

following way:

Access Public protected private
Same class Yes Yes yes
Derived classes Yes Yes no
Outside classes Yes No no
Variable or Base class Base class Child class Child class
function scope object object
in base class
public Accessasible Accessasible Accessasible Accessasible
Private Accessasible Not Not Not
Accessasible Accessasible Accessasible
Protected Accessasible Not Accessasible Not
Accessasible Accessasible
(class to class)

A derived class inherits all base class methods with the following exceptions:

Khyati Solanki

Page 9 of 32

SY BCA SEM-3 UNIT -2 oopP

e Constructors, destructors and copy constructors of the base class.
e Overloaded operators of the base class.

e The friend functions of the base class.

Inheritance according to access specifier:

=>» When deriving a class from a base class, the base class may be inherited through public,
protected or private inheritance. The type of inheritance is specified by the access-specifier as
explained above.

= We hardly use protected or private inheritance, but public inheritance is commonly used.
While using different type of inheritance, following rules are applied:

e Public Inheritance: When deriving a class from a public base class, public members of the base
class become public members of the derived class and protected members of the base class
become protected members of the derived class. A base class's private members are never
accessible directly from a derived class, but can be accessed through calls to the public
and protected members of the base class.

e Protected Inheritance: When deriving from a protected base class, public and protected
members of the base class become protected members of the derived class.

e Private Inheritance: When deriving from a private base class, public and protected
members of the base class become private members of the derived class.

Access Access Access Access specifier

specifier in specifier when | specifier when | when inherited

base class inherited in inherited in in protected
public scope private scope | scope

public Public Private Protected

Private Not accessible | Not accessible | Not accessible

Protected protected Private protected

2.3.1 Types of Inheritance

Khyati Solanki Page 10 of 32

SY BCA SEM-3 UNIT -2 OOP
Singal Multilevel Hierarchical Multiple Hybrid
A Super Class A A A B A
i ‘ B (
B Sub Class C B C D C
D
A derive class A mechanism | One class A derive class | Combination of
with only one of deriving inherited by with more than | more than one
class is known as | one class more than one one base class | type of

single inheritance | from another | classes is known | is known as inheritance is
derive class is | as hierarchical multiple known as hybrid
called inheritance inheritance inheritance
multilevel
inheritance
ClassA Class A ClassA ClassA ClassA
{ { { { {
class bod class bod
//class body //class body / ¥ //class body / Y
classB:publicA classB:publicA class.B: virtual
{ publicA
classB:publicA { class B {
{ //class body //class body {
//class body //class body
//class body , h

b

ClassC:public B

classC:publicA

{
//class body };

classD:publicA

|5

Class C:public A,

|5

Khyati Solanki

Page 11 of 32

SY BCA SEM-3 UNIT -2 oop
{ public B classC:virtual
{ { publicA
//class body /i class body //class body {
|5 g % //class body
//derived from 2 };

base classes A
and B

class D:publicB,
publicC

{

//class body

|3

Examples :

Single Inheritance

class stud

{

int rno;
char nm[15];

public:
void get()
{

cout << "enter rno and name";

cin >>rno >>nm;

}

void display()

rno is: 1

mame is: khyati

total i=s: 244

percentage is: 81.333336

Khyati Solanki

Page 12 of 32

SY BCA SEM-3 UNIT -2 oopP

cout << "rnois: " << rno << endl;

cout << "name is: " << nm << endl;

|5
//exam class is derived from base class stud.

class exam : public stud

{
intml,m2,m3;

public:

void get()

{

stud :: get();

cout<< "enter m1,m2,m3"<<endl;

cin >>m1l>>m2 >>m3;

}

void display()

{
stud :: display();

int tot = m1+m2+m3;

float per=tot/3.0;

cout << "total is: " << tot << end|;

Khyati Solanki Page 13 of 32

SY BCA SEM-3 UNIT -2 OOP

cout << "percentage is: " << per << end|;
}
2

void main()

examel;
clrscr();
el.get();
el.display();

getch();
}

Multilevel inheritance

class cust

{

protected:
char nm[15],type;

public:

void get()

{

cout << " enter customer name and type (R/N)";

cin >>nm >> type;

}

enter amount
1 AN

namekhyat i

typeR

hill amount1EEOO
met amount = 7500

Khyati Solanki

Page 14 of 32

SY BCA SEM-3

UNIT -2

oopP

void show()
{
cout << "name" << nm << endl;
cout << "type" << type << end|;
}
Iy
class bill : public cust
{
protected :
int amt;
public :
void get()
{
cust :: get();
cout << "enter amount";
cin >> amt;
}

void show()

{

cust ::show();

cout << "bill amount" << amt << endl;

}
Iy
class payment : public bill

{

private:

Khyati Solanki

Page 15 of 32

SY BCA SEM-3

UNIT -2

oopP

float dis,namt;

public :

void show()

{

bill :: show();

if (type=="R’)

{

dis= 0.25 * amt;
}

else

{

dis= 0.10 * amt;
}

namt=amt-dis;
cout << "net amount =" << namt <<endl;
}

Iy

void main()

{

payment pl;
clrscr();
pl.get();
pl.show();
getch();

}

Hierarchical inheritance

Output

Khyati Solanki

Page 16 of 32

SY BCA SEM-3

UNIT -2

OOP

class stud

{

char nm[15];

protected:

int score ;

public:

void get()

{

cout << "enter name and score";

cin >> nm >> score;

}

void show()
cout << "name = " << nm << endl;

cout << "score =" << score << end|;

}

Iy

class it : public stud

{

public :

void show()

{

cout << "it class"<< endl;
stud :: show();

if (score >=7)

Enter name and score

non—it class
= hina

Khyati Solanki

Page 17 of 32

SY BCA SEM-3

UNIT -2

oopP

cout << "pass'<<endl;
else
cout << "fail"<< endl;
}
Iy
class nonit : public stud
{
public :
void show()
{
cout << "non-it class'"<< endl;
stud :: show();
if (score >=5)
cout << "pass";
else
cout << "fail";
}
Iy
void main()
{
iti;
clrscr();
i.get();

i.show();

nonit n;

Khyati Solanki

Page 18 of 32

SY BCA SEM-3 UNIT -2 0ooP
n.get() ;
n.show() ;
getch();
}
Multiple inheritance output
class t
enter practical marks
{ 165
theoary marks= 400
protected: practical marks= 165
) get =cholarship
int tmarks;
public :
void get ()
{

cout << "enter theoary marks";
cin >> tmarks;

}

void show()

{

cout << "theoary marks=" << tmarks << end| ;
}

Iy

class p

{

protected:

int pmarks;

public :

void get ()

Khyati Solanki

Page 19 of 32

SY BCA SEM-3

UNIT -2

oopP

{

cout << "enter practical marks";
cin >> pmarks;

}

void show()

{

cout << "practical marks=" << pmarks << end| ;

}

Iy

class scholar : public t, public p
{

public:

void get()

{

t :: get();

p - get();

}

void show()

{

t::show();

p:: show();

if(t::tmarks >= 300 && p::pmarks>= 100)
{

cout << "get scholarship" << endl ;

}

else

Khyati Solanki

Page 20 of 32

SY BCA SEM-3

UNIT -2

oopP

{

cout << "sorry"<< endl;
}

}

Iy

void main()

{

scholars;

s.get();

s.show();

getch();
}

7

«* Virtual Base Class:

in above fig.

D

L 20 R R D

Class A
Class B : public virtual A
Class C : public virtual A

D=D+C+A
D=D+B+A

D= D+C+B+2A

(Two copy of class A we
get so error of
ambiguity arise)

In situation, where we require use of multiple, hierarchical and multilevel inheritance as shown

In this case, class D have two direct base classes (b,c) and these two base classes have a
common base class A. in this situation class D inherits member of class A via two seprate paths.
So, class A is also called indirect base class of class D
All the public and protected member of class A are inherited in class D two times

It means class D has duplicate set of members inherited from class A

And because of this problem ambiguity arises

This duplication of inherited members can be avoided by making common base class as virtual

base class while declaring declaring direct or intermediate base class as shown below:

Khyati Solanki

Page 21 of 32

SY BCA SEM-3 UNIT -2 OOP

Class D : public B, public C

=» When a class is made virtual base class c++ compiler takes care that only one copy of that class
is inherited regardless of number of inherited paths exist between virtual base class and derive
class

NOTE : refer the example of hybrid inheritance

Hybrid inheritance

class person

{ enter =alary
25000
enter profit
char nm[15] ; 30000 P
. NAME : khyati

public : SALARY : 25000

. PROFIT : 30000
void get () AMOUNT : 55000
{
cout << "enter name";
cin >>nm;
}
void show()
{
cout << " NAME : " << nm << endl;
}
7
class job : public virtual person
{
protected:
long sal;
public :

Khyati Solanki Page 22 of 32

SY BCA SEM-3

UNIT -2

oopP

void get()

{

cout << " enter salary " ;
cin >> sal;

}

void show()

{

cout << "SALARY : " << sal << endl;
}

Iy

class bussiness : public virtual person
{

protected:

long profit;

public :

void get()

{

cout << " enter profit " ;

cin >> profit;

}

void show()

{

cout << "PROFIT : " << profit << end|;

}
|5

Khyati Solanki

Page 23 of 32

SY BCA SEM-3

UNIT -2

oopP

class netearning : public job , public bussiness
{

long amt;

public:

void get()

{

person :: get();

job :: get() ;

bussiness :: get();

}

void show()

{

person :: show();
job:: show();
bussiness :: show();
amt= sal+profit;
cout << "AMOUNT : "<< amt << end|;
}

Iy

void main()

{

netearning n;
clrscr();

n.get();

n.show();

Khyati Solanki

Page 24 of 32

SY BCA SEM-3 UNIT -2 oopP

getch(); }

2.3.2 Constructor and destructor call during inheritance

- The default constructor and destructor of base class are always called when a new
object of derived class is created or destroyed

> Constructor and Inheritance

=

g 4 3 4 133

The compiler automatically calls a base class constructor before executing the derived class
constructor.

The compiler’s default action is to call the default constructor in the base class.

If you want to specify which of several base class constructors should be called during the creation
of a derived class object.

In these cases, you must explicitly specify which base class constructor should be called by the
compiler.

This is done by specifying the arguments to the selected base class constructor in the definition of
the derived class constructor.

When both base class and derived class contain constructor at that time base class constructor is
executed first then the statements in derive class constructor are executed

Without declaration of constructor in base class if you called derived class constructor it will raise
an error

> Destructor and Inheritance

4038

In inheritance, destructors are executed in reverse order of constructor execution.

The destructors are executed when an object goes out of scope.

When both base class and derived class contain destructor at that time derive class destructor is
executed first then the base class destructor is_executed

Example 1

class Rectangle

{
public:

float length; float width;

Rectangle () //Default constructor

{
length = 0;
width = 0;
}

Khyati Solanki Page 25 of 32

SY BCA SEM-3 UNIT -2 oopP

Rectangle (float len, float wid) // parameterized constructor
{

length = len; width = wid;

}

~Rectangle() //destructor

{

cout<< "Base Class Desrtuctor";

}

float area()

{

return length * width ;

}

Iy

class Box : public Rectangle
{

public:

float height;

Box () //default constructor
{

height = 0;

}

Box (float len, float wid, float ht) : Rectangle(len, wid) //calling constructor of parent class

{

height = ht;

}

~Box() //destructor
{

Khyati Solanki Page 26 of 32

SY BCA SEM-3 UNIT -2 OOP

cout<<"Derived Class Desrtuctor";

}

float volume()

{

return area() * height;

}

2

void main ()

{

Box bx;

clrscr();

Box cx(4,8,5);

cout << bx.volume() << endl;
cout << cx.volume() << endl;

getch();
}

160
Derived Class Desrtuctor

Base Class Desrtuctor
Derived Class Desrtuctor
Base Class Desrtuctor

C++ this Pointer

In C++ programming, this is a keyword that refers to the current instance of the class. There can be
3 main usage of this keyword in C++.

o It can be used to pass current object as a parameter to another method.
o It can be used to refer current class instance variable.

o It can be used to declare indexers.

