
SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 1 of 30

1.1 Procedure Oriented Programming (POP) Vs Object Oriented Programming (OOP)

Features

Procedure Oriented Programming Object Oriented Programming

Structure

Divided Into In POP, program is divided into small

parts called functions.
In OOP, program is divided into parts
called objects.

Importance In POP, Importance is not given to
data but to functions as well as
sequence of actions to be done.

In OOP, Importance is given to the data
rather than procedures or functions
because it works as a real world.

Approach POP follows Top Down approach. OOP follows Bottom Up approach.

Access
Specifiers

POP does
access specifiers.

Not have any OOP has access specifiers named Public,
Private, Protected, etc.

Data Moving In POP, Data can move freely from
function to function in the system.

In OOP, objects can move and
communicate with each other through
member functions.

Expansion To add new data and function in POP
is not so easy.

OOP provides an easy way to add new
data and function.

Data Access In POP, Most function uses Global
data for sharing that can be accessed
freely from function to function in the
system.

In OOP, data cannot move easily from
function to function, it can be kept public
or private so we can control the access of
data.

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 2 of 30

Data Hiding POP does not have any proper way

for hiding data so it is less secure.
OOP provides Data
provides more security.

Hiding S
o

Overloading In POP, Overloading is not possible. In OOP, overloading is possible in the form
of Function Overloading and Operator
Overloading.

Examples Example of POP is:
C, VB, FORTRAN, and Pascal.

Example of OOP is:
C++, JAVA, VB.NET, C#.NET.

1.2 Basic Concepts of Object Oriented Programming

The major motivating factor in the invention of object-oriented approach is to remove
some of the flaws encountered in the procedural approach. OOP treats data as a critical
element in the program development and does not allow it to flow freely around the system.
It ties data more closely to the function that operate on it, and protects it from accidental
modification from outside function. OOP allows decomposition of a problem into a number of
entities called objects and then builds data and function around these objects.
Some of the features of object oriented programming are:

✓ Emphasis is on data rather than procedure.
✓ Programs are divided into what are known as objects.
✓ Data structures are designed such that they characterize the objects.
✓ Functions that operate on the data of an object are ties together in the data structure.
✓ Data is hidden and cannot be accessed by external function.
✓ Objects may communicate with each other through function.
✓ New data and functions can be easily added whenever necessary.
✓ Follows bottom up approach in program design.

“Object Originated Programming is an approach that provides a way of modularizing
programs by creating partitioned memory area for both data and function that can be used as
templates for creating copies of such modules on demand.”

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 3 of 30

 Basic Concepts of Object Oriented Programming
✓ Objects
✓ Classes
✓ Data abstraction and encapsulation
✓ Inheritance
✓ Polymorphism
✓ Dynamic binding
✓ Message passing

➢ Objects

• Objects are the basic runtime entities in object oriented system. Objects are also called

Instance of the class.

• An object represents a person, Bank-account, Vehicle, Book, products, Employee, etc…

• Programming problem is analyze in terms of object and nature of communication between

them

• In program objects should choose and design in such a way that they match closely with

real world object

• Objects occupies memory and they have associated address

(Two ways to represent object)

➢ Classes
• The general meaning of class is category. Class is a pro-forma or blue-print that represents

particular category.

• Class contains data and code (function) that operate on that data.

• It is user defined data type and object are variable of class.

• Once we define a class we can create any number of objects belonging to that class.

• So object is associated with data of type class thus, class is collection of similar type of

objects.

• If fruit has been defines as a class, then the statement Fruit Mango; Will create an object mango

belonging to the class fruit.

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 4 of 30

➢ Data Abstraction and Encapsulation

• The wrapping up of data and function into a single unit (called class) is known as encapsulation.

• Data encapsulation is the most important feature of class with this concept data is not accessible

to the outside class definition and only those functions which are wrapped in the class can access

it for this to happen data members must be declare as private.

• Public members provides interface between the object, data and the program.

• It is also called “Data hiding” or “Information hiding”.

• Data abstraction refers to, providing only essential information to the outside world and hiding

their background details, i.e., to represent the needed information in program without

presenting the details.

• Abstraction and encapsulation are related features in object oriented programming. Abstraction

allows making relevant information visible and encapsulation enables a programmer to

implement the desired level of abstraction.

• Classes use the concept of abstraction and are defined as a list of abstract attributes such as size, weight,

and cost and function operate on these attributes. They encapsulate all the essential properties of the

object that are to be created.

• The attributes are some time called data members because they hold information. The functions

that operate on these data are sometimes called methods or member function.

➢ Inheritance
• Inheritance is the process by which the objects of one class acquire the properties of object of

another class.

• It supports the concept of hierarchical – classification.

• In Oop, the concept of inheritance provides the idea of Reusability. It means that we can add

additional features to an existing class without modifying it.

• It is possible by deriving a new class from existing class and new class will have combined

features of both the class

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 5 of 30

➢ Polymorphism
• Polymorphism simply means “One name And Multiple behavior”.

• Polymorphism, a Greek term, means the ability to take more than on form. An operation may exhibit

different behavior is different instances. The behavior depends upon the types of data used in the

operation.

• Polymorphism plays an important role in allowing objects having different internal structures to share

the same external interface. This means that a general class of operations may be accessed in the

same manner even though specific action associated with each operation may differ.

• Polymorphism is extensively used in implementing inheritance.

.
For example, consider the operation of addition. For two numbers, the operation will generate
a sum. If the operands are strings, then the operation would produce a third string by
concatenation. The process of making an operator to exhibit different behaviors in different
instances is known as operator overloading.

A single function name can be used to handle different number and different types of
argument. This is something similar to a particular word having several different meanings
depending upon the context. Using a single function name to perform different type of task is
known as function overloading.

Polymorphism

Compile time polymorphism
(Static)

Run time polymorphism
(Dynamic)

Operator
overloading

Function
overloading

Overriding Virtual
Function

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 6 of 30

➢ Dynamic Binding (Late binding)

• Binding refers to the process of converting identifiers (such as variable and performance

names) into addresses. Binding is done for each variable and functions

• Dynamic binding also called dynamic dispatch is the process of linking procedure

call to a specific sequence of code (method) at run-time. It means that the code to

be executed for a specific procedure call is not known until run -time. Dynamic

binding is also known as late binding or run-time binding

➢ Message Passing

• An object oriented program consists of set of objects that communicate with each other

• Message Passing is nothing but sending and receiving of information by the objects same
as people exchange information. So this helps in building systems that simulate real life.

• Following are the basic steps in message passing.

1. Creating classes that define objects and its behavior.
2. Creating objects from class definitions
3. Establishing communication among objects

• In OOPs, Message Passing involves specifying the name of objects, the name of the

function, and the information to be sent

• Objects have a life cycle. They can be created and destroyed. Communication with an

object is feasible as long as it is alive.

 1.3 Benefits of Object Oriented Programming

• Through inheritance, we can eliminate redundant (repeated) code and extend the use of
existing classes which is not possible in procedure oriented approach.

• We can build programs from the standard working modules that communicate with one
another, rather than having to start writing the code from scratch which happens
procedure oriented approach. This leads to saving of development time and higher
productivity.

• The principle of data hiding helps the programmer to build secure programs that cannot be
invaded by code in other parts of the program.

• It is possible to have multiple instances of object to co-exist without any interference.

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 7 of 30

• It is possible to map objects in the problem domain to those in the computer program.
• It is easy to partition the work in a project based on objects.
• Object oriented systems can be easily upgraded from small to large systems.
• Message passing techniques for communication between objects makes the interface

descriptions with external systems much simpler.
• Software complexity can be easily managed.

APPLICATION OF OBJECT ORIENTED PROGRAMMING

• System software
• Application software
• Real time systems
• Object oriented database
• Operating system
• Compiler
• Device driver

C VS. C++ :+

C C++

C is Procedural Language. C++ is non Procedural i.e Object
oriented Language.

No virtual Functions are present in C. The concept of virtual Functions is used
in C++.

In C, Polymorphism is not possible. The concept of polymorphism is used in
C++.Polymorphism is the most
Important Feature of OOPS.

Operator overloading is not possible in C. Operator overloading is one of the
greatest Feature of C++.

Top down approach is used in Program
Design.

Bottom up approach adopted in
Program Design.

Multiple Declarations of global variables
are allowed.

Multiple Declarations of global variables
are not allowed.

In C
scanf() Function used for Input.

printf() Function used for output.

In C++
cin>> Function used for Input.
cout<< Function used for output.

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 8 of 30

Mapping between Data and Function is
difficult and complicated.

Mapping between Data and Function
can be used using "Objects".

In C, we can call main() Function through
other Functions.

In C++, we cannot call main() Function
through other functions.

C requires all the variables to be defined
at the starting of a scope.

C++ allows the declaration of variable
anywhere in the scope i.e at time of its
First use.

No inheritance is possible in C. Inheritance is possible in C++.

In C, malloc() and calloc() Functions are
used for Memory Allocation and free()
function for memory Deallocating.

In C++, new and delete operators are
used for Memory Allocating and
Deallocating.

It supports built-in and primitive data
types.

It support both built-in and user define
data types.

In C, Exception Handling is not present. In C++, Exception Handling is done with
Try and Catch block.

 1.4 Structure & Classes

➢ Structure in C

Structure provides a method to packing together data of different. Structure is user
defined data type that serves to define its data properties. Once the structure is defined we can
create variables of that type using declarations that are similar to built-in type declarations.

Example:

struct student
{
char name[20];
int roll_number;
float total_marks;
}

The keyword “struct” declares student as a new data type that can hold three of
different data types. These fields are known as structure members, structure name can be used
to create variables of type student as follows:

struct student A; // C declaration

Member variables can be accessed as follows:

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 9 of 30

Strcpy(A.name,”John”);
A.roll_number = 999;
A.total_marks = 595.5;

Structure can have arrays, Pointers or structures as members.

Extensions to Structures in C++

✓ C++ supports all the features of structures as defined in C.
✓ C++ provides facility to hide data (Using private) which is one of the main principal of

OOP.
✓ In C++ a structure can have both variables and function as member.
✓ In C++ the structure names are stand alone and can be used like any other type name in

following way :

 student A;// C++ declaration

“C++ incorporated all these extensions in another user-defined type Known as CLASS”
There is a little syntactical difference in structure and Classes in C++ therefore; they can be used
interchangeably with minor modification.

Note :The only difference between structure and classes in C++ is that ,by default, the
member of a class are private, while by default the members of structure are public.

➢ Specifying a Class

A class in C++ combines related data and functions together. It makes a data type which

is used for creating objects of this type.
Classes represent real world entities that have both data type properties

(characteristics) and associated operations (behavior).

Generally a class specification has two parts:

✓ Class Declaration
✓ Class Function definition

Class Declaration

The syntax of a class definition is shown below:

Class name_of _class
{
private :

variable declaration; // data member
Function declaration; // Member Function (Method)

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 10 of 30

protected:

Variable declaration;
Function declaration;
public :

variable declaration;
Function declaration;
};

Here, the keyword class specifies that we are using a new data type and is followed by the class
name.

The body of the class has two keywords namely:

(i) private
(ii) (ii) public

In C++, the keywords private and public are called access specifiers. The data hiding

concept in C++ is achieved by using the keyword private. Private data and functions can only be
accessed from within the class itself. Public data and functions are accessible outside the class
also.

The data declared under Private section are hidden and safe from accidental
manipulation. Though the user can use the private data but not by accident.

The functions that operate on the data are generally public so that they can be accessed from
outside the class but this is not a rule that we must follow.

➢ Class Function definition

In C++, the member functions can be coded in two ways:

(a) Inside class definition (IMPLICIT)
(b) Outside class definition using scope resolution operator (::) (EXPLICIT)

The code of the function is same in both the cases, but the function header is different as

Inside Class Definition:

When a member function is defined inside a class, we do not require to place a

membership label along with the function name. We use only small functions inside the class
definition and such functions are known as inline functions. In case of inline function the
compiler inserts the code of the body of the function at the place where it is invoked (called)
and in doing so the program execution is faster.

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 11 of 30

Outside Class Definition Using Scope Resolution Operator (::) :

• In this case the function’s full name (qualified_name) is written as shown:

Name_of_the_class :: function_name

• The syntax for a member function definition outside the class definition is

return_type name_of_the_class::function_name (argument list)

{ body of function }

Here the operator:: known as scope resolution operator helps in defining the member function
outside the class. Earlier the scope resolution operator (::) was use in situations where a global
variable exists with the same name as a local variable and it identifies the global variable.

Example of Class :
Class student
{
private:

char reg_no;

 char name[30];
 int age;

public :

 void init_data() //Inside Class Defenation
{
- - - - - //body of function - - - - -
}

void display_data();

};

void student :: display_data() //Outside class Defination
{
----------//body of function -------
}

Student ob; //class variable (object) created
Ob.init_data(); //Access the member function

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 12 of 30

ob.display_data();//Access the member function

 <Iostream.h> file

➔ iostream.h is the header file
➔ It is generally included at the beginning of all c++ programs that use input and output

statements.
➔ This file contains declarations for cin and cout objects and << (insertion)and >>(extraction)

operators

 Output operator

➔ cout << “Hello cpp ” ;
➔ Identifier cout is pre-defined object that represents standard output stream in c++.
➔ In this example , by default standard output device is monitor or screen
➔ It is also possible to redirect the output to other output device and it does not need format

specifier
➔ The operator << is called “insertion” or “put to” operator.

 Input operator

➔ cin >> number ;
➔ Identifier cin is pre-defined object that represents standard input stream in c++.
➔ In this example , by default standard input device is keyboard
➔ This input statement causes the program to wait for the user to type value for number and

user entered number is placed in any variable with the help of cin object and extraction
operator.

➔ The operator >> is called “extraction” or “get from” operator.