Khyati Solanki Page 27 of 32

SY BCA SEM-3 UNIT -2 oopP

Example 2

#include < string.h>

class stud

{

int rno;
char nm[15];

public:

stud()
{

rno=0;
strcpy(nm," ");

}

stud(int rno,char nm[])

{
this->rno=rno;
strcpy(this->nm,nm);

}

~stud()
{

cout << "Destroyed";

}

void display()
{

cout << "rno is: " << rno << endl;
cout << "name is: " << nm << endl;

2
//exam class is derived from base class stud.

class exam : public stud

{

intml,m2,m3;

Khyati Solanki Page 28 of 32

SY BCA SEM-3 UNIT -2 oopP

public:

exam()
{
ml=m2=m3=0;

}

exam (int rno,char nm([],int m1,int m2,int m3) : stud (rno,nm)

{

this->m1=m1;
this->m2=m2;
this->m3=m3;

}
~exam()
{
cout << "child";
}
void display()
{
stud :: display();
int tot = m1+m2+m3;
float per=tot/3.0;
cout << "total is: " << tot << endl;
cout << "percentage is: " << per << end|;
}
7
void main()
{
clrscr();
exam e;
e.display();
exam e2(2,"hina",30,40,50) ;
e2.display();
getch();
}

Khyati Solanki Page 29 of 32

SY BCA SEM-3 UNIT -2 OOP

iz: 2
: hina
otal is: 120

Deztroyed

2.3.3 Abstract Class

Abstract Class

=>» Abstract Class is a class which contains at least one Pure Virtual function in it.

=>» Abstract classes are used to provide an Interface for its sub classes.

=>» Classes inheriting an Abstract Class must provide definition to the pure virtual function,
otherwise they will also become abstract class.

Characteristics of Abstract Class:

1. Abstract class cannot be instantiated, but pointers and references of Abstract class type can be
created.

2. Abstract class can have normal functions and variables along with a pure virtual function.
3. Abstract classes are mainly used for Up casting, so that its derived classes can use its interface.

4, Classes inheriting an Abstract Class must implement all pure virtual functions, or else they will
become Abstract too.

Pure Virtual Functions

Pure virtual Functions are virtual functions with no definition. They start with virtual keyword and
ends with “= 0” Here is the syntax for a pure virtual function,

virtual void f() = 0;

Khyati Solanki Page 30 of 32

SY BCA SEM-3 UNIT -2 OOP
Example of Abstract Class:
virtual void show() = 0
¥
class Derived:public Base
b—>=zhow()]:
getch():
¥
Implementation of Virtual Function in Derived class
Overloading and overriding
Function overloading Function Overriding
It is possible only in single class It is possible only in inheritance
It means two function with the same It means two function with the same
name but different signature means name and same signature but in
different number of argument, different | inherited class
data type or different data type for
different argument
It is possible for function, constructor and | It is possible only for function
operator
Example: Example:
Khyati Solanki Page 31 of 32

SY BCA SEM-3 UNIT -2 oop
class Addition class A
{ {
public: public:
int sum(int num1,int num2) void show()
{ {
return numl+num?2; cout << "base class" << endl;
} }
Iy
int sum(int num1,int num2, int num3) | class B : public A
{ {
return numl+num2+nums3; public:
} void show()
Iy {
A::show();
void main() cout << "derive class" << endl;
{ }
Addition obj; |5
cout<<obj.sum(20, 15)<<endl; void main()
cout<<obj.sum(81, 100, 10) << end|; {
getch(); B b;
} b.show();
getch();}

35
131

hase class
derive class

Khyati Solanki

Page 32 of 32

SY BCA SEM-3 UNIT-3 oopP

Polymorphism

4
4

v

Polymorphism simply means “One name And Multiple behavior”.

Polymorphism, a Greek term, means the ability to take more than on form. An operation
may exhibit different behavior is different instances. The behavior depends upon the types
of data used in the operation.

Polymorphism plays an important role in allowing objects having different internal structures
to share the same external interface. This means that a general class of operations may be
accessed in the same manner even though specific action associated with each operation
may differ.

Polymorphism is extensively used in implementing inheritance.

For example, consider the operation of addition. For two numbers, the operation will
generate a sum. If the operands are strings, then the operation would produce a third string
by concatenation. The process of making an operator to exhibit different behaviors in
different instances is known as operator overloading.

A single function name can be used to handle different number and different types of
argument. This is something similar to a particular word having several different meanings
depending upon the context. Using a single function name to perform different type of task
is known as function overloading.

4 In C++ polymorphism is mainly divided into two types:

Compile time Polymorphism
Runtime Polymorphism

(ompte e |)

e \,

|

Function Operator Virtual
Ovetrloading Overloading Functions

oG
2,

KHYATI SOLANKI 1

SY BCA SEM-3 UNIT-3 oopP

1. compile time /Static Polymorphism/ early binding

>

Static polymorphism involves binding of functions based on the number, type, and sequence
of arguments. The various types of parameters are specified in the function declaration, and
therefore the function can be bound to calls at compile time. This form of association is
called early binding. The term early binding stems from the fact that when the program is
executed, the calls are already bound to the appropriate functions.

C++ allows you to specify more than one definition for a function name or an operator in
the same scope, which is called function overloading and operator overloading
respectively.

An overloaded declaration is a declaration that had been declared with the same name as a
previously declared declaration in the same scope, except that both declarations have
different arguments and obviously different definition (implementation).

When you call an overloaded function or operator, the compiler determines the most
appropriate definition to use by comparing the argument types you used to call the function
or operator with the parameter types specified in the definitions. The process of selecting
the most appropriate overloaded function or operator is called overload resolution.

C++ Operators Overloading

>

>

L

>

Operator overloading is a compile-time polymorphism in which the operator is overloaded
to provide the special meaning to the user-defined data type.

In C++, we can make operators to work for user defined classes. This means C++ has the
ability to provide the operators with a special meaning for a data type, this ability is known
as operator overloading.

For example, we can overload an operator ‘+’ in a class like String so that we can
concatenate two strings by just using +. Other example classes where arithmetic operators
may be overloaded are Complex Number, Fractional Number, Big Integer, etc.

Operator overloading is used to overload or redefines most of the operators available in C++.
It is used to perform the operation on the user-defined data type. For example, C++ provides
the ability to add the variables of the user-defined data type that is applied to the built-in
data types.

The advantage of Operators overloading is to perform different operations on the same
operand.

KHYATI SOLANKI 2

SY BCA SEM-3 UNIT-3 oopP

Operator that cannot be overloaded are as follows:

o Scope operator (::)

o Sizeof

o member selector(.)

o member pointer selector(.*)

o ternary operator(?:)

o (),

Syntax of Operator Overloading

Keyword Operator to be overloaded

__J

ReturnType classname :: Oﬁ‘eratcr dperatorSymbc:l (argument list)

{

\\ Function body

Implementing Operator Overloading

Operator overloading can be done by implementing a function which can be :

1. Member Function

return_type operator op(argument_list)

{

// body of the function. Inside class declaration

}

2. Non-Member Function

return_type class_name :: operator op(argument_list)
{

// body of the function. Outside class declaration

}

. ___|
KHYATI SOLANKI 3

SY BCA SEM-3 UNIT-3 oopP

3. Friend Function

Friend function using operator overloading offers better flexibility to the class.
These functions are not a member of the class and they do not have 'this' pointer.
When you overload a unary operator, you have to pass one argument.

When you overload a binary operator, you have to pass two arguments.

Friend function can access private members of a class directly.

friend return-type operator operator-symbol (Variable 1, Varibale2)

{
//Statements;

Where the return type is the type of value returned by the function. class_name is the name of the
class.

operator op is an operator function where op is the operator being overloaded, and the operator is
the keyword.

Rules for Operator Overloading

o Existing operators can only be overloaded, but the new operators cannot be overloaded.
o The overloaded operator contains at least one operand of the user-defined data type.

o We cannot use friend function to overload certain operators. However, the member function
can be used to overload those operators.

o When unary operators are overloaded through a member function take no explicit
arguments, but, if they are overloaded by a friend function, takes one argument.

o When binary operators are overloaded through a member function takes one explicit
argument, and if they are overloaded through a friend function takes two explicit arguments.

o We cannot change the basic meaning of an operator

o Overloaded operator follows syntax rules of original operator they cannot be overridden

What is the difference between operator functions and normal functions?

Operator functions are same as normal functions. The only differences are, name of an operator
function is always operator keyword followed by symbol of operator and operator functions are
called when the corresponding operator is used.

. ___|
KHYATI SOLANKI 4

SY BCA SEM-3 UNIT-3 oopP

EXAMPLE 1 :

Let's see the simple example of operator overloading in C++. In this example, void operator ++ ()
operator function is defined (inside Test class).

// program to overload the unary operator ++ and --.

class Test

{

private:
int num;

public:
Test()
{

num =8;

}

/* void operator ++()

{
num = num+2;
¥/
void operator --()
{
num = num-2;
}
void Print()
{
cout<<"The Count is: "<<num<<end];
}

void operator ++();

2
//outside class declaration

void Test:: operator ++()

{

num = num-+2;

}

KHYATI SOLANKI 5

SY BCA SEM-3 UNIT-3 oopP

void main()
{
Test tt;
++tt; // calling of a function "operator ++()"
Test tt1;
--tt1; // calling of a function “operator --()"
tt.Print();
tt1.Print();
getch();
}
Output:
The Count is: 10
The Count is: 6
EXAMPLE 2 :
Let's see a simple example of overloading the binary operators.

// program to overload the binary operators + and -.

class A

{
int x;
public:
A(int i)

KHYATI SOLANKI

SY BCA SEM-3 UNIT-3 oopP

void operator+(A a)

intm=ax+x;
cout << "\n";

cout<<"The result of the addition of two objects is : "<<m;

void operator-(A a)
{

intm=x -a.x;
cout << "\n";

cout<<"The result of the summation of two objects is : "<<m;

}
y
void main()
{
clrscr();
A al(5);
A a2(4);
al + a2; // calling the operator + function objectl operator object2
al-a2;
getch();
}
Output:

The result of the addition of two objectsis : 9
The result of the summation of two objectsis: 1

. ___|
KHYATI SOLANKI 7

SY BCA SEM-3 UNIT-3 oopP

EXAMPLE 3 :
Let's see a simple example of overloading the unary operators with string.
// program to overload the unary operators + with string

class AddString
{

public:
char s1[25], s2[25];

// Parametrized Constructor

AddString(char stri[], char str2[])

{

// AddString al(strl, str2);
// Initialize the string to class object
strcpy(this->s1, strl);
strcpy(this->s2, str2);

}

// Overload Operator+ to concat the string
void operator+()

{

cout << "\nConcatenation: " << strcat(s1, s2);

}
I
void main()

{

clrscr();
// Declaring two strings

char strl[] = "khyati";

charstr2[] =" solanki";

// Declaring and initializing the class
// with above two strings

AddString al(strl, str2);
// Call operator function

+al;

KHYATI SOLANKI 8

SY BCA SEM-3 UNIT-3 oopP

getch();

oncatenation: khyati solanki

EXAMPLE 4 :
Let's see a simple example of overloading the binary operators with string.
// program to overload the binary operators + with string

class AddString
{

public:
char str[100];
// default constructor
AddString(){}

// Parametrized constructor to
// initialize class Variable

AddString(char str[])
{

strcpy(this->str, str);

}

// Overload Operator+ to concatenate the strings

AddString operator+(AddString& S2)
{

// Object to return the copy
// of concatenation
AddString S3;

// Use strcat() to concat two specified string
strcat(this->str, S2.str);

KHYATI SOLANKI 9

SY BCA SEM-3 UNIT-3 oopP

// Copy the string to string to be return
strcpy(S3.str, this->str);

// return the object
return S3;

void main()

{
clrscr();
// Declaring two strings

char strl[] = "About ";
char str2[] = "OOP";

// Declaring and initializing the class
// with above two strings

AddString al(strl);
AddString a2(str2);

AddString a3;

// Call the operator function

a3 =al+a2;

cout << "Concatenation: " << a3.str;

getch();

oncatenation: About O00P_

Overloading I/O operator

=>» Overloaded to perform input/output for user defined datatypes. Left Operand will be types
ostream& and istream&

=>» Function overloading this operator must be a Non-Member function because left operand is
not an Object of the class.

. ___|
KHYATI SOLANKI 10

SY BCA SEM-3 UNIT-3 oopP

=>» It must be a friend function to access private data members.

=>» You have seen above that << operator is overloaded with ostream class object cout to print
primitive type value output to the screen. Similarly you can overload << operator in your
class to print user-defined type to screen.

NOTE: When the operator does not modify its operands, the best way to overload the
operator is via friend function.

EXAMPLES :
Let's see a simple example of overloading the 1/0 operators.
// program to overload the 1/0 operators >> and <<

class Box

double height;
double width;
double vol ;
public :
friend istream & operator >> (istream &din, Box &b); // cin >>
friend ostream & operator << (ostream &dout, Box &b); // cout <<
Iy
istream & operator >> (istream &din, Box &b)
{ cout << "Enter Box Height: " << end];
din >>b.height;
cout << "Enter Box Width : " << endl;
din >> b.width;

return din ; }

. ___|
KHYATI SOLANKI 11

SY BCA SEM-3 UNIT-3 oopP

ostream & operator << (ostream &dout, Box &b)
{
dout << "Box Height : " << b.height << end| ;
dout << "Box Width :" << b.width << endl ;
b.vol = b.height * b.width ;
dout << "The Volume of Box : " << b.vol << end|;
return dout ;
}
void main()
{
Box b1;
clrscr();
cin >> b1;
cout << b1l;
getch();

}

Enter Box Height:
9
Enter Box Width :
3

Box Height : 9
Box Width : 3
The Volume of Box : 27

. ___|
KHYATI SOLANKI 12

SY BCA SEM-3 UNIT-3 oopP

EXAMPLE 6 :
Let's see a simple example of overloading the unary operators with friend function.
// program to overload the unary operators - using friend function

class Test

private:
int num;
public:
Test()
{
num =8;
}
friend void operator --(Test &t);
void Print()

{

cout<<"The Count is: "<<num<<endl;

void operator --(Test &t)

{

t.num =t.num-2;

KHYATI SOLANKI 13

SY BCA SEM-3 UNIT-3 oopP

void main()
{
Test tt;
clrscr();
--tt;
tt.Print();
getch();

}

e Count is: G

EXAMPLE 7 :
Let's see a simple example of overloading the binary operators with friend function.
// program to overload the binary operators +using friend function
class Distance
{
public:
int feet, inch;
// No Parameter Constructor
Distance()
{
this->feet = 0;
this->inch = 0;

}

. ___|
KHYATI SOLANKI 14

SY BCA SEM-3 UNIT-3 oopP

// Constructor to initialize the object's value
// Parametrized Constructor
Distance(int f, int i)
{
this->feet =f;

this->inch =1i;

// Declaring friend function using friend keyword

friend Distance operator+(Distance&d1, Distance&d2);
Iy
// Implementing friend function with two parameters
Distance operator+(Distance& d1, Distance& d2) // Call by reference
{

// Create an object to return

Distance d3;

// Perform addition of feet and inches

d3.feet = d1.feet + d2.feet;

d3.inch =dl.inch + d2.inch;

// Return the resulting object

return d3;

KHYATI SOLANKI 15

SY BCA SEM-3 UNIT-3 oopP

void main()
{
clrscr();
// Declaring and Initializing first object
Distance d1(8, 9);
// Declaring and Initializing second object
Distance d2(10, 2);
// Declaring third object
Distance d3;
// Use overloaded operator
d3=d1+d2;
// Display the result
cout << "\nTotal Feet & Inches: " << d3.feet << """ << d3.inch;

getch();

}

otal Feet & Inches: 18"11_

Function Overloading

=>» If any class have multiple functions with same names but different parameters then they
are said to be overloaded. Function overloading allows you to use the same name for

different functions, to perform, either same or different functions in the same class.

=>» Function overloading is usually used to enhance the readability of the program. If you
have to perform one single operation but with different number or types of arguments,

then you can simply overload the function.

. ___|
KHYATI SOLANKI 16

SY BCA SEM-3 UNIT-3 oopP

Ways to overload a function

v' By changing number of Arguments.
v' By having different types of argument.

Number of Arguments different
In this type of function overloading we define two functions with same names but different

number of parameters of the same type. For example, in the below mentioned program we
have made two sum() functions to return sum of two and three integers.

int sum (int x, inty)

{

cout << x+y;

}

int sum(int x, inty, int z)

{

cout << x+y+z;

}

Here sum() function is overloaded, to have two and three arguments. Which sum() function
will be called, depends on the number of arguments.

int main()

{
sum (10,20); // sum() with 2 parameter will be called

sum(10,20,30); //sum() with 3 parameter will be called

}

. ___|
KHYATI SOLANKI 17

SY BCA SEM-3 UNIT -3 ooP

Different Data type of Arguments

In this type of overloading we define two or more functions with same name and same number
of parameters, but the type of parameter is different. For example in this program, we have two
sum() function, first one gets two integer arguments and second one gets two double arguments.

int sum(int x,int y)

{

cout<< x+y;

}

double sum(double x,double y)

{

cout << x+y;

}

int main()

{

sum (10,20);
sum(10.5,20.5
);

}

Example:
class Addition

{
public:

int sum(int num1,int num2)
return numl+num?2;
}

int sum(int num1,int num2, int num3)

return numi1l+num2+num3;

SY BCA SEM-3 UNIT -3 ooP

void main()

{
Addition obj;
cout<<obj.sum(20, 15)<<endl;
cout<<obj.sum(81, 100, 10) << end]l;
getch();

}
Output:

35
191

Static Vs Dynamic Polymorphism

1. Static polymorphism is considered more efficient and dynamic polymorphism more flexible.

2. Statically bound methods are those methods that are bound to their calls at compile time.
Dynamic function calls are bound to the functions during run-time. This involves the additional
step of searching the functions during run-time. On the other hand, no run-time search is
required for statically bound functions.

3. As applications are becoming larger and more complicated, the need for flexibility is increasing
rapidly. Most users have to periodically upgrade their software, and this could become a very
tedious task if static polymorphism is applied. This is because any change in requirements
requires a major modification in the code. In the case of dynamic binding, the function calls are
resolved at run-time, thereby giving the user the flexibility to alter the call without having to
modify the code.

C++ Polymorphism

The word “polymorphism” means having many forms.

In simple words, we can define polymorphism as the ability of a message to be displayed in more than
one form.

A real-life example of polymorphism is a person who at the same time can have different
characteristics. A man at the same time is a father, a husband, and an employee.

So the same person exhibits different behaviour in different situations. This is called polymorphism.
Polymorphism is considered one of the important features of Object-Oriented Programming.
Types of Polymorphism

o Compile-time Polymorphism
« Runtime Polymorphism

(o Toe) ()

e |

Function Operator Virtual
Overloading Overloading Functions

Types of Polymorphism
1. Compile-Time Polymorphism

In compile-time polymorphism, a function is called at the time of program compilation. We call this
type of polymorphism as early binding or Static binding.

This type of polymorphism is achieved by function overloading or operator overloading.

A. Function Overloading

When there are multiple functions with the same name but different parameters, then the
functions are said to be overloaded, hence this is known as Function Overloading.

Functions can be overloaded by changing the number of arguments or/and changing the
type of arguments.

In simple terms, it is a feature of object-oriented programming providing many functions that
have the same name but distinct parameters when numerous tasks are listed under one function name.

There are certain Rules of Function Overloading that should be followed while overloading a
function.
Below is the C++ program to show function overloading or compile-time polymorphism:

o (CH++

// C++ program to demonstrate
// function overloading or

// Compile-time Polymorphism
#include <bits/stdc++.h>

using namespace std;

class Temp {

public:
// Function with 1 int parameter
void func(int x)

{

cout << "value of x is << X << endl;

}

// Function with same name but
// 1 double parameter
void func(double x)

{

cout << "value of x is << X << endl;

}

// Function with same name and
// 2 int parameters
void func(int x, int y)

{

cout << "value of x and y is << X << ", K<y

<< endl;
}s

// Driver code
int main()

{
Temp obji;
// Function being called depends
// on the parameters passed
// func() is called with int value
objl.func(7);
// func() is called with double value
objl.func(9.132);
// func() is called with 2 int values
objl.func(85, 64);
return 0;

}

Output

value of x is 7

value of x is 9.132
value of x and y is 85, 64

Explanation: In the above example, a single function named function func() acts differently in three
different situations, which is a property of polymorphism.

B. Operator Overloading

C++ has the ability to provide the operators with a special meaning for a data type, this ability is known
as operator overloading. For example, we can make use of the addition operator (+) for string class to
concatenate two strings. We know that the task of this operator is to add two operands. So a single
operator ‘+’, when placed between integer operands, adds them and when placed between string
operands, concatenates them.

Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the
special meaning to the user-defined data type.

Operator overloading is used to overload or redefines most of the operators available in C++.

It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to
add the variables of the user-defined data type that is applied to the built-in data types.

The advantage of Operators overloading is to perform different operations on the same operand.

Syntax for C++ Operator Overloading

To overload an operator, we use a special operator function. We define the function inside the
class whose objects/variables we want the overloaded operator to work with.

class className {
public
returnType operator symbol (arguments) {

. returnType is the return type of the function.

. operator is a keyword.
. symbol is the operator we want to overload. Like: +, <, -, ++, etc.
. arguments is the arguments passed to the function.

Unary Operators and Binary Operator overloading

Unary operators:

« Operators which work on a single operand are called unary operators.
« Examples: Increment operators(++), Decrement operators(—-),unary minus
operator(-), Logical not operator(!) etc...
Binary operators:

e Operators which works on Two operands are called binary operator.

Implementing Operator overloading:

« Member function: It is in the scope of the class in which it is declared.
o Friend function: It is a non-member function of a class with permission to access
both private and protected members.

Operator that can be overloaded are as follows:

Operators that can be overloaded

+ - * / % A & |

~ 1 = < += = *=

/= %= A= &= |= << >> >>=
<<= == 1= <= >= && I ++

-— =>% , -> []1 () new delete
newl[] delete]]

Operator that cannot be overloaded are as follows:

Operators that cannot be overloaded

|.* |:: |?: sizeof

Rules for Operator Overloading

o Existing operators can only be overloaded, but the new operators cannot be
overloaded.

o The overloaded operator contains atleast one operand of the user-defined data
type.

o We cannot use friend function to overload certain operators. However, the
member function can be used to overload those operators.

o When unary operators are overloaded through a member function take no
explicit arguments, but, if they are overloaded by a friend function, takes one
argument.

o When binary operators are overloaded through a member function takes one
explicit argument, and if they are overloaded through a friend function takes
two explicit arguments.

Below is the C++ program to demonstrate operator overloading:

« CPP

/ program to overload the unary operator ++.

#include <iostream>
using namespace std;
class Test
{
private:
int num;
public:
Test(): num(8){}
void operator ++() {
num = num+2;
}
void Print() {

cout<<"The Count is: "<<num;

I3
int main()

{
Test tt;

++tt; // calling of a function "void operator ++()"
tt.Print();

return O;

}

Output:

The Count is: 10
Let's see a simple example of overloading the binary operators.
// program to overload the binary operators.