 Local And Global Variable declaration

➔ In c++ if we have global variable with the same name as local variable then to access the
global variable c++ provides a special operator known as scope resolution operator (::)

➔ Example:
Int x=10;
Void main()
{
Int x=3;
Cout << x; // print local variable x value 3
Cout << ::x; // print global variable x value 10
getch();
}

 References

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 13 of 30

➔ In c++ references are variable that contains link to specific value
➔ References variable permits us to pass parameters to the function by reference
➔ When we pass argument by reference the formal argument in call function becomes Elias to

the actual argument in calling function
➔ It means that , when function is working with its own argument it is actually working on

original data.
➔ A reference variable always created by & in front of any variable
➔ A reference variable points to the same address as the variable
➔ Reference variable does not utilize any additional space like pointer variable and still provides

the functionality of pointer.

X
100
&y

Reference of x

Program 1 :

Program 2 : (swapping of value)

Output : 5
 6
 7

Output : x=4
 Y=3

 Class with array (array of object) (sorting according to price in ascending order)

5

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 14 of 30

Output :

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 15 of 30

 Local class

➔ It is the class which is defined inside the function or block
➔ Local classes can use global variables and static variable declare inside the function but cannot

use automatic local variables
➔ Local classes cannot have static data members
➔ Member function must be define inside the class
➔ Enclosing function cannot access private members of a local class
➔ You can create and use object of local class only inside enclosing function
➔ Example:

void fun()
{
// Local class
class Test
{
/* ... */
};

Test t; // Fine
Test *tp; // Fine
}

void main()
{
Test t; // Error
Test *tp; // Error
getch();
}

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 16 of 30

 Static keyword

➔ In c++ “static” keyword can be used with variable as well as function
➔ We can access static variable and function using scope resolution operator (::)

 1. Static data members:

➔ Data members of class can be declared as static the main characteristic of static member

variables are similar to characteristic of c programming static variable.
➔ Characteristics:
➔ It is initialize with 0 (zero) when the first time object of class is created
➔ Only one copy of that members is created for the entire class and it is shared by all the

objects
➔ It is visible only within the class but its life time is entire program
➔ Static variables are normally used to maintain values common to entire class
➔ Data type and scope of each static member variable must define outside of the class

definition its necessary because static data members are stored separately rather than as
part of object like,
Int test :: count;

➔ Static variables are associated with class rather than any object so they are called class
variables

2. Static member function:

➔ Like static member variables we can also have static member function
➔ Characteristics:
➔ Static function can have access to only other static data members and static member

function declare in the same class
➔ Static member function can be called using class name instead with the name of object like,

test :: getcnt();

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 17 of 30

Output :

 1.5 Encapsulation and Data Hiding

Refer “Data abstraction and encapsulation” inBasic Concepts of Object Oriented
Programming.

1.6 Constructors And Destructors

• A constructor (having the same name as that of the class) is a special member function
which is automatically initializing the data-members (variables) of the class type with legal
initial values.

• It called automatically when the object of class is created

• It’s called constructor because it construct values of data members of the class

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 18 of 30

Declaration and Definition of a Constructor:

• It is defined like other member functions of the class, i.e., either inside the class
definition or outside the class definition. For example, the following program
illustrates the concept of a constructor:

//To demonstrate a constructor
Class rectangle
{
private :
float length, breadth;

public:

rectangle () //constructor definition
{
//displayed whenever an object is created

cout<< ”I am in the constructor”;
length=10.0;
breadth=20.5;

}

float area()
{
return (length*breadth);
}
};
void main()
{
clrscr();

rectangle rect; //object declared
cout<< ”\nThe area of the rectangle with default parameters is:”<< rect.area();

 getch();}

➢ SPECIAL CHARACTERISTICS OF CONSTRUCTORS

These have some special characteristics. These are given below:
✓ These are called automatically when the objects are created.
✓ All objects of the class having a constructor are initialized before some use.
✓ These should be declared in the public section for availability to all the functions.
✓ Return type (not even void) cannot be specified for constructors.
✓ These cannot be inherited, but a derived class can call the base class constructor.

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 19 of 30

✓ These cannot be static.
✓ Default and copy constructors are generated by the compiler wherever required.

Generated constructors are public.
✓ These can have default arguments as other C++ functions.
✓ A constructor can call member functions of its class.
✓ An object of a class with a constructor cannot be used as a member of a union.

➢ Types of Constructors

1. Default constructor:

• Constructor does not accept any argument is called default constructor

2. Parameterized constructor

• C++ allows us to initialize objects by passing argument to constructor function when
objects are created

• So, the constructor that can take argument is called parameterized constructor

• It can be invoke implicitly or explicitly

• Like function you can pass default argument in constructor also which known as
constructor with default argument

• All the rules of default argument passing apply to parameterized constructor with
default argument

• Constructor overloading means when we have more than one constructors in a same
class

• When you overload constructor and pass default argument at that time you need to
take care that all the parameters are not given default values if default constructor
exists otherwise, compiler will raise the error of ambiguity

• To overcome error of ambiguity there are two alternatives
1. Omit default constructor if all the argument are default
2. Keep at least one argument mandatory if you want to define default constructor

also
3. Copy constructor

• Copy constructor is used to declare and initialize object from another object

• Eg. Number obj1 (5) , obj2(obj1) ,obj3=obj1

• Copy constructor takes a reference of an object of the same class as an argument.

• We can pass argument by value to copy constructor

 Destructor:

• The name of the class and destructor is same but it is prefixed with a ~ (tilde).

• It does not take any parameter nor does it return any value.

• Overloading a destructor is not possible and can be explicitly invoked.

• In other words, a class can have only one destructor.

• A destructor can be defined outside the class.

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 20 of 30

Declaration and Definition of a Destructor

The syntax for declaring a destructor is:

~name_of_the_class() { }

Special Characteristics of Destructors

Some of the characteristics associated with destructors are:
✓ These are called automatically when the objects are destroyed.
✓ Destructor functions follow the usual access rules as other member functions.
✓ These de-initialize each object before the object goes out of scope.
✓ No argument and return type (even void) permitted with destructors.
✓ These cannot be inherited.
✓ Static destructors are not allowed.
✓ Address of a destructor cannot be taken.
✓ A destructor can call member functions of its class.
✓ An object of a class having a destructor cannot be a member of a union.

Note: The this pointer holds the address of current object, in simple words you can say that
this pointer points to the current object of the class

https://beginnersbook.com/2017/08/cpp-pointers/

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 21 of 30

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 22 of 30

1.7 Friend Function

• Private members cannot be access outside of the class so; non-member functions cannot
have access to private data of the class. But there can be a situation we would like to classes
to share a particular function in such situation c++ allows common function to be made
friendly with both classes.

• To make outside function friendly to the class we need to simply declare that function as a
friend of the class

• For this function declaration should be presided by keyword friend

• A friend function of a class is defined outside that class' scope but it has the right to access all
private and protected members of the class.

• Even though the prototypes for friend functions appear in the class definition, friends are not
member functions.

• A friend can be a function, function template, or member function, or a class or class
template, in which case the entire class and all of its members are friends.

• A friend function can be declare as friend in any number of classes

• It has full access rights to private members of the class

Characteristics of Friend Function

✓ A friend function is not in the scope of the class n which it has been declared as friend.
✓ It cannot be called using the object of that class.
✓ It can be invoked like a normal function without any object.
✓ Unlike member functions, it cannot use the member names directly.
✓ It can be declared in public or private part without affecting its meaning.
✓ Usually, it has objects as arguments.

• To declare a function as a friend of a class, precede the function prototype in the class
definition with keyword friend as follows:

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 23 of 30

FRIEND CLASS:
As we know that a class cannot access the private members of other class.
Similarly a class that doesn’t inherit another class cannot access its protected
members.

A friend class is a class that can access the private and protected members of a
class in which it is declared as friend. This is needed when we want to allow a
particular class to access the private and protected members of a class.

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 24 of 30

FRIEND FUNCTION SHARING BOTH CLASS:

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 25 of 30

 1.8 Inline Function

• The main objective of using function in program is to save memory space when function is
likely to be called many times

• Whenever function is called it takes lot of extra time in executing a series of instruction
for task such as, jumping to the function, returning to the function call, saving register,
pushing argument in to stack ,etc

• When function is small it takes a lot of time for all these procedure to happen

• One solution of these is , Macros but, major drawback of macros is that they are actually
not a function so, usual error checking does not occur during compilation

• In c++ solution for these is INLINE FUNCTION ,these are the functions designed to speed
up program execution

• An inline function is a function that is expanded in line when it is invoked, means the
compiler replaces the function call with corresponding function code

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 26 of 30

The syntex of inline function is as follows:

inline function_name()
{
body of the function
}

For example,

//function definition min()

inline void min (int x, int y)

{
cout<< (x < Y? x : y);
 }

Void main()
{
int num1, num2;
cout<<”\n enter two integers\n;
cin>>num1>>num2;
min (num1,num2);

//function code inserted here ------------------ ------------------

}

• An inline function definition must be defined before being invoked as shown in the above
example. Here min () being inline will not be called during execution, but its code would be
inserted into main () as shown and then it would be compiled.

• Inline sends Request to compiler not command

• If the size of the inline function is large then heavy memory penalty makes it not so useful
and in that case normal function use is more useful.

The inline function does not work for the following situations:

✓ For functions returning values and having a loop or a switch or a goto statement.
✓ For functions that do not return value and having a return statement.
✓ For functions having static variable(s).

✓ If the inline functions are recursive (i.e. a function defined in terms of itself).

The benefits of inline functions are as follows:

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 27 of 30

✓ Better than a macro.
✓ Function call overheads are eliminated.
✓ Program becomes more readable.
✓ Program executes more efficiently.

 1.9 Dynamic Object Creation & destruction (new and delete)

• Dynamic objects are used when the object to be created is not predictable enough

• .This is usually when we cannot determine at compile time

✓ Object Identities

✓ Object Quantities

✓ Object Lifetimes

• Therefore when creating Dynamic Objects they cannot be given unique names, so we
have to give them some other identities In this case we use pointers.

Creating Dynamic Objects Dynamic

• Objects use dynamic memory allocation In C++ a pointer can be directed to an area of
dynamically allocated memory at runtime this can then be made to point to a newly
created object.

• To do this we use the new operator in the following way

Point2D *point1;

point1 = new Point2D();

• First we create a pointer to the Point2D Class using the *, Then we use the new
operator to construct a new instance to the class Using Dynamic Objects

• To call a user defined constructor we use the following syntax:

Point2D *point1 = new Point2D(100.0,100.0);

• To send a message (i.e. use a method) we use the -> 'pointed to' delimiter as follows
cout <<GetY();

• Apart from these distinctions dynamic Objects behave in the same as static

Destroying a Dynamic Object

• To create an Object we use a constructor, conversely to destroy an object we use a
destructor.

• As there is a default constructor which the programmer does not define, there is also a
default destructor which the programmer does not define.

• However it is also possible to define a default destructor this will either be called by the
programmer or by the program when the object falls out of scope

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 28 of 30

• To destroy a dynamic Object the destructor must be called. This is done by using the
delete operator as follows

Point2D *point = new Point2D(100.0,12.0);

// now do some thing with the object

delete point; // now we destroy the object

Operator New and Delete

 New: it is used for allocating the memory at run time which generally allocated as
pointer. It helps in dynamic initialization.

 Delete: it is used for de-allocating the memory allocated with new operator. it can only
remove the variables which are allocated by new operator.

Example 1: (with class)

#include<iostream.h>
#include<conio.h>

class colour
{
int r,g,b;

public:

colour(int m,int n,int o)
{
r= m;
g= n;
b= o;
}

void print()
{
cout<< "RBG : "<< r << b << g;
}

};

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 29 of 30

void main()
{

colour *current;
clrscr();

current = new colour(1,0,0);
current-> print();
delete current;

current = new colour(1,1,1);
current-> print();
delete current;

getch();
}

Example 2: (without class) sorting of data in ascending order

SY BCA SEM-3 UNIT – 1 OOP

Khyati Solanki , Page 30 of 30

C++ Data Types

Data types specify the type of data that a variable can store. Whenever a variable is defined

in C++, the compiler allocates some memory for that variable based on the data type with

which it is declared as every data type requires a different amount of memory.

C++ supports a wide variety of data types, and the programmer can select the data type

appropriate to the needs of the application.

Example:

#include <iostream>

using namespace std;

int main() {

 // Creating a variable to store integer

 int var = 10;

 cout << var;

 return 0;

}

Output

10

Explanation: In the above code, we needed to store the value 10 in our program, so we

created a variable var. But before var, we have used the keyword 'int'. This keyword is used

to define that the variable var will store data of type integer.

Classification of Datatypes

In C++, different data types are classified into the following categories:

S.

No. Type Description Data Types

1

Basic Data

Types

Built-in or primitive data types that are

used to store simple values.

int, float, double,

char, bool, void

2

Derived Data

Types

Data types derived from basic types.
array, pointer,

reference, function

3

User Defined

Data Types

Custom data types created by the

programmer according to their need.

class, struct, union,

typedef, using

Let's see how to use some primitive data types in C++ program.

1. Character Data Type (char)

The character data type is used to store a single character. The keyword used to define a

character is char. Its size is 1 byte, and it stores characters enclosed in single quotes (' '). It

can generally store upto 256 characters according to their ASCII codes.

https://www.geeksforgeeks.org/derived-data-types-in-c/
https://www.geeksforgeeks.org/derived-data-types-in-c/
https://www.geeksforgeeks.org/user-defined-data-types-in-c/
https://www.geeksforgeeks.org/user-defined-data-types-in-c/
https://www.geeksforgeeks.org/cpp-char-data-types/
https://www.geeksforgeeks.org/what-is-ascii-a-complete-guide-to-generating-ascii-code/

Example:

#include <iostream>

using namespace std;

int main() {

 // Character variable

 char c = 'A';

 cout << c;

 return 0;

}

Output

A

2. Integer Data Type (int)

Integer data type denotes that the given variable can store the integer numbers. The keyword

used to define integers is int. Its size is 4-bytes (for 64-bit) systems and can store numbers

for binary, octal, decimal and hexadecimal base systems in the range from -2,147,483,648 to

2,147,483,647.