#include <iostream>
using namespace std;
class A

void operator+(A);
void display();

void A :: operator+(A a)

{

intm = x+a.x;
cout< <"The result of the addition of two objects is: "< <m;

}

int main()

{
A a1(5);
A a2(4);
al+a2;
return O;

}

Output:

The result of the addition of two objects is : 9

2. Runtime Polymorphism

This type of polymorphism is achieved by Function Overriding. Late binding and
dynamic polymorphism are other names for runtime polymorphism. The function
call is resolved at runtime in runtime polymorphism. In contrast, with compile time
polymorphism, the compiler determines which function call to bind to the object
after deducing it at runtime.

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-cpp/

A. Function Overriding

Function Overriding occurs when a derived class has a definition for one of the

member functions of the base class. That base function is said to be overridden.
Syntax:
class Parent{

access_modifier:

// overridden function

return_type name_of the function(){}
}s

class child : public Parent {
access_modifier:
// overriding function

return_type name_of the function(){}

s

Example:

class Parent

{
public:
void GeeksforGeeks()
{
statements;
}
j
class Child: public Parent
{
public:
void GeeksforGCeeks() «€«—
{
Statements;
}
}:

iNnt mMmain()

{

Child Child_Derived;
Child_Derived.GeeksforGeeks(); —
return O;

}

Function overriding Explanation

https://www.geeksforgeeks.org/function-overriding-in-cpp/

// C++ program to demonstrate function overriding

#include <iostream>
using namespace std;

class Parent {

public:
void GeeksforGeeks Print()
{
cout << "Base Function" << endl;
}
}s
class Child : public Parent {
public:
void GeeksforGeeks Print()
{
cout << "Derived Function" << endl;
}
}s
int main()
{
Child Child Derived;
Child Derived.GeeksforGeeks Print();
return 0;
}
Output

Derived Function

Variations in Function Overriding

1. Call Overridden Function From Derived Class

// C++ program to demonstrate function overriding
// by calling the overridden function
// of a member function from the child class

#include <iostream>
using namespace std;

class Parent {
public:
void Print()

cout << "Base Function" << endl;

}
}s
class Child : public Parent {
public:
void Print()
{
cout << "Derived Function" << endl;
// call of overridden function
Parent::Print();
}
}s
int main()
{
Child Child Derived;
Child Derived.Print();
return 0;
}
Output

Derived Function

Base Function

#include <iostream>
using namespace std;
class Parent {

statements;

}
3
class Child : public Parent {
public:
) void GeeksforGeeks_Print()
{
/| Statements;
Parent:GeeksforGeeks_Print();
}
I3
int main()
{
Child Child_Derived;
Child_Derived.GeeksforGeeks_Print();
return O;

}

The output of Call Overridden Function From Derived Class

2. Call Overridden Function Using Pointer

// C++ program to access overridden function using pointer
// of Base type that points to an object of Derived class
#include <iostream>

using namespace std;

class Parent {

public:
void GeeksforGeeks()
{
cout << "Base Function" << endl;
}
}s

class Child : public Parent {

public:
void GeeksforGeeks()

{
cout << "Derived Function" << endl;
}
¥
int main()
{
Child Child Derived;
// pointer of Parent type that points to derivedl
Parent* ptr = &Child Derived;
// call function of Base class using ptr
ptr->GeeksforGeeks();
return O;
}
Output

Base Function

3. Access of Overridden Function to the Base Class

// C++ program to access overridden function
// in main() using the scope resolution operator ::

#include <iostream>
using namespace std;

class Parent {

public:
void GeeksforGeeks()
{
cout << "Base Function" << endl;
}
}s
class Child : public Parent {
public:
void GeeksforGeeks()
{

cout << "Derived Function" << endl;

}

}s

int main()

{
Child Child Derived;
Child Derived.GeeksforGeeks();
// access GeeksforGeeks() function of the Base class
Child Derived.Parent::GeeksforGeeks();
return 0;

}

Output

Derived Function

Base Function

#include <iostreams=
using namespace std;
class Parent {
public:

void GeeksforGeeks() {

{

statement;
}
L
class Child : public Parent {
public:
void GeeksforGeeks() <«
{

statement;

]
k
int main()
{
Child Child_Derived, Child_Derived2;
Child_Derived.GeeksforGeeks|();

/l access GeeksforGeeks() function of the Base class
Child_Derived.Parent::CeeksforGeeks();

return Q;

}

Access of Overridden Function to the Base Class

4. Access to Overridden Function

// C++ Program Demonstrating

// Accessing of Overridden Function
#include <iostream>

using namespace std;

// defining of the Parent class
class Parent

{
public:
// defining the overridden function
void GeeksforGeeks Print()
{
cout << "I am the Parent class function" << endl;
}
¥

// defining of the derived class
class Child : public Parent

{
public:
// defining of the overriding function
void GeeksforGeeks Print()
{
cout << "I am the Child class function" << endl;
}
¥

int main()

{
// create instances of the derived class
Child GFG1l, GFG2;

// call the overriding function
GFG1l.GeeksforGeeks Print();

// call the overridden function of the Base class
GFG2.Parent: :GeeksforGeeks Print();
return 0O;

Output
I am the Child class function

I am the Parent class function
Function Overloading Vs Function Overriding
Function Overloading Function Overriding

It falls under Compile-Time polymorphism It falls under Runtime Polymorphism

A function can be overloaded multiple times as it is A function cannot be overridden multiple times as it

resolved at Compile time is resolved at Run time
Can be executed without inheritance Cannot be executed without inheritance
They are in the same scope They are of different scopes.

Runtime Polymorphism with Data Members

Runtime Polymorphism can be achieved by data members in C++. Let’s see
an example where we are accessing the field by reference variable which
refers to the instance of the derived class.

// C++ program for function overriding with data members
#include <bits/stdc++.h>
using namespace std;

// base class declaration.
class Animal {
public:

string color = "Black";

}s

// inheriting Animal class.
class Dog : public Animal {
public:

string color = "Grey";

}s

// Driver code
int main(void)
{
Animal d = Dog(); // accessing the field by reference
// variable which refers to derived

cout << d.color;

}

Output
Black

Virtual base class in C++

Virtual base classes are used in virtual inheritance in a way of preventing
multiple “instances” of a given class appearing in an inheritance
hierarchy when using multiple inheritances.

Need for Virtual Base Classes: Consider the situation where we have
one class A . This class A is inherited by two other classes B and C. Both
these class are inherited into another in a new class D as shown in figure
below.

\ Class A
A e
, h 4 , h 4
\ Class B \ Class C
B C
and and
B's A C's A

D has now 2 A:
B's Aand C's A

This leads to ambiguity
\ 4

Class D |

https://www.geeksforgeeks.org/virtual-base-class-in-c/#article-meta-div
https://www.geeksforgeeks.org/virtual-base-class-in-c/#article-meta-div

As we can see from the figure that data members/function of class A are inherited
twice to class D. One through class B and second through class C. When any data /
function member of class A is accessed by an object of class D, ambiguity arises
as to which data/function member would be called? One inherited

through B or the other inherited through C. This confuses compiler and it displays

error.
Example: To show the need of Virtual Base Class in C++

#include <iostream>
using namespace std;

class A {
public:
void show()
{
cout << "Hello form A \n";
}
3
class B : public A {
}s
class C : public A {
3
class D : public B, public C {
}s
int main()
{
D object;
object.show();
}

Compile Errors:
prog.cpp: In function 'int main()':
prog.cpp:29:9: error: request for member 'show' is
ambiguous
object.show();
N\

prog.cpp:8:8: note: candidates are: void A::show()
void show()

N

prog.cpp:8:8: note: void A::show()

How to resolve this issue?
To resolve this ambiguity when class A is inherited in both class B and class C, it is
declared as virtual base class by placing a keyword virtual as :

Syntax for Virtual Base Classes:
Syntax 1:
class B : virtual public A

{
}s

Syntax 2:
class C : public virtual A

{

}s

Note:

virtual can be written before or after the public. Now only one copy of
data/function member will be copied to class C and class B and class A becomes
the virtual base class. Virtual base classes offer a way to save space and avoid
ambiguities in class hierarchies that use multiple inheritances. When a base class
is specified as a virtual base, it can act as an indirect base more than once without
duplication of its data members. A single copy of its data members is shared by all

the base classes that use virtual base.
Example 1

#include <iostream>
using namespace std;

class A {
public:
int a;
A() // constructor
{
a = 10;
}
}s

class B : public virtual A {
}s

class C : public virtual A {
}s

class D : public B, public C {

s

int main()

{
D object; // object creation of class d
cout << "a = " << object.a << endl;
return 0;

}

Output:

a = 10

Explanation :

The class A has just one data member a which is public. This class is virtually inherited in

class B and class C. Now class B and class C becomes virtual base class and no duplication of data
member a is done.

Example 2:

#include <iostream>
using namespace std;

class A {
public:
void show()
{
cout << "Hello from A \n";
}
¥
class B : public virtual A {
¥
class C : public virtual A {
¥
class D : public B, public C {
}s
int main()
{
D object;
object.show();

Output:
Hello from A

B. Virtual Function

A_virtual function is a member function that is declared in the base class
using the keyword virtual and is re-defined (Overridden) in the derived
class.

Some Key Points About Virtual Functions:

. Virtual functions are Dynamic in nature.

. They are defined by inserting the keyword “virtual” inside a base
class and are always declared with a base class and overridden in a
child class

. Avirtual function is called during Runtime

Below is the C++ program to demonstrate virtual function:

C++ virtual function

o A C++ virtual function is a member function in the base class that you
redefine in a derived class. It is declared using the virtual keyword.

o It is used to tell the compiler to perform dynamic linkage or late
binding on the function.

o There is a necessity to use the single pointer to refer to all the objects
of the different classes. So, we create the pointer to the base class that
refers to all the derived objects. But, when base class pointer contains
the address of the derived class object, always executes the base class
function. This issue can only be resolved by using the 'virtual' function.

o A'virtual'is a keyword preceding the normal declaration of a function.

- When the function is made virtual, C++ determines which function is
to be invoked at the runtime based on the type of the object pointed
by the base class pointer.

Late binding or Dynamic linkage

In late binding function call is resolved during runtime. Therefore compiler determines the
type of object at runtime, and then binds the function call.

https://www.geeksforgeeks.org/virtual-function-cpp/

Rules of Virtual Function

o Virtual functions must be members of some class.

o Virtual functions cannot be static members.

o They are accessed through object pointers.

o They can be a friend of another class.

o A virtual function must be defined in the base class, even though it is not used.

o The prototypes of a virtual function of the base class and all the derived classes
must be identical. If the two functions with the same name but different
prototypes, C++ will consider them as the overloaded functions.

o We cannot have a virtual constructor, but we can have a virtual destructor
o Consider the situation when we don't use the virtual keyword.

#include <iostream>
using namespace std;
class A
{

int x=5;

public:

void display()

{

std::cout << "Value of x is :

<< x<<std:endl:

y
class B: public A
{
inty = 10;
public:
void display()
{

std::cout << "Value of y is :

<<y<< std:end|;

y
int main()
{

A *a;

B b;

a = &b;

a->display();
return O;

}

Output:

Value of x is : 5

In the above example, * a is the base class pointer. The pointer can only access the base class members but
not the members of the derived class. Although C++ permits the base pointer to point to any object derived
from the base class, it cannot directly access the members of the derived class. Therefore, there is a need
for virtual function which allows the base pointer to access the members of the derived class.

C++ virtual function Example

Let's see the simple example of C++ virtual function used to invoked the derived class in a program.