Example:

#include <iostream>

using namespace std;

int main() {

 // Creating an integer variable

 int x = 25;

 cout << “value of x is :” << x << endl;

 // Using hexadecimal base value

 x = 0x15;

 cout << x;

 return 0;

}

Output

25

21

To know more about different base values in C++, refer to the article - Literals in C++

3. Boolean Data Type (bool)

The boolean data type is used to store logical values: true(1) or false(0). The keyword used

to define a boolean variable is bool. Its size is 1 byte.

Example:

#include <iostream>

using namespace std;

https://www.geeksforgeeks.org/cpp-literals/
https://www.geeksforgeeks.org/cpp-booleans/

int main() {

 // Creating a boolean variable

 bool isTrue = true;

 cout << isTrue;

 return 0;

}

Output

1

4. Floating Point Data Type (float)

Floating-point data type is used to store numbers with decimal points. The keyword used to

define floating-point numbers is float. Its size is 4 bytes (on 64-bit systems) and can store

values in the range from 1.2E-38 to 3.4e+38.

Example:

#include <iostream>

using namespace std;

int main() {

 // Floating point variable with a decimal value

 float f = 36.5;

 cout << f;

 return 0;

}

Output

36.5

5. Double Data Type (double)

The double data type is used to store decimal numbers with higher precision. The keyword

used to define double-precision floating-point numbers is double. Its size is 8 bytes (on 64-

bit systems) and can store the values in the range from 1.7e-308 to 1.7e+308

Example:

#include <iostream>

using namespace std;

int main() {

 // double precision floating point variable

 double pi = 3.1415926535;

 cout << pi;

 return 0;

}

Output

3.14159

6. Void Data Type (void)

The void data type represents the absence of value. We cannot create a variable of void type.

It is used for pointer and functions that do not return any value using the keyword void.

Type Safety in C++

C++ is a strongly typed language. It means that all variables' data type should be specified

at the declaration, and it does not change throughout the program. Moreover, we can only

assign the values that are of the same type as that of the variable.

Example: If we try to assign floating point value to a boolean variable, it may result in data

corruption, runtime errors, or undefined behaviour.

#include <iostream>

using namespace std;

int main() {

 // Assigning float value to isTrue

 bool a = 10.248f;

 cout << isTrue;

 return 0;

}

Output

1

As we see, the floating-point value is not stored in the bool variable a. It just stores 1. This

type checking is not only done for fundamental types, but for all data types to ensure valid

operations and no data corruptions.

Data Type Conversion

Type conversion refers to the process of changing one data type into another compatible one

without losing its original meaning. It's an important concept for handling different data types

in C++.

#include <iostream>

using namespace std;

int main() {

 int n = 3;

 char c = 'C';

 // Convert char data type into integer

 cout << (int)c << endl;

 int sum = n + c;

 cout << sum;

 return 0;

}

Output

67

70

https://www.geeksforgeeks.org/type-conversion-in-c/

Size of Data Types in C++

Earlier, we mentioned that the size of the data types is according to the 64-bit systems. Does

it mean that the size of C++ data types is different for different computers?

Actually, it is partially true. The size of C++ data types can vary across different systems,

depending on the architecture of the computer (e.g., 32-bit vs. 64-bit systems) and the

compiler being used. But if the architecture of the computer is same, then the size across

different computers remains same.

We can find the size of the data type using sizeof operator. According to this type, the range

of values that a variable of given data types can store are decided.

Example:

#include <iostream>

using namespace std;

int main() {

 // Printing the size of each data type

 cout << "Size of int: " << sizeof(int) << " bytes" << endl;

 cout << "Size of char: " << sizeof(char) << " byte" << endl;

 cout << "Size of float: " << sizeof(float) << " bytes" << endl;

 cout << "Size of double: " << sizeof(double) << " bytes";

 return 0;

}

Output

Size of int: 4 bytes

Size of char: 1 byte

Size of float: 4 bytes

Size of double: 8 bytes

Derived Data Types in C++

The data types that are derived from the primitive or built-in datatypes are referred to as

Derived Data Types. They are generally the data types that are created from the primitive data

types and provide some additional functionality.

In C++, there are four different derived data types:

Table of Content

• Functions

• Arrays

• Pointers

• References

Functions

A function is a block of code or program segment that is defined to perform a specific well-

defined task. It is generally defined to save the user from writing the same lines of code again

and again for the same input. All the lines of code are put together inside a single function

and this can be called anywhere required.

Let's take a look at example that demonstrates the use of function in C++:

https://www.geeksforgeeks.org/cpp-sizeof-operator/
https://www.geeksforgeeks.org/data-type-ranges-and-their-macros-in-c/
https://www.geeksforgeeks.org/data-type-ranges-and-their-macros-in-c/
https://www.geeksforgeeks.org/cpp/derived-data-types-in-c/#1-function
https://www.geeksforgeeks.org/cpp/derived-data-types-in-c/#2-array
https://www.geeksforgeeks.org/cpp/derived-data-types-in-c/#3-pointers
https://www.geeksforgeeks.org/cpp/derived-data-types-in-c/#4-reference
https://www.geeksforgeeks.org/functions-in-c/

#include <iostream>

using namespace std;

// max here is a function which is a derived type

int max(int x, int y) {

 if (x > y)

 return x;

 else

 return y;

}

// main function is also a derived type

int main() {

 int a = 10, b = 20;

 // Calling above function to

 // find max of 'a' and 'b'

 int m = max(a, b);

 cout << "m is " << m;

 return 0;

}

Output

m is 20

Explanation: This above program demonstrates the use of function derived types It defines a

function called max this function returns the maximum of two integers provided as input. In

the main function, max function is called to find the maximum of variables a and b and store

it in m and finally print m(max number).

Arrays

An array is a collection of items stored at continuous memory locations. The idea of array is

to represent many variables using a single name. The below example demonstrates the use of

array in C++.

#include <iostream>

using namespace std;

int main() {

 // Array Derived Type

 int arr[5] = {1, 2, 3, 4, 5};

 arr[0] = 5;

 arr[2] = -10;

 arr[3] = arr[0];

 // Printing the data

 for (int i = 0; i < 5; i++)

 printf("%d ", arr[i]);

 return 0;

}

https://www.geeksforgeeks.org/cpp-arrays/

Output

5 2 -10 5 5

Explanation: This above program shows the use of array-derived type. It creates an integer

array arr and assigns values using indices. Then it prints all the array elements.

Pointers

Pointers are symbolic representation of addresses. They can be said as the variables that can

store the address of another variable as its value. The below example demonstrates the use of

pointer in C++.

#include <iostream>

using namespace std;

int main() {

 int var = 20;

 // Pointers Derived Type

 // declare pointer variable

 int* ptr;

 // note that data type of ptr

 // and var must be same

 ptr = &var;

 // assign the address of a variable

 // to a pointer

 cout << "Value at ptr = " << ptr << endl;

 cout << "Value at var = " << var << endl;

 cout << "Value at *ptr = " << *ptr;

 return 0;

}

Output

Value at ptr = 0x7fffa5bef2cc

Value at var = 20

Value at *ptr = 20

Explanation: This above program demonstrates the use of pointers as a derived type. It

declares pointer variable ptr and assigning the address of a variable var to it. It then prints

the values of the pointer, the variable, and the dereferenced pointer, showcasing the basics of

pointer usage in C++.

References

When a variable is declared as reference, it becomes an alternative name for an existing

variable. A variable can be declared as reference by putting ‘&’ in the declaration.

The below example demonstrates the use of reference in C++.

https://www.geeksforgeeks.org/pointers-c-examples/
https://www.geeksforgeeks.org/references-in-c/

#include <iostream>

using namespace std;

int main() {

 int x = 10;

 // Reference Derived Type

 // ref is a reference to x.

 int& ref = x;

 // Value of x is now changed to 20

 ref = 20;

 cout << "x = " << x << endl;

 // Value of x is now changed to 30

 x = 30;

 cout << "ref = " << ref << endl;

 return 0;

}

Output

x = 20

ref = 30

Explanation: The above program demonstrates the use of reference-derived type. A

reference ref to an integer variable x. is created. If the value of ref is changed the value x, is

also modified and vice versa.

User Defined Data Types in C++

User defined data types are those data types that are defined by the user himself. In C++,

these data types allow programmers to extend the basic data types provided and create new

types that are more suited to their specific needs. C++ supports 5 user-defined data types:

• Class

• Structure

• Union

• Enumeration

• Typedef

1. Class

A Class is the building block of C++'s Object-Oriented programming paradigm. It is a user-

defined data type, which holds its own data members and member functions, which can be

accessed and used by creating an instance of that class. A class is like a blueprint for an

object.

Example

#include <bits/stdc++.h>

using namespace std;

class abc {

 // Access specifier

https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#1-class
https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#2-structure
https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#3-union
https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#4-enumeration
https://www.geeksforgeeks.org/cpp/user-defined-data-types-in-c/#5-typedef
https://www.geeksforgeeks.org/c-classes-and-objects/

public:

 // Data Member

 string name;

 // Member Function

 void printname() {

 cout << name;

 }

};

int main() {

 // Declare an object of class geeks

 abc a;

 // Accessing data member

 a.name = "khyati";

 // Accessing member function

 a.printname();

 return 0;

}

Output

khyati

Explanation: The above program defines a class named abc with a name attribute and a

function printname() to print the name. In the main function, it creates an object named a,

sets the geekname as "khyati", and calls the printname() function to display it.

2. Structure

A Structure is a user-defined data type like class. A structure creates a data type that can be

used to group items of possibly different types into a single type.

Example

#include <iostream>

using namespace std;

// Declaring structure

struct A {

 int i;

 char c;

};

int main() {

 // Create an instance of structure

 A a;

 // Initialize structure members

 a.i = 65;

 a.c = 'A';

https://www.geeksforgeeks.org/structures-in-cpp/

 cout << a.c << ": " << a.i;

 return 0;

}

Output

A: 65

Explanation: The above demonstrates program demonstrates the use of structures by

defining a structure named A having i and c members. It then creates an instance if structure

in the main function, sets the members' values, and prints them.

Structures in C++ are different from structures in C and resembles classes.

3. Union

Like structures , union is also user-defined data type used to group data of different type into

a single type. But in union, all members share the same memory location.

Example

#include <iostream>

using namespace std;

// Declaration of union is same as the structures

union A {

 int i;

 char c;

};

int main() {

 // A union variable t

 A a;

 // Assigning value to c, i will also

 // assigned the same

 a.c = 'A';

 cout << "a.i: " << a.i << endl;

 cout << "a.c: " << a.c;

 return 0;

}

Output

a.i: 65

a.c: A

Explanation: The above program demonstrates the use of unions. Union named A with

members i and c is defined that shares the same memory space. It is shown that when we only

assign c some value, the i also stores the same value.

4. Enumeration

Enumeration (or enum) is a user-defined data type in C++ mainly used to assign names to

integral constants, the names make a program easy to read and maintain.

https://www.geeksforgeeks.org/structures-c/
https://www.geeksforgeeks.org/cpp-unions/
https://www.geeksforgeeks.org/enumeration-enum-c/

Example

#include <iostream>

using namespace std;

// Declaring enum

enum Week { Mon, Tue, Wed, Thur, Fri, Sat, Sun };

int main() {

 // Creating enum variable

 enum Week day;

 // Assigning value to the variabe

 day = Wed;

 cout << day;

 return 0;

}

Output

2

5. Typedef and Using

C++ allows you to define explicitly new data type names by using the

keywords typedef or using. They do not create a new data class, rather, defines a name for an

existing type. This can increase the portability (the ability of a program to be used across

different types of machines; i.e., mini, mainframe, micro, etc; without many changes to the

code) of a program as only the typedef statements would have to be changed.

Example

#include <iostream>

using namespace std;

// Using typedef to define a new name for existing type

typedef float f;

// Using 'using' to define a new name for existing type

using integer = int;

int main() {

 // Declaring variables using new type names

 f x = 3.14;

 integer y = 42;

 cout << "Float Value: " << x << endl;

 cout << "Integer Value: " << y;

 return 0;

}

Output

Float Value: 3.14

Integer Value: 42

https://www.geeksforgeeks.org/typedef-in-cpp/
https://www.geeksforgeeks.org/using-keyword-in-cpp-stl/

String:

C++ Strings

A string is a collection of characters. There are two types of strings commonly used in C++ :

• Strings that are objects of string class (The Standard C++ Library String Class)

• C-strings (C-style Strings)

C-strings

In C programming, the collection of characters is stored in the form of arrays. This is also

supported in C++ programming. Hence, it's called C-strings.

C-strings are arrays of type char terminated with a null character, that is, \0 (ASCII value of

null character is 0).

How to define a C-string?

char str[] = "C++";

In the above code, str is a string and it holds 4 characters.

Although "C++" has three characters, the null character \0 is added to the end of the string

automatically.

Alternative ways of defining a string

char str[4] = "C++";

char str[] = {'C','+','+','\0'};

char str[4] = {'C','+','+','\0'};

Like arrays, it is not necessary to use all the space allocated for the string. For example:

char str[100] = "C++";

The C-Style Character String

The C-style character string originated within the C language and continues to be supported

within C++. This string is actually a one-dimensional array of characters which is terminated

by a null character '\0'. Thus a null-terminated string contains the characters that comprise the

string followed by a null.

The following declaration and initialization create a string consisting of the word "Hello". To

hold the null character at the end of the array, the size of the character array containing the

string is one more than the number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization, then you can write the above statement as

follows −

char greeting[] = "Hello";

Following is the memory presentation of above defined string in C/C++ −

https://www.programiz.com/cpp-programming/string-class
https://www.programiz.com/c-programming/c-arrays

Actually, you do not place the null character at the end of a string constant. The C++

compiler automatically places the '\0' at the end of the string when it initializes the array. Let

us try to print above-mentioned string −

Example

#include <iostream>

using namespace std;

int main () {

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << "Greeting message: ";

 cout << greeting << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Greeting message: Hello

Character Arrays

We can declare strings using the C-type arrays in the format of characters. This is done using

the following syntax −

Syntax

char variable_name[len_value] ;

Here, len_value is the length of the character array.

Example of Creating String using Character Array

In the following examples, we are declaring a character array, and assigning values to it.

#include <iostream>

using namespace std;

int main() {

 char s[5]={'h','e','l','l','o'};

 cout<<s<<endl;

 return 0;

}

https://www.tutorialspoint.com/cprogramming/c_arrays.htm

C Style String Functions

C++ supports a wide range of functions that manipulate null-terminated strings. These

functions are defined in <string.h> header file.

Sr.No Function & Purpose

1
strcpy(s1, s2);

Copies string s2 into string s1.

2
strcat(s1, s2);

Concatenates string s2 onto the end of string s1.

3
strlen(s1);

Returns the length of string s1.

4
strcmp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5
strrev(s1);

Returns a s1 string in reverse order

Example

Following example makes use of few of the above-mentioned functions −

#include <iostream>

#include <string>

using namespace std;

int main () {

 char str1[10] = "Hello";

 char str2[10] = "World";

 char str3[10];

 int len ;

 // copy str1 into str3

 strcpy(str3, str1);

 cout << "strcpy(str3, str1) : " << str3 << endl;

 // concatenates str1 and str2

 strcat(str1, str2);

 cout << "strcat(str1, str2): " << str1 << endl;

 // total lenghth of str1 after concatenation

 len = strlen(str1);

 cout << "strlen(str1) : " << len << endl;

 return 0;

}

When the above code is compiled and executed, it produces result something as follows −

strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

https://www.tutorialspoint.com/c_standard_library/string_h.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcpy.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcat.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strlen.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcmp.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strchr.htm

C++ strcmp()

The strcmp() function in C++ compares two null-terminating strings (C-strings). The

comparison is done lexicographically. It is defined in the cstring header file.

Example

#include <cstring>

#include <iostream>

using namespace std;

int main() {

 char str1[] = "Megadeth";

 char str2[] = "Metallica";

 // compare str1 and str2 lexicographically

 int result = strcmp(str1, str2);

 cout << result;

 return 0;

}

// Output: -1

strcmp() Return Value

The strcmp() function returns:

• a positive value if the first differing character in lhs is greater than the corresponding

character in rhs.

• a negative value if the first differing character in lhs is less than the corresponding

character in rhs.

• 0 if lhs and rhs are equal.

https://www.programiz.com/cpp-programming/library-function/cstring

The String Class in C++

We can declare a String variable using the 'string' keyword. This is included in the <string.h>

header file. The syntax of declaring a string is explained as follows −

Syntax

string variable_name = [value];

Here, [value] is an optional and can be used to assign value during the declaration.

Example

In the following examples, we are declaring a string variable, assigning a value to it.

#include <iostream>

using namespace std;

int main() {

 string s="a merry tale";

 cout<<s;

 return 0;

}

Output

a merry tale

Example of String Class

#include <iostream>

#include <string>

using namespace std;

int main () {

 string str1 = "Hello";

 string str2 = "World";

char str1[6]={};

 string str3;

 int len ;

 // copy str1 into str3

 str3 = str1;

 cout << "str3 : " << str3 << endl;

 // concatenates str1 and str2

 str3 = str1 + str2;

 cout << "str1 + str2 : " << str3 << endl;

 // total length of str3 after concatenation

 len = str3.size();

 cout << "str3.size() : " << len << endl;

 return 0;

}

https://www.tutorialspoint.com/cplusplus/cpp_strings.htm
https://www.tutorialspoint.com/cplusplus/cpp_strings.htm

When the above code is compiled and executed, it produces result something as follows −

str3 : Hello

str1 + str2 : HelloWorld

str3.size() : 10

Traversing a String

Using looping statements

We can traverse a string using for loops, while loops and do while loops using a pointer to the

first and the last index in the string.

#include <iostream>

using namespace std;

int main() {

 string s="Hey, I am at TP.";

 for(int i=0;i<s.length();i++){

 cout<<s[i]<<" ";

 }

 cout<<endl;

 }

 return 0;

}

Output

H e y , I a m a t T P .

Example 1: C++ String to Read a Word

C++ program to display a string entered by user.

#include <iostream>

using namespace std;

int main()

{

 char str[100];

 cout << "Enter a string: ";

 cin >> str;

 cout << "You entered: " << str << endl;

 cout << "\nEnter another string: ";

 cin >> str;

 cout << "You entered: " << str << endl;

 return 0;

}

Output

Enter a string: C++

You entered: C++

Enter another string: Programming is fun.

You entered: Programming

Notice that, in the second example, only "Programming" is displayed instead

of "Programming is fun".

This is because the extraction operator >> works as scanf() in C and considers a

space " " as a terminating character.

Example 2: C++ String to read a line of text

C++ program to read and display an entire line entered by the user.

#include <iostream>

using namespace std;

int main()

{

 char str[100];

 cout << "Enter a string: ";

 cin.get(str, 100);

 cout << "You entered: " << str << endl;

 return 0;

}

Output

Enter a string: Programming is fun.

You entered: Programming is fun.

To read the text containing blank space, cin.get function can be used. This function takes two

arguments.

The first argument is the name of the string (address of the first element of the string), and the

second argument is the maximum size of the array.

In the above program, str is the name of the string and 100 is the maximum size of the array.

pointer to a character array

 (often used to represent C-style strings) is a char* type variable that stores the memory

address of the first character in the array.

Declaration and Initialization:

Directly pointing to the first element.

 char myCharArray[] = "Hello";

 char* ptr = myCharArray; // ptr now points to 'H'

The name of a character array, when used without an index, decays into a pointer to its first

element. Using the address-of operator.

 char myCharArray[] = "World";

 char* ptr = &myCharArray[0]; // ptr now points to 'W'

Pointing to a string literal.

 char* ptr = "C++"; // ptr points to the first character of the string literal "C++"

Note that string literals are typically stored in read-only memory, so attempting to modify the

characters through ptr in this case would lead to undefined behavior.

Accessing Characters:

Once a char* points to a character array, you can access individual characters

using: Dereference operator (*).

 char firstChar = *ptr; // Gets the character pointed to by ptr

Pointer arithmetic and dereference.

 char secondChar = *(ptr + 1); // Gets the second character in the array

Array-like indexing.

C++

 char thirdChar = ptr[2]; // Gets the third character in the array (equivalent to *(ptr + 2))

Traversing the Array:

You can iterate through the characters of a C-style string using pointer arithmetic:

char myString[] = "Example";

char* currentPtr = myString;

while (*currentPtr != '\0') { // Iterate until the null terminator is found

 // Process *currentPtr

 currentPtr++; // Move to the next character

}

Type Conversion in C++

The conversion of one data type into another in the C++ programming

language.

Type conversion is the process that converts the predefined data type of one

variable into an appropriate data type.

The main idea behind type conversion is to convert two different data type

variables into a single data type to solve mathematical and logical expressions

easily without any data loss.

For example, we are adding two numbers, where one variable is of int type and

another of float type; we need to convert or typecast the int variable into a

float to make them both float data types to add them.

Type conversion can be done in two ways in C++,

1) Implicit type conversion

2) Explicit type conversion.

Those conversions are done by the compiler itself, called the implicit type or

automatic type conversion.

The conversion, which is done by the user or requires user interferences called

the explicit or user define type conversion

Implicit Type Conversion

The implicit type conversion is the type of conversion done automatically by

the compiler without any human effort.

 It means an implicit conversion automatically converts one data type into

another type based on some predefined rules of the C++ compiler. Hence, it

is also known as the automatic type conversion.

For example:

int x = 20;

short int y = 5;

int z = x + y;

In the above example, there are two different data type variables, x, and y,

where x is an int type, and the y is of short int data type. And the resultant

variable z is also an integer type that stores x and y variables. But the C++

compiler automatically converts the lower rank data type (short int) value into

higher type (int) before resulting the sum of two numbers. Thus, it avoids the

data loss, overflow, or sign loss in implicit type conversion of C++.

Order of the typecast in implicit conversion

The following is the correct order of data types from lower rank to higher rank:

1. bool -> char -> short int -> int -> unsigned int -> long int -

> unsigned long int -> long long int -> float -> double -

> long double

Program to convert int to float type using implicit type conversion

Let's create a program to convert smaller rank data types into higher types using implicit type conversion.

Program1.cpp

#include <iostream>

using namespace std;

int main ()

{

// assign the integer value

int num1 = 25;

// declare a float variable

float num2;

// convert int value into float variable using implicit conversion

num2 = num1;

cout << " The value of num1 is: " << num1 << endl;

cout << " The value of num2 is: " << num2 << endl;

return 0;

}

Output

The value of num1 is: 25

The value of num2 is: 25

Program to convert double to int data type using implicit type conversion

Let's create a program to convert the higher data type into lower type using

implicit type conversion.

Program2.cpp

#include <iostream>

using namespace std;

int main()

{

int num; // declare int type variable

double num2 = 15.25; // declare and assign the double variable

// use implicit type conversion to assign a double value to int variable

num = num2;

cout << " The value of the int variable is: " << num << endl;

cout << " The value of the double variable is: " << num2 << endl;

return 0;

}

Output

The value of the int variable is: 15

 The value of the double variable is: 15.25

In the above program, we have declared num as an integer type and num2 as

the double data type variable and then assigned num2 as 15.25. After this, we

assign num2 value to num variable using the assignment operator. So, a C++

compiler automatically converts the double data value to the integer type

before assigning it to the num variable and print the truncate value as 15.

Explicit type conversion

Conversions that require user intervention to change the data type of one

variable to another, is called the explicit type conversion.

In other words, an explicit conversion allows the programmer to manually

changes or typecasts the data type from one variable to another type. Hence,

it is also known as typecasting.

Generally, we force the explicit type conversion to convert data from one type

to another because it does not follow the implicit conversion rule.

The explicit type conversion is divided into two ways:

1. Explicit conversion using the cast operator

2. Explicit conversion using the assignment operator

Program to convert float value into int type using the cast operator

Cast operator: In C++ language, a cast operator is a unary operator who

forcefully converts one type into another type.

Let's consider an example to convert the float data type into int type using the

cast operator of the explicit conversion in C++ language.

Program3.cpp

#include <iostream>

using namespace std;

int main ()

{

float f2 = 6.7;

// use cast operator to convert data from one type to another

int x = static_cast <int> (f2);

cout << " The value of x is: " << x;

return 0;

}

Output

The value of x is: 6

Program to convert one data type into another using the assignment operator

Let's consider an example to convert the data type of one variable into another

using the assignment operator in the C++ program.

Program4.cpp

#include <iostream>

using namespace std;

int main ()

{

// declare a float variable

float num2;

// initialize an int variable

int num1 = 25;

// convert data type from int to float

num2 = (float) num1;

cout << " The value of int num1 is: " << num1 << endl;

cout << " The value of float num2 is: " << num2 << endl;

return 0;

} Output
The value of int num1 is: 25

The value of float num2 is: 25.0

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 1 of 32

2.1 Introduction to OOP properties

➔ The main purpose of C++ programming was to add object orientation to the C programming

language, which is in itself one of the most powerful programming languages.
➔ The core of the pure object-oriented programming is to create an object in code that has

certain properties and methods. While designing C++ modules, we try to see whole world in
the form of objects.

➔ For example a car is an object which has certain properties such as color, number of doors,
and the like. It also has certain methods such as accelerate, break, and so on.

➔ There are a few principle concepts that form the foundation of object-oriented programming:

➢ Object
➢ Class
➢ Abstraction
➢ Encapsulation
➢ Inheritance

➢ Polymorphism

NOTE: refer all the properties describe in UNIT-1

2.2 Abstraction

➔ Data abstraction refers to, providing only essential information to the outside world and

hiding their background details, i.e., to represent the needed information in program without

presenting the details.

➔ Data abstraction is a programming (and design) technique that relies on the separation of

interface and implementation.

➔ Let's take one real life example of a TV, which you can turn on and off, change the channel,

adjust the volume, and add external components such as speakers, VCRs, and DVD players,

BUT you do not know its internal details, that is, you do not know how it receives signals over

the air or through a cable, how it translates them, and finally displays them on the screen

➔ Thus, we can say a television clearly separates its internal implementation from its external

interface and you can play with its interfaces like the power button, channel changer, and

volume control without having zero knowledge of its internals.

➔ Now, if we talk in terms of C++ Programming, C++ classes provides great level of data

abstraction. They provide sufficient public methods to the outside world to play with the

functionality of the object and to manipulate object data, i.e., state without actually knowing

how class has been implemented internally.

➔ For example, your program can make a call to the sort() function without knowing what

algorithm the function actually uses to sort the given values. In fact, the underlying

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 2 of 32

implementation of the sorting functionality could change between releases of the library, and

as long as the interface stays the same, your function call will still work.

➔ In C++, we use classes to define our own abstract data types (ADT). You can use the coutobject

of class ostream to stream data to standard output like this:

int main()

{

cout << "Hello C++" <<endl;

return0;

}

➔ Here, you don't need to understand how cout displays the text on the user's screen. You

need to only know the public interface and the underlying implementation of cout are free to

change.

Access Labels Enforce Abstraction:

➔ In C++, we use access labels to define the abstract interface to the class. A class may contain

zero or more access labels:

➔ Members defined with a public label are accessible to all parts of the program. The data-

abstraction view of a type is defined by its public members.

➔ Members defined with a private label are not accessible to code that uses the class. The

private sections hide the implementation from code that uses the type.

➔ There are no restrictions on how often an access label may appear. Each access label specifies

the access level of the succeeding member definitions. The specified access level remains in

effect until the next access label is encountered or the closing right brace of the class body is

seen.

Benefits of Data Abstraction:

➔ Data abstraction provides two important advantages:

- Class internals are protected from inadvertent user-level errors, which might corrupt the state

of the object.

- The class implementation may evolve over time in response to changing requirements or bug

reports without requiring change in user-level code.

➔ By defining data members only in the private section of the class, the class author is free to

make changes in the data. If the implementation changes, only the class code needs to be

examined to see what affect the change may have.

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 3 of 32

➔ If data are public, then any function that directly accesses the data members of the old

representation might be broken.