#include <iostream>
class A
{

int x=5;

public:

public;
virtual void display()
{

cout << "Base class is invoked"< <endl;
}
};
class B:public A
{

public:
void display()
{

cout << "Derived Class is invoked"< <end|l;
}
¥
int main()
{
A* a; //pointer of base class
Bb; //objectof derived class
a = &b;

a->display(); //Late Binding occurs
}

Output:

Derived Class 1s 1nvoked

Pure Virtual Function

o A virtual function is not used for performing any task. It only serves as a
placeholder.

o When the function has no definition, such function is known as "do-
nothing" function.

o The "do-nothing" function is known as a pure virtual function. A pure
virtual function is a function declared in the base class that has no definition
relative to the base class.

o A class containing the pure virtual function cannot be used to declare the
objects of its own, such classes are known as abstract base classes.

o The main objective of the base class is to provide the traits to the derived
classes and to create the base pointer used for achieving the runtime
polymorphism.

Pure virtual function can be defined as:

virtual void display() = 0;
Let's see a simple example:

#include <iostream>
using namespace std;

class Base
{

public:

virtual void show() = 0;
};
class Derived : public Base
{

public:

https://ads.freestar.com/?utm_campaign=branding&utm_medium=dynamicAd&utm_source=javatpoint.com&utm_content=javatpointcom_dynamic_incontent

void show()
{
std::cout << "Derived class is derived from the base class." << std::en
dl;
}
};
int main()
{
Base *bptr;
//Base b;
Derived d;
bptr = &d;
bptr->show();
return O;

}

Output: Derived class is derived from the base class.

In the above example, the base class contains the pure virtual function.
Therefore, the base class is an abstract base class. We cannot create the object
of the base class.

Compile time polymorphism

The function to be invoked is known at the compile
time.

It is also known as overloading, early binding and
static binding.

Overloading is a compile time polymorphism where
more than one method is having the same name
but with the different number of parameters or the
type of the parameters.

It is achieved by function overloading and operator
overloading.

It provides fast execution as it is known at the
compile time.

It is less flexible as mainly all the things execute at
the compile time.

Run time polymorphism

The function to be invoked is known at the run
time.

It is also known as overriding, Dynamic binding
and late binding.

Overriding is a run time polymorphism where
more than one method is having the same name,
number of parameters and the type of the
parameters.

It is achieved by virtual functions and pointers.

It provides slow execution as it is known at the
run time.

It is more flexible as all the things execute at the
run time.

C++ Friend function

If a function is defined as a friend function in C++, then the protected and private data of a class
can be accessed using the function.

By using the keyword friend compiler knows the given function is a friend function.

For accessing the data, the declaration of a friend function should be done inside the body of a
class starting with the keyword friend.

Declaration of friend function in C++

1. class class_name

{

friend data_type function_name(argument/s); // syntax of friend function.

M wn

In the above declaration, the friend function is preceded by the keyword friend. The function
can be defined anywhere in the program like a normal C++ function. The function definition
does not use either the keyword friend or scope resolution operator.

Characteristics of a Friend function:

o The function is not in the scope of the class to which it has been declared as a friend.
o It cannot be called using the object as it is not in the scope of that class.
o It can be invoked like a normal function without using the object.

o It cannot access the member names directly and has to use an object name and dot
membership operator with the member name.

o It can be declared either in the private or the public part.

#include <iostream>
using namespace std;
class B; // forward declarartion.
class A
{

int x;

public:

void setdata(int i)

{

X=i;
}

friend void min(A,B); // friend function.

class B

{

%

inty;
public:
void setdata(int i)
{
y=i;
}
friend void min(A,B);

void min(A a,B b)

{

if(ax<=b.y)

std::cout << a.x << std:end;
else

std::cout << b.y << std:end|;

int main()

A a;

B b;
a.setdata(10);
b.setdata(20);
min(a,b);
return O;

// friend function

OOP & DS (304) UNIT-4

Unit 4. Data Structure
4.1 Introduction of Data Structure and application areas.
4.2 Recursion concepts
4.3 Difference among Linear and Non-Linear Data Structure
4.4 Stack
- Concepts of Stack(LIFO)
- Pop, Push and Display(Peep)
- Application areas of Stack
(Infix to postfix, Infix to prefix)

Data Structure:

Data Structure is a representation of the logical relationship between or
individual elements of data.
» Data may be organized in many ways.
» The logical or mathematical model of particular organization of data is
called data structure.
i.e. Data structure is collection of organized data and operations allowed
on it.
The choice of particular data structure model depends on two considerations.
» It must be rich enough in structure to mirror the actual relationships of
the data in the real world.
» The structure should be simple enough that we can effectively process
the data when necessary.

» Data structure is a collection of data elements whose organization is
characteristics by assessing operations that are used to store and
retrieve the individual data element.

Type of Data Structures

Data structure can be organized/classified into two categories.
> Primitive
> Non-primitive

The non-primitive data structures can further be classified in two categories.
» Linear

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

» Non-Linear
The following chart shows various classifications of data structure.

Data
Structure

Non-
Primitive

Primitive and Non primitive

Primitive:

Primitive data structure includes data at their most primitive level within a
computer. i.e. The data structure that typically are directly operated upon by
machine level instructions. Their structure cannot be modified.

e.g. Integer, Real, Character, Pointer, Logical

Non-primitive:
Non-primitive data structures are further classified into two types.
e Linear

e Non-linear data structure.

In a linear data structure, the data items are arranged in linear sequence. The
linear data structure exhibits the property of adjacency. Various linear data
structures are:

e array

e stack

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

e (Queue
e strings
e linked list

Non-linear data structure:
The data items are not stored in a sequential format. The non-linear data
structure exhibits either hierarchical or parent child relationship. In this data
structure insertion and deletion cannot be done in linear fashion. The different
non-linear data structures are

e Tree

e Graph

Homogenous and Non-Homogenous Data structures
The data structure can also be classified into homogenous and non-
homogenous.

Homogenous:
In this type of data structure all the elements are of same type.
e.g. array

Non-homogenous:
In this type of data structure all the elements are not of same type.
e. g. records

Static or Dynamic data structure

Static Data Structure

These Data Structures are ones whose sizes and structure associated memory
location are fixed at compile time. E.g. array

Int a[10];

Dynamic Data Structure

These data structure which expands or shrinks as required during the program
execution and their associated memory location change.

E.g. Linked list

Recursion:

A function that call itself or function calls to a second function which eventually
References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

calls original function is called recursive function.

Any recursive procedure must satisfy two conditions:

a. There must be a stopping condition also called base criteria. E.g. In factorial
function if argument value is 1 the function does not call itself.

b. Each time the procedure call itself must be nearer to the stopping condition
(based criteria) for example in factorial function each time of function is called
to itself argument is decremented by one which goes near to the stopping
condition. The problem must be in recursive form.

There are mainly two types of recursive function
1. Primitive recursive function:
The function that directly calls itself is call primitive recursive function or
recursively defined function for example factorial function N!=N*(N-1)*(N-
2)*..*¥3*%2*1
Calculating 5!
5! =5*4!
=5*4*3|
=5%*4*3*21|
=5*4*3*2*1! (1!=Base criteria hit)
We have to postpone the calculation of 5! till 4! Is found. The calculation of
4! Postpone till 3!is found. The calculation of 3! is postpone until we get the
value of 2! and calculation of 2! is postpone under the until the calculation
of 1!. This delay can be done using stack.
2. Non primitive recursive function:
The function that indirectly calls itself is called non primitive recursive
function or recursive use of function. E.g. Ackermann’s function.
A(m,n)=n+1, if m==0;
A(m,n)=A(m-1,1), if n==0 but m!=0;
A(m,n)= A(m-1, A(m,n-1)), if m!=0and n!=0;

Advantages of recursion
e The main advantage is usually simplicity.
e Through recursion we can solve problems in easy way while it is iterative
solution is huge and complex for example tower of Hanoi.
e You can reduce size of the code when you use a recursive call.

Disadvantage of recursion
As the functions are called recursively, the system has to keep track return
addresses and system has to keep track of parameters and variables of each
recursive a call to the function. So recursive algorithm may require large

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304)

UNIT-4

amount of memory if the depth of the recursive is very large which is not
required to be done in the case of non-recursive function call.

e Recursion cause system’s unavoidable function call overhead so
transformation from recursion to iteration can improve both speed and

space requirement

Difference between linear and non-linear data structure

Linear Data Structure

Non-Linear Data Structure

Every item is related to its previous
and next items

Every item is attached with many
other items

Data is arranged in linear sequence

Data is not arranged in sequence

Data items can traverse in a single
Run

Data cannot be traversed in a
single run

Implementation is easy

Implementation is difficult

e.g array, stacks, linked list, queue

e.g. tree, graph

Stack
STACK:

e Stack s a non-primitive linear data structure

e |t is a data structure in which elements can be inserted and

deletedfrom only one end.

e ltis also considered as an ADT (abstract data type).

e The end from which insertion and deletion is done is known as

“TOP”(top of stack).

e Since insertion and deletion are done from the single end,

its elements are removed in reverse order from which they

wereinserted.

e That means the last item added will be the first to be removed.

e Because of this characteristic it is known as LIFO (Last In First Out) list.

e |[tis also called Push Down list or Pile.

e Real life example or stack are:
o Box containing books

o Tray holder in cafeteria

o Plates kept on one another

References:

Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.

By: Jinal V. Purohit

OOP & DS (304)
o Neatly folded
clothesimplementing:
Static Stack = Array

Dynamic stack= Linked list

UL Een

Last In - First Out

Push | Pop
|| Data Bament Dista Element
Data Element Data Elemeant |
Data Elemeant Data Elemrant |
|
Data Element Data Element
Data Elament Data Elament |
Stack Stack
Stack Operations:

Push :isinserting element in stack

Pop : Deleting element from stack

UNIT-4

Change: for changing value of specific element from the top of stack

Peep : getting the value of specified elementfrom
the top of stack
An Algorithm to Insert an element into stack
The task (objective)

e Check for overflow

e |ncrement TOP
e |nsert the
element

PUSH(S,TOP,Item)

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.

By: Jinal V. Purohit

OOP & DS (304) UNIT-4

S: An array the represents the stack
Top: indicates the position of the top most element in the
stackltem: the value to be inserted
Max: Maximum number of elements
allowedStep 1: [Check for stack overflow]
If TOP >=Max

Write (“stack Overflow”)

Exit
[End of if]
Step 2:
[Increment TOP]
TOP=TOP+1

Step 3: [Insert Element]
S[TOP]=Item
Step 4: [Finished]

Exit/Return
An Algorithm to delete an element from stack

POP (S, TOP)
S: An array the represents the stack

TOP: indicates the position of the top most element in the stack

[Deletes ‘item’ from the ‘stack’, top is the number of elements currently

in‘stack’.]

Step 1 : [Check for
Underflow]if TOP
=0 then

References:

Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304)

write (Stack Underflow on POP”)

Exit

[End if structure]
Step 2 : [Decrement
Pointer]

TOP:=TOP-1

Step 3 : [Return top element of
stack]return (S[TOP+1])

UNIT-4

An Algorithm to Change the value of Ith element from top of the stack

The main tasks in this algorithm are:

- Check for underflow
- Update the desired

elementChange (S,TOP,ITEM,I)
S: Array representing stack
TOP: indicates position of top element in the stack.
I: Position of the element to be changed from TOP of the
stackITEM: New value of Ith element from top of the stack.
Step-1 : [Check for stack
Underflow]If TOP -I +1<=0
then
Write (“Stack Underflow on change”)
Exit
Step-2: [Change Ith element from top of
stack]S[TOP-I+1]:=ITEM
Step-3 : [Finished]
Exit

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.