Data Abstraction Example:

Any C++ program where you implement a class with public and private members is an example

of data abstraction. Consider the following example:

Example 1 : Example 2 :

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 4 of 32

When the above code is compiled and executed, it produces the following

result: Total 60

Above class adds numbers together, and returns the sum. The public members addNumand
getTotal are the interfaces to the outside world and a user needs to know them to use the class.
The private member total is something that the user doesn't need to know about, but is needed for
the class to operate properly.

Access Modifiers/Specifier in C++

➔ Access modifiers are used to implement an important feature of Object-Oriented Programming
known as Data Hiding. Consider a real-life example:

➔ The Indian secret informatic system having 10 senior members have some top secret regarding
national security. So we can think that 10 people as class data members or member functions
who can directly access secret information from each other but anyone can’t access this
information other than these 10 members i.e. outside people can’t access information directly
without having any privileges. This is what data hiding is.

➔ Access Modifiers or Access Specifiers in a class are used to set the accessibility of the class
members. That is, it sets some restrictions on the class members not to get directly accessed by
the outside functions.

There are 3 types of access modifiers available in C++:

1. Public
2. Private
3. Protected

Note: If we do not specify any access modifiers for the members inside the class then by default
the access modifier for the members will be Private.

https://practice.geeksforgeeks.org/problems/what-is-data-hiding
https://www.geeksforgeeks.org/c-classes-and-objects/

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 5 of 32

Let us now look at each one these access modifiers in details:

I. Public: All the class members declared under public will be available to everyone. The data
members and member functions declared public can be accessed by other classes too. The
public members of a class can be accessed from anywhere in the program using the direct
member access operator (.) with the object of that class.

// class definition

class Circle
{
 public:
 double radius;

 double compute_area()
 {
 return 3.14*radius*radius;
 }

};

// main function

void main()
{
 Circle obj;

 // accessing public datamember outside class
 obj.radius = 5.5;

 cout << "Radius is: " << obj.radius << "\n";
 cout << "Area is: " << obj.compute_area();
 getch();
}

Output:

Radius is: 5.5

Area is: 94.985

In the above program the data member radius is public so we are allowed to access it outside the
class.

II. Private: The class members declared as private can be accessed only by the functions inside

the class. They are not allowed to be accessed directly by any object or function outside the
class. Only the member functions or the friend functions are allowed to access the private
data members of a class.

https://www.geeksforgeeks.org/friend-class-function-cpp/

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 6 of 32

class Circle
{
 // private data member

 private:
 double radius;

 // public member function

 public:
 double compute_area()
 { // member function can access private
 // data member radius
 return 3.14*radius*radius;
 }

};

// main function

void main()
{
 // creating object of the class
 Circle obj;

 // trying to access private data member
 // directly outside the class
 obj.radius = 1.5;

 cout << "Area is:" << obj.compute_area();
 getch();
}

The output of above program will be a compile time error because we are not allowed
to access the private data members of a class directly outside the class.

Output:

 In function 'int main()':

11:16: error: 'double Circle::radius' is private

 double radius;

 ^

31:9: error: within this context

 obj.radius = 1.5;

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 7 of 32

III. Protected: Protected access modifier is similar to that of private access modifiers, the
difference is that the class member declared as Protected are inaccessible outside the class
but they can be accessed by any sub class(derived class) of that class.

// base class

class Parent
{
 // protected data members
 protected:
 int id_protected;

};

// sub class or derived class

class Child : public Parent
{

 public:
 void setId(int id)
 {

 // Child class is able to access the inherited
 // protected data members of base class

 id_protected = id;

 }

 void displayId()
 {
 cout << "id_protected is: " << id_protected << endl;
 }
};

// main function

void main() {

 Child obj1;
 // member function of the derived class can
 // access the protected data members of the base class

 obj1.setId(81);
 obj1.displayId();
 getch();
}
Output:
id_protected is: 81

2.3 Inheritance

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 8 of 32

➔ One of the most important concepts in object-oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class, which makes it easier to
create and maintain an application. This also provides an opportunity to reuse the code
functionality and fast implementation time.

➔ When creating a class, instead of writing completely new data members and member
functions, the programmer can designate that the new class should inherit the members of an
existing class. This existing class is called the base class, and the new class is referred to as the
derived class.

➔ Inheritance is the process by which the objects of one class acquire the properties of object of
another class.

➔ It supports the concept of hierarchical – classification.
➔ In Oop, the concept of inheritance provides the idea of Reusability. It means that we can add

additional features to an existing class without modifying it.
➔ It is possible by deriving a new class from existing class and new class will have combine

features of both the class

Base& Derived Classes:

➔ A class can be derived from more than one classes, which means it can inherit data and
functions from multiple base classes. To define a derived class, we use a class derivation list to
specify the base class(es). A class derivation list names one or more base classes and has the
form:

Class derived-class: access-specifier base-class

➔ Where access-specifier is one of public, protected, or private, and base-class is the name of a
previously defined class. If the access-specifier is not used, then it is private by default.

➔ Base class / super class / parent class: The class whose properties are inherited by sub class is

called Base Class or Super class or Parent class.

➔ Derive class / sub class / child class :The class that inherits properties from another class is

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 9 of 32

called Sub class or Derived Class or Child class

Access Control and Inheritance:

A derived class can access all the non-private members of its base class. Thus base-class
members that should not be accessible to the member functions of derived classes should be
declared private in the base class.

Rules for inheritance:

1. Private variables/methods will not be accessed in child class.
2. Child inherits parent = protected;[parent protected &public]=protected
3. Child inherits parent = private;[parent protected &public]=private
4. Child inherits parent = public;[parent protected & public]=[protected &public]

We can summarize the different access types according to who can access them in the
following way:

Access Public protected private

Same class Yes Yes yes

Derived classes Yes Yes no

Outside classes Yes No no

Variable or
function scope
in base class

Base class Base class
object

Child class Child class
object

public Accessasible Accessasible Accessasible Accessasible

Private Accessasible Not
Accessasible

Not
Accessasible

Not
Accessasible

Protected

(class to class)

Accessasible Not
Accessasible

Accessasible Not
Accessasible

A derived class inherits all base class methods with the following exceptions:

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 10 of 32

• Constructors, destructors and copy constructors of the base class.

• Overloaded operators of the base class.

• The friend functions of the base class.

Inheritance according to access specifier:

➔ When deriving a class from a base class, the base class may be inherited through public,
protected or private inheritance. The type of inheritance is specified by the access-specifier as
explained above.

➔ We hardly use protected or private inheritance, but public inheritance is commonly used.
While using different type of inheritance, following rules are applied:

• Public Inheritance: When deriving a class from a public base class, public members of the base
class become public members of the derived class and protected members of the base class
become protected members of the derived class. A base class's private members are never
accessible directly from a derived class, but can be accessed through calls to the public
and protected members of the base class.

• Protected Inheritance: When deriving from a protected base class, public and protected
members of the base class become protected members of the derived class.

• Private Inheritance: When deriving from a private base class, public and protected
members of the base class become private members of the derived class.

Access
specifier in
base class

Access
specifier when
inherited in
public scope

Access
specifier when
inherited in
private scope

Access specifier
when inherited
in protected
scope

public Public Private Protected

Private Not accessible Not accessible Not accessible

Protected protected Private protected

2.3.1 Types of Inheritance

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 11 of 32

Singal Multilevel Hierarchical Multiple Hybrid

A derive class
with only one
class is known as
single inheritance

A mechanism
of deriving
one class
from another
derive class is
called
multilevel
inheritance

One class
inherited by
more than one
classes is known
as hierarchical
inheritance

A derive class
with more than
one base class
is known as
multiple
inheritance

Combination of
more than one
type of
inheritance is
known as hybrid
inheritance

ClassA //base class

{

//class body

};

classB:publicA //derivedclass

{

//class body

};

Class A

{

//class body

};

classB:publicA //derived from classA

{

//class body

};

ClassC:public B //derived classB

ClassA //base class

{

//class body

};

classB:publicA //derived from classA

{

//class body

};

classC:publicA //derived from classA

{

//class body };

classD:publicA //derived from class A

ClassA //1st baseclass

{

//class body

};

class B //2nd baseclass

{
//class body

};

Class C:public A,

ClassA //base class

{

//class body

};

classB: virtual
publicA //derived from classA

{

//class body

};

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 12 of 32

{

//class body

};

{

//class body

};

public B

{

//class body

};

//derived from 2
base classes A
and B

classC:virtual
publicA //derived from classA

{

//class body

};

class D:publicB,
publicC //derived from class B andC

{

//class body

};

Examples :

Single Inheritance Output

class stud

{

 int rno;
 char nm[15];

 public:

 void get()

 {

 cout << "enter rno and name";

 cin >> rno >> nm;

 }

 void display()

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 13 of 32

 {

 cout << "rno is: " << rno << endl;

 cout << "name is: " << nm << endl;

 }

};

//exam class is derived from base class stud.

class exam : public stud
{

 int m1,m2,m3;

 public:

 void get()

 {

 stud :: get();

 cout<< "enter m1,m2,m3"<<endl;

 cin >> m1 >>m2 >>m3;

 }
 void display()

 {

 stud :: display();

 int tot = m1+m2+m3;

 float per=tot/3.0;

 cout << "total is: " << tot << endl;

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 14 of 32

 cout << "percentage is: " << per << endl;

 }

};

void main()

{

 exam e1;

 clrscr();

 e1.get();

 e1.display();

getch();

}

Multilevel inheritance output

class cust

{

protected:
char nm[15],type;

public:

void get()

{

cout << " enter customer name and type (R/N)";

cin >> nm >> type;

}

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 15 of 32

void show()

{

cout << "name" << nm << endl;

cout << "type" << type << endl;

}

};

class bill : public cust

{

protected :

 int amt;

public :

void get()

{

cust :: get();

cout << "enter amount";

cin >> amt;

}

void show()

{

cust ::show();

cout << "bill amount" << amt << endl;

}

};

class payment : public bill

{

private:

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 16 of 32

 float dis,namt;

public :

void show()

{

bill :: show();

if (type=='R')

{

dis= 0.25 * amt;

}

else

{

dis= 0.10 * amt;

}

namt= amt-dis;

cout << "net amount = " << namt <<endl;

}

};

void main()

{

payment p1;

clrscr();

p1.get();

p1.show();

getch();

}

Hierarchical inheritance Output

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 17 of 32

class stud

{

char nm[15];

protected:

int score ;

public:

void get()

{

cout << "enter name and score";

cin >> nm >> score;

}

void show()

{

cout << "name = " << nm << endl;

cout << "score = " << score << endl;

}

};

class it : public stud

{

public :

void show()

{

cout << "it class"<< endl;

stud :: show();

if (score >=7)

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 18 of 32

 cout << "pass"<<endl;

else

 cout << "fail"<< endl;

}

};

class nonit : public stud

{

public :

void show()

{

 cout << "non-it class"<< endl;

stud :: show();

if (score >=5)

 cout << "pass";

else

 cout << "fail";

}

};

void main()

{

it i;

 clrscr();

 i.get();

 i.show();

nonit n;

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 19 of 32

 n.get() ;

 n.show() ;

 getch();

 }

Multiple inheritance output

class t

{

protected:

int tmarks;

public :

void get ()

{

cout << "enter theoary marks";

cin >> tmarks;

}

void show()

{

cout << "theoary marks= " << tmarks << endl ;

}

};

class p

{

protected:

int pmarks;

public :

void get ()

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 20 of 32

{

cout << "enter practical marks";

cin >> pmarks;

}

void show()

{

cout << "practical marks= " << pmarks << endl ;

}

};

class scholar : public t , public p

{

public:

void get()

{

t :: get();

p :: get();

}

void show()

{

t::show();

p:: show();

if(t::tmarks >= 300 && p::pmarks>= 100)

{

cout << "get scholarship" << endl ;

}

else

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 21 of 32

{

cout << "sorry"<< endl ;

}

}

};

void main()

{

scholar s;

s.get();

s.show();

getch();

}

❖ Virtual Base Class:

➔ In situation, where we require use of multiple, hierarchical and multilevel inheritance as shown
in above fig.

➔ In this case , class D have two direct base classes (b,c) and these two base classes have a
common base class A. in this situation class D inherits member of class A via two seprate paths.

➔ So, class A is also called indirect base class of class D
➔ All the public and protected member of class A are inherited in class D two times
➔ It means class D has duplicate set of members inherited from class A
➔ And because of this problem ambiguity arises
➔ This duplication of inherited members can be avoided by making common base class as virtual

base class while declaring declaring direct or intermediate base class as shown below:
➔ Class A

Class B : public virtual A
Class C : public virtual A

D=D+C+A
D=D+B+A

D= D+C+B+2A
(Two copy of class A we
get so error of
ambiguity arise)

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 22 of 32

Class D : public B , public C
➔ When a class is made virtual base class c++ compiler takes care that only one copy of that class

is inherited regardless of number of inherited paths exist between virtual base class and derive
class

NOTE : refer the example of hybrid inheritance

Hybrid inheritance Output

class person

{

char nm[15] ;

public :

void get ()

{

cout << "enter name";

cin >> nm;

}

void show()

{

cout << " NAME : " << nm << endl;

}

};

class job : public virtual person

{

protected:

long sal;

public :

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 23 of 32

void get()

{

cout << " enter salary " ;

cin >> sal;

}

void show()

{

cout << "SALARY : " << sal << endl;

}

};

class bussiness : public virtual person

{

protected:

long profit;

public :

void get()

{

cout << " enter profit " ;

cin >> profit;

}

void show()

{

cout << "PROFIT : " << profit << endl;

}

};

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 24 of 32

class netearning : public job , public bussiness

{

long amt;

public:

void get()

{

person :: get();

job :: get() ;

bussiness :: get();

}

void show()

{

person :: show();

job:: show();

bussiness :: show();

amt= sal+profit;

cout << "AMOUNT : "<< amt << endl;

}

};

void main()

{

netearning n;

clrscr();

n.get();

n.show();

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 25 of 32

getch(); }

2.3.2 Constructor and destructor call during inheritance

→ The default constructor and destructor of base class are always called when a new
object of derived class is created or destroyed

➢ Constructor and Inheritance

 The compiler automatically calls a base class constructor before executing the derived class

constructor.
 The compiler’s default action is to call the default constructor in the base class.
 If you want to specify which of several base class constructors should be called during the creation

of a derived class object.
 In these cases, you must explicitly specify which base class constructor should be called by the

compiler.
 This is done by specifying the arguments to the selected base class constructor in the definition of

the derived class constructor.
 When both base class and derived class contain constructor at that time base class constructor is

executed first then the statements in derive class constructor are executed
 Without declaration of constructor in base class if you called derived class constructor it will raise

an error

➢ Destructor and Inheritance

 In inheritance, destructors are executed in reverse order of constructor execution.
 The destructors are executed when an object goes out of scope.
 When both base class and derived class contain destructor at that time derive class destructor is

executed first then the base class destructor is executed

Example 1

class Rectangle

{

public:

float length; float width;

Rectangle () //Default constructor

{

length = 0;

width = 0;

}

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 26 of 32

Rectangle (float len, float wid) // parameterized constructor

{

length = len; width = wid;

}

~Rectangle() //destructor

{

cout<< "Base Class Desrtuctor";

}

float area()

{

return length * width ;

}

};

class Box : public Rectangle

{

public:

float height;

Box () //default constructor

{

height = 0;

}

Box (float len, float wid, float ht) : Rectangle(len, wid) //calling constructor of parent class

{

height = ht;

}

~Box() //destructor

{

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 27 of 32

cout<<"Derived Class Desrtuctor";

}

float volume()

{

return area() * height;

}

};

void main ()

{

Box bx;

clrscr();

Box cx(4,8,5);

cout << bx.volume() << endl;

cout << cx.volume() << endl;

getch();

}

C++ this Pointer

In C++ programming, this is a keyword that refers to the current instance of the class. There can be
3 main usage of this keyword in C++.

o It can be used to pass current object as a parameter to another method.

o It can be used to refer current class instance variable.

o It can be used to declare indexers.

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 28 of 32

Example 2

#include < string.h>

class stud
{

 int rno;
 char nm[15];

 public:

 stud()
 {
 rno=0;
 strcpy(nm," ");
 }

 stud(int rno,char nm[])
 {
 this->rno=rno;
 strcpy(this->nm,nm);
 }

 ~stud()
 {
 cout << "Destroyed";
 }

 void display()
 {
 cout << "rno is: " << rno << endl;
 cout << "name is: " << nm << endl;
 }
};

//exam class is derived from base class stud.

class exam : public stud
{
 int m1,m2,m3;

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 29 of 32

 public:

 exam()
 {
 m1=m2=m3=0;
 }

 exam (int rno,char nm[],int m1,int m2,int m3) : stud (rno,nm)
 {
 this->m1=m1;
 this->m2=m2;
 this->m3=m3;
 }

 ~exam()
 {
 cout << "child";
 }

 void display()
 {
 stud :: display();

 int tot = m1+m2+m3;
 float per=tot/3.0;

 cout << "total is: " << tot << endl;
 cout << "percentage is: " << per << endl;
 }
};

void main()
{
 clrscr();
 exam e;
 e.display();

 exam e2(2,"hina",30,40,50) ;
 e2.display();

 getch();
}

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 30 of 32

2.3.3 Abstract Class

Abstract Class

➔ Abstract Class is a class which contains at least one Pure Virtual function in it.
➔ Abstract classes are used to provide an Interface for its sub classes.
➔ Classes inheriting an Abstract Class must provide definition to the pure virtual function,

otherwise they will also become abstract class.

Characteristics of Abstract Class:

1. Abstract class cannot be instantiated, but pointers and references of Abstract class type can be
created.

2. Abstract class can have normal functions and variables along with a pure virtual function.

3. Abstract classes are mainly used for Up casting, so that its derived classes can use its interface.

4. Classes inheriting an Abstract Class must implement all pure virtual functions, or else they will
become Abstract too.

Pure Virtual Functions

Pure virtual Functions are virtual functions with no definition. They start with virtual keyword and
ends with “= 0” Here is the syntax for a pure virtual function,

virtual void f() = 0;

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 31 of 32

Example of Abstract Class:

Overloading and overriding

Function overloading Function Overriding

It is possible only in single class It is possible only in inheritance

It means two function with the same
name but different signature means
different number of argument, different
data type or different data type for
different argument

It means two function with the same
name and same signature but in
inherited class

It is possible for function, constructor and
operator

It is possible only for function

Example: Example:

SY BCA SEM-3 UNIT – 2 OOP

Khyati Solanki Page 32 of 32

class Addition

{

public:

 int sum(int num1,int num2)

{

 return num1+num2;

 }

 int sum(int num1,int num2, int num3)

 {

 return num1+num2+num3;

 }

};

void main()

 {

 Addition obj;

 cout<<obj.sum(20, 15)<<endl;

 cout<<obj.sum(81, 100, 10) << endl;

 getch();

}

class A

{

public:

void show()

{

cout << "base class" << endl;

}

};

class B : public A

{

public:

void show()

{

A::show();

cout << "derive class" << endl;

}

};

void main()

 {

 B b;

 b.show();

 getch();}

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 1

Polymorphism

➔ Polymorphism simply means “One name And Multiple behavior”.
➔ Polymorphism, a Greek term, means the ability to take more than on form. An operation

may exhibit different behavior is different instances. The behavior depends upon the types
of data used in the operation.

➔ Polymorphism plays an important role in allowing objects having different internal structures
to share the same external interface. This means that a general class of operations may be
accessed in the same manner even though specific action associated with each operation
may differ.

➔ Polymorphism is extensively used in implementing inheritance.
➔ For example, consider the operation of addition. For two numbers, the operation will

generate a sum. If the operands are strings, then the operation would produce a third string
by concatenation. The process of making an operator to exhibit different behaviors in
different instances is known as operator overloading.

➔ A single function name can be used to handle different number and different types of
argument. This is something similar to a particular word having several different meanings
depending upon the context. Using a single function name to perform different type of task
is known as function overloading.

 In C++ polymorphism is mainly divided into two types:

• Compile time Polymorphism
• Runtime Polymorphism

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 2

 1. compile time /Static Polymorphism/ early binding

➔ Static polymorphism involves binding of functions based on the number, type, and sequence

of arguments. The various types of parameters are specified in the function declaration, and

therefore the function can be bound to calls at compile time. This form of association is

called early binding. The term early binding stems from the fact that when the program is

executed, the calls are already bound to the appropriate functions.

➔ C++ allows you to specify more than one definition for a function name or an operator in

the same scope, which is called function overloading and operator overloading

respectively.

➔ An overloaded declaration is a declaration that had been declared with the same name as a

previously declared declaration in the same scope, except that both declarations have

different arguments and obviously different definition (implementation).

➔ When you call an overloaded function or operator, the compiler determines the most

appropriate definition to use by comparing the argument types you used to call the function

or operator with the parameter types specified in the definitions. The process of selecting

the most appropriate overloaded function or operator is called overload resolution.

C++ Operators Overloading

➔ Operator overloading is a compile-time polymorphism in which the operator is overloaded

to provide the special meaning to the user-defined data type.

➔ In C++, we can make operators to work for user defined classes. This means C++ has the

ability to provide the operators with a special meaning for a data type, this ability is known

as operator overloading.

➔ For example, we can overload an operator ‘+’ in a class like String so that we can

concatenate two strings by just using +. Other example classes where arithmetic operators

may be overloaded are Complex Number, Fractional Number, Big Integer, etc.

➔ Operator overloading is used to overload or redefines most of the operators available in C++.

➔ It is used to perform the operation on the user-defined data type. For example, C++ provides

the ability to add the variables of the user-defined data type that is applied to the built-in

data types.

➔ The advantage of Operators overloading is to perform different operations on the same

operand.

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 3

Operator that cannot be overloaded are as follows:

o Scope operator (::)

o Sizeof

o member selector(.)

o member pointer selector(.*)

o ternary operator(?:)

o () , []

Syntax of Operator Overloading

Implementing Operator Overloading

Operator overloading can be done by implementing a function which can be :

1. Member Function

return_type operator op(argument_list)

{

 // body of the function. Inside class declaration

 }

2. Non-Member Function

return_type class_name : : operator op(argument_list)

{

 // body of the function. Outside class declaration

}

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 4

3. Friend Function

• Friend function using operator overloading offers better flexibility to the class.

• These functions are not a member of the class and they do not have 'this' pointer.

• When you overload a unary operator, you have to pass one argument.

• When you overload a binary operator, you have to pass two arguments.

• Friend function can access private members of a class directly.

friend return-type operator operator-symbol (Variable 1, Varibale2)
{
 //Statements;
}

Where the return type is the type of value returned by the function. class_name is the name of the
class.

operator op is an operator function where op is the operator being overloaded, and the operator is
the keyword.

Rules for Operator Overloading

o Existing operators can only be overloaded, but the new operators cannot be overloaded.

o The overloaded operator contains at least one operand of the user-defined data type.

o We cannot use friend function to overload certain operators. However, the member function

can be used to overload those operators.

o When unary operators are overloaded through a member function take no explicit

arguments, but, if they are overloaded by a friend function, takes one argument.

o When binary operators are overloaded through a member function takes one explicit

argument, and if they are overloaded through a friend function takes two explicit arguments.

o We cannot change the basic meaning of an operator

o Overloaded operator follows syntax rules of original operator they cannot be overridden

What is the difference between operator functions and normal functions?

Operator functions are same as normal functions. The only differences are, name of an operator

function is always operator keyword followed by symbol of operator and operator functions are

called when the corresponding operator is used.

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 5

EXAMPLE 1 :

Let's see the simple example of operator overloading in C++. In this example, void operator ++ ()
operator function is defined (inside Test class).

// program to overload the unary operator ++ and --.

 class Test
{
 private:
 int num;

 public:
 Test()
 {
 num =8;
 }

 /* void operator ++()
 {
 num = num+2;
 } */

 void operator --()
 {
 num = num-2;
 }

 void Print()
 {
 cout<<"The Count is: "<<num<<endl;
 }

 void operator ++();
};

//outside class declaration

 void Test:: operator ++()
 {
 num = num+2;
}

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 6

void main()
{
 Test tt;

 ++tt; // calling of a function "operator ++()"

Test tt1;

 --tt1; // calling of a function “operator --()"

tt.Print();

tt1.Print();

getch();

}

Output:

The Count is: 10
The Count is: 6

EXAMPLE 2 :

Let's see a simple example of overloading the binary operators.

// program to overload the binary operators + and -.

class A

{

 int x;

 public:

 A(int i)

 {

 x=i;

 }

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 7

 void operator+(A a)

{

 int m = a.x + x;

 cout << "\n";

 cout<<"The result of the addition of two objects is : "<<m;

}

 void operator-(A a)

 {

 int m = x - a.x ;

 cout << "\n";

 cout<<"The result of the summation of two objects is : "<<m;

 }

 };

void main()

{

 clrscr();

 A a1(5);

 A a2(4);

 a1 + a2; // calling the operator + function object1 operator object2

 a1 - a2;

 getch();

}

Output:

The result of the addition of two objects is : 9
The result of the summation of two objects is : 1

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 8

EXAMPLE 3 :

Let's see a simple example of overloading the unary operators with string.

// program to overload the unary operators + with string

class AddString
 {

public:

 char s1[25], s2[25];

 // Parametrized Constructor
 AddString(char str1[], char str2[])
 {
 // AddString a1(str1, str2);
 // Initialize the string to class object
 strcpy(this->s1, str1);
 strcpy(this->s2, str2);
 }

 // Overload Operator+ to concat the string
 void operator+()
 {
 cout << "\nConcatenation: " << strcat(s1, s2);
 }
};
void main()
{
clrscr();
 // Declaring two strings

 char str1[] = "khyati";
 char str2[] = " solanki";
 // Declaring and initializing the class
 // with above two strings

 AddString a1(str1, str2);

 // Call operator function

 +a1;

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 9

getch();
}

EXAMPLE 4 :

Let's see a simple example of overloading the binary operators with string.

// program to overload the binary operators + with string

class AddString
 {

public:

 char str[100];

 // default constructor

 AddString(){}

 // Parametrized constructor to
 // initialize class Variable

 AddString(char str[])
 {
 strcpy(this->str, str);
 }

 // Overload Operator+ to concatenate the strings

 AddString operator+(AddString& S2)
 {

 // Object to return the copy
 // of concatenation
 AddString S3;

 // Use strcat() to concat two specified string
 strcat(this->str, S2.str);

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 10

 // Copy the string to string to be return
 strcpy(S3.str, this->str);

 // return the object
 return S3;
 }
};

void main()
{
clrscr();
 // Declaring two strings

 char str1[] = "About ";
 char str2[] = "OOP";

 // Declaring and initializing the class
 // with above two strings

 AddString a1(str1);
 AddString a2(str2);

 AddString a3;

 // Call the operator function

 a3 = a1 + a2;

 cout << "Concatenation: " << a3.str;

 getch();
}

Overloading I/O operator

➔ Overloaded to perform input/output for user defined datatypes. Left Operand will be types

ostream& and istream&
➔ Function overloading this operator must be a Non-Member function because left operand is

not an Object of the class.

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 11

➔ It must be a friend function to access private data members.
➔ You have seen above that << operator is overloaded with ostream class object cout to print

primitive type value output to the screen. Similarly you can overload << operator in your
class to print user-defined type to screen.

NOTE: When the operator does not modify its operands, the best way to overload the

operator is via friend function.

EXAMPLE 5 :

Let's see a simple example of overloading the I/O operators.