By: Jinal V. Purohit

OOP & DS (304) UNIT-4

Applications of stack

Stacks are frequently used to indicate the order of the processing of data

1. Converting infix to un-parenthesized (Polish-Prefix/Reverse Polish
Postfix notation)

a. Covert from infix to prefix
b. Convert from infix to postfix
c. Evaluate prefix
d. Evaluate postfix

2. Recursion

Algorithm to convert Infix to Suffix Expression/Postfix/Reverse polish notation

Algorithm to convert Infix to Suffix Expression/Postfix/Reverse polish
notation POSTFIX((Q,P)

STACK (S) : Stack to store operations

Q: Array Containing expression in infix

notation(input) P : is Equivalent postfix notation

(output)

Step-1: Push “(“ on to stack S and add “)” to the end of Q

Step-2 : Scan Q from left to right and repeat step-3 to 6 for each element of
Q until the stack is empty

Step-3: If an operand is encountered then add it to “P”

Step-4 :if “(“ is encountered push it into stack

Step-5 : If an operator ® is encountered then

a. Repeatedly pop from the stack and added to P each operator on the
top of stack which has the same or higher precedence than operator &
b. Add X to stack

Step 6: If “)” is encountered then

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

a. Repeatedly pop from the stack and add to P all the elements from the
stack till “(“ in stack is encountered

ll(ll

b. Remove from stack

Step 7 [finish]
Algorithm to convert Infix to Prefix /Polish notation
Prefix(Q,P)

Q->array representing infix notation

P -> array for prefix
Stack-> array representing stack
Step1 Push “)” on to stack and add “(“ to the beginning of Q

Step-2: Scan Q from right to left and repeat step-3 to 6 for each element
of Q until the stack is empty

Step3: If an operand is encountered add to P Step-4: If

II)II

is found push it into stack

Step-5 : if operator QQ is encountered then

a. Repeatedly pop from stack and add to P each operator on
the top stack which has the higher precedence then

operator @

b. Add QQ to stack

Step: 6 if “(“is encountered then

a. Repeatedly pop from stack and add to P each operator
till the matching “)” is encountered from the stack

b. Remove “)” form the stack
Step-7 Reverse expression P

Step-8 [Finished]
Exit

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

Queue

A queue can be defined as an ordered list which enables insert operations to be
performed at one end called REAR and delete operations to be performed at
another end called FRONT.

Queue is referred to be as First In First Out list.
For example, people waiting in line for a rail ticket form a queue.

Enqueue
(insertion)

— - I‘J

Dequeue Front Rear

(Deletion)

Applications of Queue

Due to the fact that queue performs actions on first in first out basis which is quite
fair for the ordering of actions. There are various applications of queues discussed
as below.

1. Queues are widely used as waiting lists for a single shared resource like
printer, disk, CPU.

2. Queues are used in asynchronous transfer of data (where data is not being
transferred at the same rate between two processes) for eg. pipes, file 10,
sockets.

3. Queues are used as buffers in most of the applications like MP3 media player,
CD player, etc.

4. Queue are used to maintain the play list in media players in order to add and
remove the songs from the play-list.

5. Queues are used in operating systems for handling interrupts.

Types of Queue
There are four different types of queue that are listed as follows -

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

o Simple Queue or Linear Queue
o Circular Queue
o Priority Queue

o Double Ended Queue (or Deque)

Let's discuss each of the type of queue.

Simple Queue or Linear Queue

In Linear Queue, an insertion takes place from one end while the deletion occurs from
another end. The end at which the insertion takes place is known as the rear end, and the
end at which the deletion takes place is known as front end. It strictly follows the FIFO
rule.

Dequeue . ENQQUeEUIC

‘Doletion m m - m ficosfio
: 3rd Value
(Deletion) (Insertion)

The major drawback of using a linear Queue is that insertion is done only from the rear
end. If the first three elements are deleted from the Queue, we cannot insert more
elements even though the space is available in a Linear Queue. In this case, the linear
Queue shows the overflow condition as the rear is pointing to the last element of the
Queue.

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return an
overflow error.

If the item is to be inserted as the first element in the list, in that case set the value of front
and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one having
rear as the index.

Algorithm

Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = REAR =0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: Set QUEUE[REAR] = NUM
Step 4: EXIT

Algorithm to delete an element from the queue

If, the value of frontis -1 or value of front is greater than rear, write an underflow message
and exit.

Otherwise, keep increasing the value of front and return the item stored at the front end
of the queue at each time.

Algorithm

Step 1: IF FRONT = -1 or FRONT > REAR
Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

[END OF IF]

Step 2: EXIT

Circular Queue

In Circular Queue, all the nodes are represented as circular. It is similar to the linear Queue
except that the last element of the queue is connected to the first element. It is also known
as Ring Buffer, as all the ends are connected to another end. The representation of circular
queue is shown in the below image -

. S S

Circular Queue

The drawback that occurs in a linear queue is overcome by using the circular queue. If the
empty space is available in a circular queue, the new element can be added in an empty
space by simply incrementing the value of rear. The main advantage of using the circular
queue is better memory utilization.

Deque (or, Double Ended Queue)

In Deque or Double Ended Queue, insertion and deletion can be done from both ends of
the queue either from the front or rear. It means that we can insert and delete elements
from both front and rear ends of the queue. Deque can be used as a palindrome checker
means that if we read the string from both ends, then the string would be the same.

Deque can be used both as stack and queue as it allows the insertion and deletion
operations on both ends. Deque can be considered as stack because stack follows the
LIFO (Last In First Out) principle in which insertion and deletion both can be performed
only from one end. And in deque, it is possible to perform both insertion and deletion
from one end, and Deque does not follow the FIFO principle.

The representation of the deque is shown in the below image -

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

front rear

insert) insert
;) «<
delete (-) delete

«

double ended queue

There are two types of deque that are discussed as follows -

o Input restricted deque - As the name implies, in input restricted queue, insertion
operation can be performed at only one end, while deletion can be performed from both

ends.

front rear

insert (
delete (1 delete

input restricted double ended queue

o Output restricted deque - As the name implies, in output restricted queue, deletion
operation can be performed at only one end, while insertion can be performed from both

ends.

front rear

| |

insert

insert (>
-> delete

Output restricted double ended queue

Now, let's see the operations performed on the queue.

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

Operations performed on queue

The fundamental operations that can be performed on queue are listed as follows -

Enqueue: The Enqueue operation is used to insert the element at the rear end of the
queue. It returns void.

Dequeue: It performs the deletion from the front-end of the queue. It also returns the
element which has been removed from the front-end. It returns an integer value.

Peek: This is the third operation that returns the element, which is pointed by the front
pointer in the queue but does not delete it.

Queue overflow (isfull): It shows the overflow condition when the queue is completely
full.

Queue underflow (isempty): It shows the underflow condition when the Queue is empty,

i.e.,, no elements are in the Queue.

Now, let's see the ways to implement the queue.

Ways to implement the queue

There are two ways of implementing the Queue:

o Implementation using array: The sequential allocation in a Queue can be implemented

using an array. For more details, click on the below link: https://www.javatpoint.com/array-

representation-of-queue

o Implementation using Linked list: The linked list allocation in a Queue can be

implemented using a linked list. For more details, click on the

link: https://www.javatpoint.com/linked-list-implementation-of-queue

Compare dynamic allocation and static allocation.

Static Memory Allocation Dynamic Memory Allocation
Variables get allocated Variable get allocation only if your
Permanently program unit gets active
Allocation is done before program | Allocation is done during program
Execution Execution

References:

Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.

By: Jinal V. Purohit

OOP & DS (304) UNIT-4

Faster execution compare to Faster execution compare to

Dynamic Dynamic

Less efficient More efficient

There is no memory reusability There is, memory reusability and
memory can be freed when not
Required

Memory can be wasted if allocated | Memory is not wasted
memory is not used

e.g. int a[10];

if we store only 5 elements and 5
elements are wasted

1. What do you mean by linear data structure?

A data structureis said to be linear if its elements form a sequence or alinear
list e.g. Array, Linked list, stack, queue

2. Operations that can be performed on data structure.

The operations that can be performed on data structure are :

Traversal - Visit every part of data structure

Search —Traversal through the data structure for a given element
Insertion — Adding new element

Deletion — Removing element form ds

Sorting — Rearranging the elements

O O O O O O

Merging — Combining two similar ds in one

3. What is the difference between int *p & int **p?

int *p is a statement that declares p as pointer to integer. i.e. p is apointer
type which can point to any variable of integer data type.

Int **p is a statement that declares p as pointer to pointer. “p” points toa
pointer that is pointing to variable of integer data type.

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

OOP & DS (304) UNIT-4

4. What do you mean by non-linear data structure? List out various
advantages and disadvantages of non-linear data structure.

A data structure in which a data item is connected to several other data
items is known as non-linear data structure.

Advantages:

e Uses memory efficiently that free contiguous memory is not
needed.

e The length of the data items/number of data items is not
necessary to be known prior to allocation

Disadvantages:
e Overhead of the link to the next data item.
Non-linear data structure are:
e Tree
e Graph

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala
An Introduction to Data Structures with applications, Trembley — Tata McGraw Hill.
By: Jinal V. Purohit

Deque (or double-ended queue)

What is a queue?

A queue is a data structure in which whatever comes first will go out first, and it follows
the FIFO (First-In-First-Out) policy. Insertion in the queue is done from one end known
as the rear end or the tail, whereas the deletion is done from another end known as
the front end or the head of the queue.

The real-world example of a queue is the ticket queue outside a cinema hall, where the
person who enters first in the queue gets the ticket first, and the person enters last in
the queue gets the ticket at last.

What is a Deque (or double-ended queue)

The deque stands for Double Ended Queue. Deque is a linear data structure where the
insertion and deletion operations are performed from both ends. We can say that
deque is a generalized version of the queue.

Though the insertion and deletion in a deque can be performed on both ends, it does
not follow the FIFO rule. The representation of a deque is given as follows -

insertion —» <+—— Insertion

Representation of deque

Types of deque
There are two types of deque -

o Input restricted queue
o Output restricted queue

Input restricted Queue

In input restricted queue, insertion operation can be performed at only one
end, while deletion can be performed from both ends.

front rear

Insert

delete delete

input restricted double ended queue

Output restricted Queue

In output restricted queue, deletion operation can be performed at only one
end, while insertion can be performed from both ends.

front rear

Insert

Insert

delete

Output restricted double ended queue
Operations performed on deque
There are the following operations that can be applied on a deque -

o Insertion at front
o Insertion at rear
o Deletion at front
o Deletion at rear

We can also perform peek operations in the deque along with the operations
listed above. Through peek operation, we can get the deque's front and rear
elements of the deque. So, in addition to the above operations, following
operations are also supported in deque -

o Get the front item from the deque

o Get the rear item from the deque
o Check whether the deque is full or not
o Checks whether the deque is empty or not

Insertion at the front end

In this operation, the element is inserted from the front end of the queue.
Before implementing the operation, we first have to check whether the
queue is full or not. If the queue is not full, then the element can be inserted
from the front end by using the below conditions -

o If the queue is empty, both rear and front are initialized with 0. Now,
both will point to the first element.

o Otherwise, check the position of the front if the front is less than 1 (front
< 1), then reinitialize it by front = n - 1, i.e,, the last index of the array.

0 1 2 3 4
HEEE -
t A

front rear
0 1 2 3 q
EAERERENEN -
front =n- 1 last index)
rear front

0 1 2 3 4
EAERERINER -0
to a[front)

rear front

Insertion at the rear end

In this operation, the element is inserted from the rear end of the queue.
Before implementing the operation, we first have to check again whether the
queue is full or not. If the queue is not full, then the element can be inserted
from the rear end by using the below conditions -

o If the queue is empty, both rear and front are initialized with 0. Now,
both will point to the first element.

o Otherwise, increment the rear by 1. If the rear is at last index (or size -
1), then instead of increasing it by 1, we have to make it equal to 0.

0 1 2 3 4
R

front rear

0 1 2 3 4

EAEREEENEN -

front rear

0 1 2 3 4
EXENENNN

to a[rear]
front rear

Deletion at the front end

In this operation, the element is deleted from the front end of the queue.
Before implementing the operation, we first have to check whether the
queue is empty or not.

If the queue is empty, i.e., front = -1, it is the underflow condition, and we
cannot perform the deletion. If the queue is not full, then the element can
be inserted from the front end by using the below conditions -

If the deque has only one element, set rear = -1 and front = -1.
Else if front is at end (that means front = size - 1), set front = 0.