// program to overload the I/O operators >> and <<

class Box

{

 double height;

 double width;

 double vol ;

 public :

 friend istream & operator >> (istream &din, Box &b); // cin >>

 friend ostream & operator << (ostream &dout, Box &b); // cout <<

 };

 istream & operator >> (istream &din, Box &b)

 { cout << "Enter Box Height: " << endl;

 din >>b.height;

 cout << "Enter Box Width : " << endl;

 din >> b.width;

 return din ; }

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 12

ostream & operator << (ostream &dout, Box &b)

{

 dout << "Box Height : " << b.height << endl ;

 dout << "Box Width : " << b.width << endl ;

 b.vol = b.height * b.width ;

 dout << "The Volume of Box : " << b.vol << endl;

 return dout ;

 }

 void main()

 {

 Box b1;

 clrscr();

 cin >> b1;

 cout << b1;

getch();

}

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 13

EXAMPLE 6 :

Let's see a simple example of overloading the unary operators with friend function.

// program to overload the unary operators - using friend function

class Test

{

 private:

 int num;

 public:

 Test()

 {

 num =8;

 }

 friend void operator --(Test &t);

 void Print()

 {

 cout<<"The Count is: "<<num<<endl;

 }

};

 void operator --(Test &t)

 {

 t.num = t.num-2;

 }

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 14

void main()

{

 Test tt ;

 clrscr();

 --tt;

 tt.Print();

 getch();

}

EXAMPLE 7 :

Let's see a simple example of overloading the binary operators with friend function.

// program to overload the binary operators +using friend function

class Distance

 {

public:

 int feet, inch;

 // No Parameter Constructor

 Distance()

 {

 this->feet = 0;

 this->inch = 0;

 }

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 15

 // Constructor to initialize the object's value

 // Parametrized Constructor

 Distance(int f, int i)

 {

 this->feet = f;

 this->inch = i;

 }

 // Declaring friend function using friend keyword

 friend Distance operator+(Distance&d1, Distance&d2);

};

 // Implementing friend function with two parameters

Distance operator+(Distance& d1, Distance& d2) // Call by reference

{

 // Create an object to return

 Distance d3;

 // Perform addition of feet and inches

 d3.feet = d1.feet + d2.feet;

 d3.inch = d1.inch + d2.inch;

 // Return the resulting object

 return d3;

}

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 16

void main()

{

 clrscr();

 // Declaring and Initializing first object

 Distance d1(8, 9);

 // Declaring and Initializing second object

 Distance d2(10, 2);

 // Declaring third object

 Distance d3;

 // Use overloaded operator

 d3 = d1 + d2;

 // Display the result

 cout << "\nTotal Feet & Inches: " << d3.feet << "'" << d3.inch;

 getch();

}

Function Overloading

➔ If any class have multiple functions with same names but different parameters then they

are said to be overloaded. Function overloading allows you to use the same name for

different functions, to perform, either same or different functions in the same class.

➔ Function overloading is usually used to enhance the readability of the program. If you

have to perform one single operation but with different number or types of arguments,

then you can simply overload the function.

SY BCA SEM-3 UNIT-3 OOP

KHYATI SOLANKI 17

Ways to overload a function

✓ By changing number of Arguments.

✓ By having different types of argument.

Number of Arguments different

In this type of function overloading we define two functions with same names but different

number of parameters of the same type. For example, in the below mentioned program we

have made two sum() functions to return sum of two and three integers.

int sum (int x, int y)
{
cout << x+y;
}

int sum(int x, int y, int z)
{
cout << x+y+z;
}

Here sum() function is overloaded, to have two and three arguments. Which sum() function

will be called, depends on the number of arguments.

int main()
{
sum (10,20); // sum() with 2 parameter will be called

sum(10,20,30); //sum() with 3 parameter will be called

}

SY BCA SEM-3 UNIT – 3 OOP

Different Data type of Arguments

In this type of overloading we define two or more functions with same name and same number

of parameters, but the type of parameter is different. For example in this program, we have two

sum() function, first one gets two integer arguments and second one gets two double arguments.

int sum(int x,int y)
{
cout<< x+y;
}

double sum(double x,double y)
{
cout << x+y;
}

int main()
{
sum (10,20);
sum(10.5,20.5
);
}

Example:

class Addition

{

public:

 int sum(int num1,int num2)

{

 return num1+num2;

 }

 int sum(int num1,int num2, int num3)

 {

 return num1+num2+num3;

 }

};

SY BCA SEM-3 UNIT – 3 OOP

void main()

 {

 Addition obj;

 cout<<obj.sum(20, 15)<<endl;

 cout<<obj.sum(81, 100, 10) << endl;

 getch();

}

Output:

Static Vs Dynamic Polymorphism

1. Static polymorphism is considered more efficient and dynamic polymorphism more flexible.
2. Statically bound methods are those methods that are bound to their calls at compile time.

Dynamic function calls are bound to the functions during run-time. This involves the additional
step of searching the functions during run-time. On the other hand, no run-time search is
required for statically bound functions.

3. As applications are becoming larger and more complicated, the need for flexibility is increasing
rapidly. Most users have to periodically upgrade their software, and this could become a very
tedious task if static polymorphism is applied. This is because any change in requirements
requires a major modification in the code. In the case of dynamic binding, the function calls are
resolved at run-time, thereby giving the user the flexibility to alter the call without having to
modify the code.

C++ Polymorphism

The word “polymorphism” means having many forms.

 In simple words, we can define polymorphism as the ability of a message to be displayed in more than
one form.

A real-life example of polymorphism is a person who at the same time can have different
characteristics. A man at the same time is a father, a husband, and an employee.

So the same person exhibits different behaviour in different situations. This is called polymorphism.

Polymorphism is considered one of the important features of Object-Oriented Programming.

Types of Polymorphism
• Compile-time Polymorphism
• Runtime Polymorphism

Types of Polymorphism

1. Compile-Time Polymorphism

In compile-time polymorphism, a function is called at the time of program compilation. We call this
type of polymorphism as early binding or Static binding.

This type of polymorphism is achieved by function overloading or operator overloading.

A. Function Overloading

When there are multiple functions with the same name but different parameters, then the
functions are said to be overloaded, hence this is known as Function Overloading.

Functions can be overloaded by changing the number of arguments or/and changing the
type of arguments.

In simple terms, it is a feature of object-oriented programming providing many functions that
have the same name but distinct parameters when numerous tasks are listed under one function name.

There are certain Rules of Function Overloading that should be followed while overloading a
function.
Below is the C++ program to show function overloading or compile-time polymorphism:

• C++

// C++ program to demonstrate
// function overloading or
// Compile-time Polymorphism
#include <bits/stdc++.h>

using namespace std;
class Temp {
public:
 // Function with 1 int parameter
 void func(int x)
 {
 cout << "value of x is " << x << endl;
 }

 // Function with same name but
 // 1 double parameter
 void func(double x)
 {
 cout << "value of x is " << x << endl;
 }

 // Function with same name and
 // 2 int parameters
 void func(int x, int y)
 {
 cout << "value of x and y is " << x << ", " << y
 << endl;
 }
};

// Driver code
int main()
{
 Temp obj1;

 // Function being called depends
 // on the parameters passed
 // func() is called with int value
 obj1.func(7);

 // func() is called with double value
 obj1.func(9.132);

 // func() is called with 2 int values
 obj1.func(85, 64);
 return 0;
}

Output
value of x is 7

value of x is 9.132

value of x and y is 85, 64

Explanation: In the above example, a single function named function func() acts differently in three
different situations, which is a property of polymorphism.

B. Operator Overloading

C++ has the ability to provide the operators with a special meaning for a data type, this ability is known
as operator overloading. For example, we can make use of the addition operator (+) for string class to
concatenate two strings. We know that the task of this operator is to add two operands. So a single
operator ‘+’, when placed between integer operands, adds them and when placed between string
operands, concatenates them.

Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the

special meaning to the user-defined data type.

Operator overloading is used to overload or redefines most of the operators available in C++.

It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to

add the variables of the user-defined data type that is applied to the built-in data types.

The advantage of Operators overloading is to perform different operations on the same operand.

Syntax for C++ Operator Overloading

To overload an operator, we use a special operator function. We define the function inside the

class whose objects/variables we want the overloaded operator to work with.

class className {

 public
 returnType operator symbol (arguments) {

 }

};

• returnType is the return type of the function.

• operator is a keyword.

• symbol is the operator we want to overload. Like: +, <, -, ++, etc.

• arguments is the arguments passed to the function.

Unary Operators and Binary Operator overloading

Unary operators:

• Operators which work on a single operand are called unary operators.
• Examples: Increment operators(++), Decrement operators(–-),unary minus

operator(-), Logical not operator(!) etc…
Binary operators:

• Operators which works on Two operands are called binary operator.

Implementing Operator overloading:

• Member function: It is in the scope of the class in which it is declared.
• Friend function: It is a non-member function of a class with permission to access

both private and protected members.

Operator that can be overloaded are as follows:

Operators that can be overloaded

+ - * / % ^ & |

~ ! = < > += -= *=

/= %= ^= &= |= << >> >>=

<<= == != <= >= && || ++

-- ->* , -> [] () new delete

new[] delete[]

Operator that cannot be overloaded are as follows:

Operators that cannot be overloaded

. .* :: ?: sizeof

Rules for Operator Overloading

o Existing operators can only be overloaded, but the new operators cannot be

overloaded.

o The overloaded operator contains atleast one operand of the user-defined data

type.

o We cannot use friend function to overload certain operators. However, the

member function can be used to overload those operators.

o When unary operators are overloaded through a member function take no

explicit arguments, but, if they are overloaded by a friend function, takes one

argument.

o When binary operators are overloaded through a member function takes one

explicit argument, and if they are overloaded through a friend function takes

two explicit arguments.

Below is the C++ program to demonstrate operator overloading:

• CPP

/ program to overload the unary operator ++.

#include <iostream>

using namespace std;

class Test

{

 private:

 int num;

 public:

 Test(): num(8){}

 void operator ++() {

 num = num+2;

 }

 void Print() {

 cout<<"The Count is: "<<num;

 }

};

int main()

{

 Test tt;

 ++tt; // calling of a function "void operator ++()"

 tt.Print();

 return 0;

}

Output:

The Count is: 10

Let's see a simple example of overloading the binary operators.

// program to overload the binary operators.

#include <iostream>

using namespace std;

class A

{

 int x;

 public:

 A(){}

 A(int i)

 {

 x=i;

 }

 void operator+(A);

 void display();

};

void A :: operator+(A a)

{

 int m = x+a.x;

 cout<<"The result of the addition of two objects is : "<<m;

}

int main()

{

 A a1(5);

 A a2(4);

 a1+a2;

 return 0;

}

Output:

The result of the addition of two objects is : 9

2. Runtime Polymorphism

This type of polymorphism is achieved by Function Overriding. Late binding and
dynamic polymorphism are other names for runtime polymorphism. The function
call is resolved at runtime in runtime polymorphism. In contrast, with compile time
polymorphism, the compiler determines which function call to bind to the object
after deducing it at runtime.

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-cpp/

A. Function Overriding

Function Overriding occurs when a derived class has a definition for one of the
member functions of the base class. That base function is said to be overridden.
Syntax:
class Parent{

 access_modifier:

 // overridden function

 return_type name_of_the_function(){}

 };

}

 class child : public Parent {

 access_modifier:

 // overriding function

 return_type name_of_the_function(){}

 };

 }

Example:

Function overriding Explanation

https://www.geeksforgeeks.org/function-overriding-in-cpp/

// C++ program to demonstrate function overriding

#include <iostream>
using namespace std;

class Parent {
public:
 void GeeksforGeeks_Print()
 {
 cout << "Base Function" << endl;
 }
};

class Child : public Parent {
public:
 void GeeksforGeeks_Print()
 {
 cout << "Derived Function" << endl;
 }
};

int main()
{
 Child Child_Derived;
 Child_Derived.GeeksforGeeks_Print();
 return 0;
}

Output
Derived Function

Variations in Function Overriding

1. Call Overridden Function From Derived Class

// C++ program to demonstrate function overriding
// by calling the overridden function
// of a member function from the child class

#include <iostream>
using namespace std;

class Parent {
public:
 void Print()

 {
 cout << "Base Function" << endl;
 }
};

class Child : public Parent {
public:
 void Print()
 {
 cout << "Derived Function" << endl;

 // call of overridden function
 Parent::Print();
 }
};

int main()
{
 Child Child_Derived;
 Child_Derived.Print();
 return 0;
}

Output
Derived Function

Base Function

The output of Call Overridden Function From Derived Class

2. Call Overridden Function Using Pointer

// C++ program to access overridden function using pointer
// of Base type that points to an object of Derived class
#include <iostream>
using namespace std;

class Parent {
public:
 void GeeksforGeeks()
 {
 cout << "Base Function" << endl;
 }
};

class Child : public Parent {

public:
 void GeeksforGeeks()
 {
 cout << "Derived Function" << endl;
 }
};

int main()
{
 Child Child_Derived;

 // pointer of Parent type that points to derived1
 Parent* ptr = &Child_Derived;

 // call function of Base class using ptr
 ptr->GeeksforGeeks();

 return 0;
}

Output
Base Function

3. Access of Overridden Function to the Base Class

// C++ program to access overridden function
// in main() using the scope resolution operator ::

#include <iostream>
using namespace std;

class Parent {
public:
 void GeeksforGeeks()
 {
 cout << "Base Function" << endl;
 }
};

class Child : public Parent {
public:
 void GeeksforGeeks()
 {
 cout << "Derived Function" << endl;
 }

};

int main()
{
 Child Child_Derived;
 Child_Derived.GeeksforGeeks();

 // access GeeksforGeeks() function of the Base class
 Child_Derived.Parent::GeeksforGeeks();
 return 0;
}

Output
Derived Function

Base Function

Access of Overridden Function to the Base Class

4. Access to Overridden Function

// C++ Program Demonstrating
// Accessing of Overridden Function
#include <iostream>
using namespace std;

// defining of the Parent class
class Parent

{

public:
 // defining the overridden function
 void GeeksforGeeks_Print()
 {
 cout << "I am the Parent class function" << endl;
 }
};

// defining of the derived class
class Child : public Parent

{
public:
 // defining of the overriding function
 void GeeksforGeeks_Print()
 {
 cout << "I am the Child class function" << endl;
 }
};

int main()
{
 // create instances of the derived class
 Child GFG1, GFG2;

 // call the overriding function
 GFG1.GeeksforGeeks_Print();

 // call the overridden function of the Base class
 GFG2.Parent::GeeksforGeeks_Print();
 return 0;
}

Output
I am the Child class function

I am the Parent class function

Function Overloading Vs Function Overriding

Function Overloading Function Overriding

It falls under Compile-Time polymorphism It falls under Runtime Polymorphism

A function can be overloaded multiple times as it is

resolved at Compile time

A function cannot be overridden multiple times as it

is resolved at Run time

Can be executed without inheritance Cannot be executed without inheritance

They are in the same scope They are of different scopes.