Else increment the front by 1, (i.e, front = front + 1).
0 1 2 3 4
HF--
front rear

0 1 2 3 4
After deleting the element
7 front end

front rear

Deletion at the rear end

In this operation, the element is deleted from the rear end of the queue.
Before implementing the operation, we first have to check whether the
queue is empty or not.

If the queue is empty, i.e., front = -1, it is the underflow condition, and we
cannot perform the deletion.

If the deque has only one element, set rear = -1 and front = -1.
If rear = O (rear is at front), then set rear = n - 1.

Else, decrement the rear by 1 (or, rear = rear -1).

0 1 2 3 4
EEIENINE.

front rear
0 1 2 3 4
EAEREEE -
from rear end
bt
front rear
Check empty

This operation is performed to check whether the deque is empty or not. If
front = -1, it means that the deque is empty.

Check full

This operation is performed to check whether the deque is full or not. If front
=rear + 1, or front = 0 and rear = n - 1 it means that the deque is full.

The time complexity of all of the above operations of the deque is O(1), i.e.,
constant.

Applications of deque

o Deque can be used as both stack and queue, as it supports both
operations.

o Deque can be used as a palindrome checker means that if we read the
string from both ends, the string would be the same.

Implementation of deque

Now, let's see the implementation of deque in C programming language.

#include <stdio.h>
#define size 5
int deque[size];
intf=-1,r=-1;
// insert_front function will insert the value from the front
void insert_front(int x)
{
if(f==0 && r==size-1) || (f==r+1))
{
printf("Overflow");
}
else if((f==-1) && (r==-1))
{
f=r=0;
dequelf]=x;
}
else if(f==0)
{
f=size-1;
deque[f]=x;
}
else
{
f=f-1;
dequel[f]=x;

// insert_rear function will insert the value from the rear

void insert_rear(int x)

{

if(f==0 && r==size-1) || (f==r+1))

{
printf("Overflow");
}
else if((f==-1) && (r==-1))
{
r=0;
deque[r]=x;
}
else if(r==size-1)
{
r=0;
deque[r]=x;
}
else
{
r++;

dequelr]=x;

// display function prints all the value of deque.
void display()
{

int i=f;

printf("\nElements in a deque are: ");

while(i!=r)

{
printf("%d ",dequeli]);
i=(i+1)%size;

}

printf("%d",dequelr]);

// getfront function retrieves the first value of the deque.
void getfront()
{

if(f==-1) && (r==-1))

{
printf("Deque is empty");

}

else

{
printf("\nThe value of the element at front is: %d", dequelf]);

// getrear function retrieves the last value of the deque.
void getrear()

{
if(f==-1) && (r==-1))
{
printf("Deque is empty");
}
else
{

printf("\nThe value of the element at rear is %d", dequelr]);

// delete_front() function deletes the element from the front
void delete_front()
{
if(f==-1) && (r==-1))
{
printf("Deque is empty");
}
else if(f==r)
{
printf("\nThe deleted element is %d", dequelf]);
f=-1;
r=-1;

}

else if(f==(size-1))

{
printf("\nThe deleted element is %d", dequelf]);
f=0;

}

else

printf("\nThe deleted element is %d", dequelf]);
f=f+1;

// delete_rear() function deletes the element from the rear
void delete_rear()

{
if(f==-1) && (r==-1))
{
printf("Deque is empty");
}
else if(f==r)
{
printf("\nThe deleted element is %d", dequel[r]);
f=-1;
r=-1,
}
else if(r==0)
{
printf("\nThe deleted element is %d", dequelr]);
r=size-1;
}
else
{
printf("\nThe deleted element is %d", dequelr]);
r=r-1;
}
}
int main()
{

insert_front(20);

insert_front(10);

insert_rear(30);

insert_rear(50);

insert_rear(80);

display(); // Calling the display function to retrieve the values of deque
getfront(); // Retrieve the value at front-end

getrear(); // Retrieve the value at rear-end

delete_front();
delete_rear();
display(); // calling display function to retrieve values after deletion

return O;

Output:

Elements in a deque are: 10
The wvalues of the =lement at
The wvalus of the =lement at

The deleted element 1= 10
The deleted element i1is 80
Elements in a deque are: 20

Introduction to Circular Queue

What is a Circular Queue?
A Circular Queue is an extended version of a normal queue where the last
element of the queue is connected to the first element of the queue forming a

circle.

The operations are performed based on FIFO (First In First Out) principle. It is
also called ‘Ring Buffer’.

Rear

In a normal Queue, we can insert elements until queue becomes full. But once
queue becomes full, we can not insert the next element even if there is a space
in front of queue.

Operations on Circular Queue:

Front: Get the front item from the queue.
Rear: Get the last item from the queue.
enQueue(value) This function is used to insert an element into the
circular queue. In a circular queue, the new element is always inserted
at the rear position.
« Check whether the queue is full - [i.e., the rear end is in just
before the front end in a circular manner].
. Ifitis full then display Queue is full.
. Ifthe queue is not full then, insert an element at the
end of the queue.
deQueue() This function is used to delete an element from the circular
queue. In a circular queue, the element is always deleted from the front
position.
« Check whether the queue is Empty.
. Ifitis empty then display Queue is empty.

https://www.geeksforgeeks.org/queue-data-structure/

+ Ifthe queue is not empty, then get the last element and

remove it from the queue.

Illustration of Circular Queue Operations:
Follow the below image for a better understanding of the enqueue and dequeue operations.

enQueue(14) enQueue(22) enQueue(13) enQueue(-6)
Front Rear Front Front Front

deQueue() deQueue() enQueue(9) enQueue(20) enQueue(5)

How to Implement a Circular Queue?
A circular queue can be implemented using two data structures:

« Array

Here we have shown the implementation of a circular queue using an array
data structure.

Implement Circular Queue using Array:
1. Initialize an array queue of size n, where n is the maximum number of
elements that the queue can hold.
2. Initialize two variables front and rear to -1.
3. Enqueue: To enqueue an element X into the queue, do the following:
« Increment rear by 1.
+ Ifrearis equal to n, set rear to O.
. Iffrontis -1, set front to 0.
« Set queue[rear] to x.
4. Dequeue: To dequeue an element from the queue, do the following:
« Check if the queue is empty by checking if front is -1.
. Ifitis, return an error message indicating that the
queue is empty.

https://www.geeksforgeeks.org/introduction-to-arrays-data-structure-and-algorithm-tutorials/

« Setx to queue[front].

. Iffrontis equal to rear, set front and rear to -1.

« Otherwise, increment front by 1 and if front is equal to n,
set front to 0.

« Return x.

Complexity Analysis of Circular Queue Operations:

. Time Complexity:

« Enqueue: O(1) because no loop is involved for a single
enqueue.

« Dequeue: O(1) because no loop is involved for one dequeue
operation.

. Auxiliary Space: O(N) as the queue is of size N.

Applications of Circular Queue:

1. Memory Management: The unused memory locations in the case of
ordinary queues can be utilized in circular queues.

2. Traffic system: In computer controlled traffic system, circular queues
are used to switch on the traffic lights one by one repeatedly as per the
time set.

3. CPU Scheduling: Operating systems often maintain a queue of
processes that are ready to execute or that are waiting for a particular
event to occur.

How Circular Queue Works

Circular Queue works by the process of circular increment i.e. when we try to increment
the pointer and we reach the end of the queue, we start from the beginning of the queue.

Here, the circular increment is performed by modulo division with the queue size. That is,

if REAR + 1 == 5 (overflow!), REAR = (REAR + 1)%5 = 0 (start of queue)

Circular Queue Operations

The circular queue work as follows:

« two pointers FronNT and REAR

« FRONT track the first element of the queue

« REAR track the last elements of the queue

« initially, set value of FronT and ReAr tO -1
1. Enqueue Operation

« check if the queue is full

« for the first element, set value of Front to O
« circularly increase the rear index by 1 (i.e. if the rear reaches the end, next it would
be at the start of the queue)
« add the new element in the position pointed to by RreAr
2. Dequeue Operation

« check if the queue is empty

« return the value pointed by FroNT
« circularly increase the FronT Index by 1
. for the last element, reset the values of FronT and Rear to -1

However, the check for full gueue has a new additional case:

o Case 1: FRONT = 0 && REAR == SIZE - 1

o (Case 2: FRONT = REAR + 1
The second case happens when rear starts from 0 due to circular increment and when its
value is just 1 less than rront, the queue is full.

enqueue
}
- .
B -1) 0 1 2 3 4
------ enqueue
}
L -
-1 0 1 2 3 4

dequeue
+
’ !
0 1 2 3 4
enqueue

// Circular Queue implementation in C++

Engue and Deque Operations

#include <iostream>

#define SIZE 5 /* Size of Circular Queue */

using namespace std;

class Queue {
private:

int items[SIZE], front, rear;

public:
Queue() {
front = -1;
rear =-1;
}
// Check if the queue is full
bool isFull() {
if (front == 0 && rear == SIZE - 1) {
return true;
}
if (front ==rear + 1) {
return true;

}

return false;
}
// Check if the queue is empty
bool isEmpty() {
if (front == -1)
return true;
else
return false;
}
// Adding an element
void enQueue(int element) {
if (isFull()) {

cout << "Queue is full";

}else {
if (front ==-1) front = 0;
rear = (rear + 1) % SIZE;
items[rear] = element;
cout << end|

<< "Inserted " << element << endl;

}

// Removing an element
int deQueue() {
int element;
if (isEmpty()) {
cout << "Queue is empty" << endl;
return (-1);
}else {
element = items[front];
if (front == rear) {
front = -1;
rear =-1;
}
// Q has only one element,
// so we reset the queue after deleting it.
else {
front = (front + 1) % SIZE;

}

return (element);

void display() {
// Function to display status of Circular Queue
inti;
if (isEmpty()) {
cout << end|l

<< "Empty Queue" << endl;

}else {

cout << "Front -> " << front;

cout << endl|
<< "ltems ->";

for (i = front; i !=rear; i = (i + 1) % SIZE)
cout << items][i];

cout << items][i];

cout << end|

<< "Rear -> " << rear;

int main() {

Queue q;

// Fails because front = -1

g.deQueue();

g.enQueue(1);
g.enQueue(2);
g.enQueue(3);
g.enQueue(4);

g.enQueue(5);

// Fails to enqueue because front == 0 && rear == SIZE - 1

g.enQueue(6);

q.display();

int elem = g.deQueue();

if (elem 1=-1)

cout << end|

<< "Deleted Element is " << elem;

q.display();

g.enQueue(7);

q.display();

// Fails to enqueue because front == rear + 1

g.enQueue(8);

return 0;

}

Dequeue in CPP

The dequeue stands for Double Ended ;. In the queue, the insertion takes place
from one end while the deletion takes place from another end. The end at which
the insertion occurs is known as the rear end whereas the end at which the
deletion occurs is known as front end.

= - J
B N

Deque is a linear data structure in which the insertion and deletion operations are
performed from both ends. We can say that deque is a generalized version of the
queue.

In deque, the insertion and deletion operation can be performed from one side. The
stack follows the LIFO rule in which both the insertion and deletion can be
performed only from one end; therefore, we conclude that deque can be considered
as a stack.

In deque, the insertion can be performed on one end, and the deletion can be done
on another end. The queue follows the FIFO rule in which the element is inserted
on one end and deleted from another end. Therefore, we conclude that the deque
can also be considered as the queue.

| o 1 2 3 4 |

There are two types of Queues, Input-restricted queue, and output-restricted
queue.

1. Input-restricted queue: The input-restricted queue means that some
restrictions are applied to the insertion. In input-restricted queue, the
insertion is applied to one end while the deletion is applied from both the
ends.

front rear

Insert

delete delete

input restricted double ended queue

2. Output-restricted queue: The output-restricted queue means that some
restrictions are applied to the deletion operation. In an output-restricted
queue, the deletion can be applied only from one end, whereas the insertion
Is possible from both ends.

front rear

Insert

Insert

delete

Output restricted double ended queue

Operations on Deque
The following are the operations applied on deque:

o Insert at front

o Insert at rear

- Delete at front

o Delete from rear

Implementation of Deque using a circular array

The following are the steps to perform the operations on the
Deque:

Engueue operation

1. Initially, we are considering that the deque is empty, so both
front and rear are setto -1, i.e., f=-1and r = -1.

2. As the deque is empty, so inserting an element either from the
front or rear end would be the same thing. Suppose we have
inserted element 1, then front is equal to 0, and the rear is also
equal to 0.

3. Suppose we want to insert the next element from the rear. To
insert the element from the rear end, we first need to increment
the rear, i.e., rear=rear+1. Now, the rear is pointing to the

second element, and the front is pointing to the first element.

O

4. Suppose we are again inserting the element from the rear end.
To insert the element, we will first increment the rear, and now
rear points to the third element.

1 2 3

- O
—

5. If we want to insert the element from the front end, and insert an
element from the front, we have to decrement the value of front
by 1. If we decrement the front by 1, then the front points to -1
location, which is not any valid location in an array. So, we set
the front as (n -1), which is equal to 4 as n is 5. Once the front is
set, we will insert the value as shown in the below figure:

1 2 3 5

Dequeue Operation

1. If the front is pointing to the last element of the array, and we
want to perform the delete operation from the front. To delete
any element from the front, we need to set front=front+1.
Currently, the value of the front is equal to 4, and if we
increment the value of front, it becomes 5 which is not a valid
index. Therefore, we conclude that if front points to the last
element, then front is set to O in case of delete operation.

1 2 3 5

2 3

0 r=2

2. If we want to delete the element from rear end then we need to
decrement the rear value by 1, i.e., rear=rear-1 as shown in the

below figure:

1 2

0
f
f=0

1

n— N| w

r=2

i After deletion

1

%

0
f=0

r

N—>» =

1

3. If the rear is pointing to the first element, and we want to delete
the element from the rear end then we have to set rear=n-
1 where n is the size of the array as shown in the below figure:

1 2 3
0 1 2 3 4
]]
r=0 f=3

l After deletion

I >
n —

f=3 r=4

Algorithm for Insertion at front end

Step-1: [Check for the front position]
If(f=0 && r=r-1|| f=r+1)
Print("Cannot add item at the front overflow”);
return;
If f=-1 set f=r=0

Else if f=0 set f=n-1
Else f=f-1
[Insert at front]

q[f]=data;
Return

F—> 2 [|s5]|19||7 || 9
PUSH 23 /l\ /l\

FRONT REAR

/ |

|23||2|55 19||7 |]o

INSERT FRONT

Algorithm for Insertion at rear end

https://iq.opengenus.org/content/images/2018/05/push_front-1.png

Print("Queue Is Overflow™);
return;
Step-2: [Insert Element]
else

rear=rear+1;
g[rear]=no;

[Set rear and front pointer]
If rear=0
rear=1;
If front=0
front=1,
Step-3: return

|23|2 55 ([19 || 7

T T

FRONT REAR

J N\

|23|2 ss5 ([19]] 7 || o

INSERT BACK

Algorithm for Deletion from front end

Step-1 [Check for front pointer]
If front=0

print(" Queue is Underflow”);
return;
Step-2 [Perform deletion]

PUSH S

https://iq.opengenus.org/content/images/2018/05/push_back.png

else

no=q[front];

print(“Deleted element is”,no);
[Set front and rear pointer]
If front=rear

front=0;
rear=0;
else
front=front+1;
Step-3 : Return

ﬁ_>| 23 || 2 |[55| 22]] 7 =
POP 23 /r /r
FROMT REAR

| 2 | 55 19 7 o

REMOWE FROMNT

Algorithm for Deletion from rear end

Step-1 : [Check for the rear pointer]
If rear=0
print(“‘Cannot delete value at rear end”);

return;
Step-2: [perform deletion]
else

https://iq.opengenus.org/content/images/2018/05/pop_front-1.png

no=q[rear];

[Check for the front and rear pointer]
If front= rear

front=0;

rear=0;
else

rear=rear-1;

print(“Deleted element is™,no);

Step-3 : Return

Algorithm for input restricted dequeue.

Stepl [check for under flow condition]
If front =-1 & rear = -1, then
output underflow & exit

Step2 [delete element at the front end]
If [front] >= 0 then
item =Q[front]

Step3 [check queue for empty]

If front = rear, then
rear = -1
front = -1
else
front = front+1
Step4 [delete element at the rear end]
If rear>=0
item = Q[rear]
Stepb [check queue for empty |
If front = rear, then

front = -1
rear = -1
else
rear = rear — 1
Step6 exit

Algorithm for output restricted dequeue
Stepl [check for overflow condition]
If front =0 & rear >=size -1
Output over flow & exit
Step2 : [check front pointer value]
If front >0, then
Front = front -1
Step3: [insert element at the front end]
Q[front] = value
Step4 : [check rear pointer value]
If rear <size-1
Rear =rear+l
Step5: [insert element at the rear end]
Q[rear] = value
Step6 : exit

Check empty

This operation is performed to check whether the deque is empty or not. If
front = -1, it means that the deque is empty.

Check full

This operation is performed to check whether the deque is full or not. If front
= rear + 1, or front = 0 and rear = n - 1 it means that the deque is full.

The time complexity of all of the above operations of the deque is O(1), i.e.,
constant.

Applications of deque

o Deque can be used as both stack and queue, as it supports both
operations.

o Deque can be used as a palindrome checker means that if we read the
string from both ends, the string would be the same.

304 Object Oriented Programming and Data Structures (OOP & D.S.)

Question Bank

UNIT-1

Short Questions:-

1) What are the Characteristics of OOPs?

2) Define Class and Object

3) Explain limitation of inline function.

4) List out the advantages of inline function.

5) What are the advantages of cin and cout compared to printf and scanf?
6) What is the use of scope resolution operator?

7) What is the use of ‘this’ pointer?

8) What is containership?

9) What is the use of ‘new’ operator?

10) What is reference variable?

11) What is application of scope resolution operator (::) in C++?
12) State the difference between ios::in and ios::out.

13) Differentiate between int *p and int **p.

Long Questions:-

1) What is header file? Explain various header file used in C++.

2) Write a short note on String functions with appropriate example.

3) Explain different data types in OOPs.

4) State the difference between C and C++.

5) Write a note on Procedural and Object oriented Programming.

6) What is object oriented programming ? Write the difference between OOP and POP.
7) Compare call by value and call by reference with appropriate example.

8) Explain array of objects with example.

9) Explain memory management operator. Discuss advantages of new over malloc.

10) Explain default argument and function prototyping with an example

304 Object Oriented Programming and Data Structures (OOP & D.S.)

UNIT-2

Short Questions:-

1) What is Visibility modifier?

2) What is the use of ‘Protected’ over ‘Private’ modifier?
3) What is meant by Encapsulation?

4) Explain data hiding concept in classes.

5) What are the types of inheritance?

6) Differentiate between copy and parameterized constructor.
7) What is constructor with default argument?

8) What is the use of destructor? How is it created?

9) What is Object? Give one example of it.

10) What is an abstract class? What is use of it?

11) What is the meaning of "IS-A" and "HAS-A" relationship
12) What is Containership?

Long Questions:-

1) Explain Access modifier with example.

2) What is constructor? Explain parameterized constructor with an example.

3) What is constructor and destroyed in C++? How are they defined and when are they used? lllustrate
with an example for each.

4) What is destructor? How it is written in C++? When it is called? Differentiate between constructor
and destructor with proper example.

5) Explain Inheritance and types of inheritance with examples.

6) What is the purpose of inheritance? Explain multilevel inheritance with example.

7) Explain data abstraction and encapsulation.

8) What is containership? How does it differ from Inheritance? Give example.

9) How to remove ambiguity occurred in the case of hybrid inheritance?

10) Write a program to create a class student stores the roll_no, class test stores the mark obtained in
two subjects and class result contains the total marks obtained the test. The class result can inherit
the details of the marks obtained in the test and the roll_no of stusent class.

11) Create an abstract class “Shape” which stores data members like length, breadth and radius, Create
two classes “Circle” and “Rectangle” which stores data members like area respectively. Write a
function to calculate area and display it.

304 Object Oriented Programming and Data Structures (OOP & D.S.)

Short Questions:-

1) What is polymorphism?

2) Explain use of late binding.

3) What is static binding?

4) What do you mean by function overloading?

5) What is function overriding?

6) Explain pure virtual function.

7) Which function in C++ is defined to do nothing? Explain it.

8) List the operators which cannot be overloaded .

9) What are the rules for the Unary operator overloading using friend?

Long Questions:-

1) Write a note on Polymorphism.

2) What is dynamic binding? Explain it with proper example.

3) What is polymorphism? Explain different types of polymorphism in brief.

4) How runtime polymorphism is achieved in C++? Explain with example.

5) Explain type conversion with example.

6) What is type conversion? Explain explicit type conversion with example.

7) Explain operator overloading with example.

8) Differentiate between overloading and overriding. Explain the concept of overriding with example.

9) What is friend function? Why we need to write friend function? Explain with example. Discuss its
advantages.

10) Explain pure virtual function? When it is necessary? Explain rules of pure virtual function

11) Explain virtual base class. How it is differ from virtual function. Explain with proper example.

12) Write a program to overload >> and << operators

13) Write a program to overload == and += operator (String object)

14) Write + operator to concate two string. Use = operator to copy one string to another string.

304 Object Oriented Programming and Data Structures (OOP & D.S.)

UNIT-4

Short Questions:-

1) What is Data structure? List various data structures.

2) Differentiate Linear and non linear data structure.

3) What is stack? How it is differ from array?

4) Write application of stack.

5) What is Recursion? Define recursive function.

6) List out applications of stack.

7) What is Top pointer in stack?

8) Evaluate Postfix expression : (i) 2, 3, 4, *, + (ii) 3, 4, *, 2, 5, *, + (iii) 5,6, 2, +, *,12,4, /,-(iv) 3, 2, 4, -
+

7

9) Convert from Infix to Postfix : (i) A+ (B*C—-D/E*G)+H

Long Questions:-

1) What is linear data structure? Discuss difference between FIFO and LIFO concept.
2) What is stack? Write algorithm for push and pop operation of Stack.
3) What is stack? Write a program to perform Push, Pop, Display operation.
4) Explain Tower of Hanoi as application of stack.
5) What is recursion? Write an algorithm to find factorial number.
6) Write an algorithm to convert infix expression to prefix.
7) Write an algorithm to convert infix expression to postfix.
8) Convert following expression into postfix
(i)(A+B)*(C-D/E)*G+H
(i) (A+B/C)*(D+E)/F
(ii)A/(B=—C+D)*E+FAG

304 Object Oriented Programming and Data Structures (OOP & D.S.)

UNIT-5

Short Questions:-

1) What is Queue? List out types of queues.

2) Define D-queue with an example.

3) What are the advantages of circular queue?

4) What are the properties of circular queue?

5) Discuss the real world example of Queue.

6) What will be the position of front and rear if circular queue is empty?

7) Write an overflow and underflow conditions of input restricted Dqueue.
8) Write an overflow and underflow conditions of output restricted Dqueue.

Long Questions:-

1) What is Queue? List out types of queue. Write an algorithm to insert and delete elements in a
queue.

2) What is D-queue? Write an algorithm to insert and delete elements from output restricted D-
queue?

3) What is D-queue? Explain difference between input restricted and output restricted D-queue?

4) Write an algorithm to perform insert and delete operations on circular queue.

5) Define circular queue. Discuss advantages of circular queue over simple queue. Write algorithm to
insert and delete element in circular queue.