Runtime Polymorphism with Data Members
Runtime Polymorphism can be achieved by data members in C++. Let’s see
an example where we are accessing the field by reference variable which
refers to the instance of the derived class.

// C++ program for function overriding with data members
#include <bits/stdc++.h>
using namespace std;

// base class declaration.
class Animal {
public:
 string color = "Black";
};

// inheriting Animal class.
class Dog : public Animal {
public:
 string color = "Grey";
};

// Driver code
int main(void)
{
 Animal d = Dog(); // accessing the field by reference
 // variable which refers to derived

 cout << d.color;
}

Output
Black

Virtual base class in C++

Virtual base classes are used in virtual inheritance in a way of preventing

multiple “instances” of a given class appearing in an inheritance

hierarchy when using multiple inheritances.

Need for Virtual Base Classes: Consider the situation where we have
one class A . This class A is inherited by two other classes B and C. Both
these class are inherited into another in a new class D as shown in figure
below.

https://www.geeksforgeeks.org/virtual-base-class-in-c/#article-meta-div
https://www.geeksforgeeks.org/virtual-base-class-in-c/#article-meta-div

As we can see from the figure that data members/function of class A are inherited
twice to class D. One through class B and second through class C. When any data /
function member of class A is accessed by an object of class D, ambiguity arises
as to which data/function member would be called? One inherited
through B or the other inherited through C. This confuses compiler and it displays
error.
Example: To show the need of Virtual Base Class in C++

#include <iostream>
using namespace std;

class A {
public:
 void show()
 {
 cout << "Hello form A \n";
 }
};

class B : public A {
};

class C : public A {
};

class D : public B, public C {
};

int main()
{
 D object;
 object.show();
}

Compile Errors:

prog.cpp: In function 'int main()':
prog.cpp:29:9: error: request for member 'show' is
ambiguous
 object.show();
 ^
prog.cpp:8:8: note: candidates are: void A::show()
 void show()
 ^
prog.cpp:8:8: note: void A::show()

How to resolve this issue?
To resolve this ambiguity when class A is inherited in both class B and class C, it is
declared as virtual base class by placing a keyword virtual as :

Syntax for Virtual Base Classes:
Syntax 1:
class B : virtual public A
{
};

Syntax 2:
class C : public virtual A
{
};

Note:
virtual can be written before or after the public. Now only one copy of
data/function member will be copied to class C and class B and class A becomes
the virtual base class. Virtual base classes offer a way to save space and avoid
ambiguities in class hierarchies that use multiple inheritances. When a base class
is specified as a virtual base, it can act as an indirect base more than once without
duplication of its data members. A single copy of its data members is shared by all
the base classes that use virtual base.
Example 1

#include <iostream>
using namespace std;

class A {
public:
 int a;
 A() // constructor
 {
 a = 10;
 }
};

class B : public virtual A {
};

class C : public virtual A {
};

class D : public B, public C {

};

int main()
{
 D object; // object creation of class d
 cout << "a = " << object.a << endl;

 return 0;
}

Output:
a = 10
Explanation :
The class A has just one data member a which is public. This class is virtually inherited in
class B and class C. Now class B and class C becomes virtual base class and no duplication of data
member a is done.
Example 2:

#include <iostream>
using namespace std;

class A {
public:
 void show()
 {
 cout << "Hello from A \n";
 }
};

class B : public virtual A {
};

class C : public virtual A {
};

class D : public B, public C {
};

int main()
{
 D object;
 object.show();
}

Output:
Hello from A

B. Virtual Function

A virtual function is a member function that is declared in the base class
using the keyword virtual and is re-defined (Overridden) in the derived
class.
Some Key Points About Virtual Functions:

• Virtual functions are Dynamic in nature.
• They are defined by inserting the keyword “virtual” inside a base

class and are always declared with a base class and overridden in a
child class

• A virtual function is called during Runtime
Below is the C++ program to demonstrate virtual function:

C++ virtual function

o A C++ virtual function is a member function in the base class that you

redefine in a derived class. It is declared using the virtual keyword.

o It is used to tell the compiler to perform dynamic linkage or late

binding on the function.

o There is a necessity to use the single pointer to refer to all the objects

of the different classes. So, we create the pointer to the base class that

refers to all the derived objects. But, when base class pointer contains

the address of the derived class object, always executes the base class

function. This issue can only be resolved by using the 'virtual' function.

o A 'virtual' is a keyword preceding the normal declaration of a function.

o When the function is made virtual, C++ determines which function is

to be invoked at the runtime based on the type of the object pointed

by the base class pointer.

Late binding or Dynamic linkage

In late binding function call is resolved during runtime. Therefore compiler determines the

type of object at runtime, and then binds the function call.

https://www.geeksforgeeks.org/virtual-function-cpp/

Rules of Virtual Function

o Virtual functions must be members of some class.

o Virtual functions cannot be static members.

o They are accessed through object pointers.

o They can be a friend of another class.

o A virtual function must be defined in the base class, even though it is not used.

o The prototypes of a virtual function of the base class and all the derived classes

must be identical. If the two functions with the same name but different

prototypes, C++ will consider them as the overloaded functions.

o We cannot have a virtual constructor, but we can have a virtual destructor

o Consider the situation when we don't use the virtual keyword.

#include <iostream>

using namespace std;

class A

{

 int x=5;

 public:

 void display()

 {

 std::cout << "Value of x is : " << x<<std::endl;

 }

};

class B: public A

{

 int y = 10;

 public:

 void display()

 {

 std::cout << "Value of y is : " <<y<< std::endl;

 }

};

int main()

{

 A *a;

 B b;

 a = &b;

 a->display();

 return 0;

}

Output:

2.6M2
FeaValue of x is : 5

In the above example, * a is the base class pointer. The pointer can only access the base class members but

not the members of the derived class. Although C++ permits the base pointer to point to any object derived

from the base class, it cannot directly access the members of the derived class. Therefore, there is a need

for virtual function which allows the base pointer to access the members of the derived class.

C++ virtual function Example

Let's see the simple example of C++ virtual function used to invoked the derived class in a program.

#include <iostream>

 class A

{

 int x=5;

 public:

 public:

 virtual void display()

 {

 cout << "Base class is invoked"<<endl;

 }

};

class B:public A

{

 public:

 void display()

 {

 cout << "Derived Class is invoked"<<endl;

 }

};

int main()

{

 A* a; //pointer of base class

 B b; //object of derived class

 a = &b;

 a->display(); //Late Binding occurs

}

Output:

Derived Class is invoked

Pure Virtual Function

o A virtual function is not used for performing any task. It only serves as a

placeholder.

o When the function has no definition, such function is known as "do-

nothing" function.

o The "do-nothing" function is known as a pure virtual function. A pure

virtual function is a function declared in the base class that has no definition

relative to the base class.

o A class containing the pure virtual function cannot be used to declare the

objects of its own, such classes are known as abstract base classes.

o The main objective of the base class is to provide the traits to the derived

classes and to create the base pointer used for achieving the runtime

polymorphism.

Pure virtual function can be defined as:

virtual void display() = 0;

Let's see a simple example:

#include <iostream>

using namespace std;

class Base

{

 public:

 virtual void show() = 0;

};

class Derived : public Base

{

 public:

https://ads.freestar.com/?utm_campaign=branding&utm_medium=dynamicAd&utm_source=javatpoint.com&utm_content=javatpointcom_dynamic_incontent

 void show()

 {

 std::cout << "Derived class is derived from the base class." << std::en

dl;

 }

};

int main()

{

 Base *bptr;

 //Base b;

 Derived d;

 bptr = &d;

 bptr->show();

 return 0;

}

Output: Derived class is derived from the base class.

In the above example, the base class contains the pure virtual function.

Therefore, the base class is an abstract base class. We cannot create the object

of the base class.

Compile time polymorphism Run time polymorphism

The function to be invoked is known at the compile

time.

The function to be invoked is known at the run

time.

It is also known as overloading, early binding and

static binding.

It is also known as overriding, Dynamic binding

and late binding.

Overloading is a compile time polymorphism where

more than one method is having the same name

but with the different number of parameters or the

type of the parameters.

Overriding is a run time polymorphism where

more than one method is having the same name,

number of parameters and the type of the

parameters.

It is achieved by function overloading and operator

overloading.

It is achieved by virtual functions and pointers.

It provides fast execution as it is known at the

compile time.

It provides slow execution as it is known at the

run time.

It is less flexible as mainly all the things execute at

the compile time.

It is more flexible as all the things execute at the

run time.

C++ Friend function

If a function is defined as a friend function in C++, then the protected and private data of a class

can be accessed using the function.

By using the keyword friend compiler knows the given function is a friend function.

For accessing the data, the declaration of a friend function should be done inside the body of a

class starting with the keyword friend.

Declaration of friend function in C++
1. class class_name

2. {

3. friend data_type function_name(argument/s); // syntax of friend function.

4. };

In the above declaration, the friend function is preceded by the keyword friend. The function

can be defined anywhere in the program like a normal C++ function. The function definition

does not use either the keyword friend or scope resolution operator.

Characteristics of a Friend function:

o The function is not in the scope of the class to which it has been declared as a friend.

o It cannot be called using the object as it is not in the scope of that class.

o It can be invoked like a normal function without using the object.

o It cannot access the member names directly and has to use an object name and dot

membership operator with the member name.

o It can be declared either in the private or the public part.

#include <iostream>

using namespace std;

class B; // forward declarartion.

class A

{

 int x;

 public:

 void setdata(int i)

 {

 x=i;

 }

 friend void min(A,B); // friend function.

};

class B

{

 int y;

 public:

 void setdata(int i)

 {

 y=i;

 }

 friend void min(A,B); // friend function

};

void min(A a,B b)

{

 if(a.x<=b.y)

 std::cout << a.x << std::endl;

 else

 std::cout << b.y << std::endl;

}

 int main()

{

 A a;

 B b;

 a.setdata(10);

 b.setdata(20);

 min(a,b);

 return 0;

 }

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

Unit 4. Data Structure
4.1 Introduction of Data Structure and application areas.
4.2 Recursion concepts
4.3 Difference among Linear and Non-Linear Data Structure
4.4 Stack

- Concepts of Stack(LIFO)
- Pop, Push and Display(Peep)
- Application areas of Stack
(Infix to postfix, Infix to prefix)

Data Structure:

Data Structure is a representation of the logical relationship between or
individual elements of data.
 Data may be organized in many ways.
 The logical or mathematical model of particular organization of data is

called data structure.
i.e. Data structure is collection of organized data and operations allowed
on it.

The choice of particular data structure model depends on two considerations.
 It must be rich enough in structure to mirror the actual relationships of

the data in the real world.
 The structure should be simple enough that we can effectively process

the data when necessary.

 Data structure is a collection of data elements whose organization is
characteristics by assessing operations that are used to store and
retrieve the individual data element.

Type of Data Structures

Data structure can be organized/classified into two categories.
 Primitive
 Non-primitive

The non-primitive data structures can further be classified in two categories.
 Linear

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

 Non-Linear
The following chart shows various classifications of data structure.

Primitive and Non primitive

Primitive:

Primitive data structure includes data at their most primitive level within a
computer. i.e. The data structure that typically are directly operated upon by
machine level instructions. Their structure cannot be modified.
e.g. Integer, Real, Character, Pointer, Logical

Non-primitive:
Non-primitive data structures are further classified into two types.

 Linear

 Non-linear data structure.

In a linear data structure, the data items are arranged in linear sequence. The
linear data structure exhibits the property of adjacency. Various linear data
structures are:

 array
 stack

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

 queue
 strings
 linked list

Non-linear data structure:
The data items are not stored in a sequential format. The non-linear data
structure exhibits either hierarchical or parent child relationship. In this data
structure insertion and deletion cannot be done in linear fashion. The different
non-linear data structures are

 Tree
 Graph

Homogenous and Non-Homogenous Data structures
The data structure can also be classified into homogenous and non-
homogenous.

Homogenous:
In this type of data structure all the elements are of same type.
e.g. array

Non-homogenous:
In this type of data structure all the elements are not of same type.
e. g. records

Static or Dynamic data structure
Static Data Structure
These Data Structures are ones whose sizes and structure associated memory
location are fixed at compile time. E.g. array
Int a[10];

Dynamic Data Structure
These data structure which expands or shrinks as required during the program
execution and their associated memory location change.

E.g. Linked list

Recursion:
A function that call itself or function calls to a second function which eventually

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

calls original function is called recursive function.
Any recursive procedure must satisfy two conditions:
a. There must be a stopping condition also called base criteria. E.g. In factorial

function if argument value is 1 the function does not call itself.
b. Each time the procedure call itself must be nearer to the stopping condition

(based criteria) for example in factorial function each time of function is called
to itself argument is decremented by one which goes near to the stopping
condition. The problem must be in recursive form.

There are mainly two types of recursive function

1. Primitive recursive function:
The function that directly calls itself is call primitive recursive function or
recursively defined function for example factorial function N!=N*(N-1)*(N-
2)*…*3*2*1
Calculating 5!
5! =5*4!
 =5*4*3!
 =5*4*3*2!
 =5*4*3*2*1! (1!=Base criteria hit)
We have to postpone the calculation of 5! till 4! Is found. The calculation of
4! Postpone till 3! is found. The calculation of 3! is postpone until we get the
value of 2! and calculation of 2! is postpone under the until the calculation
of 1!. This delay can be done using stack.

2. Non primitive recursive function:
The function that indirectly calls itself is called non primitive recursive
function or recursive use of function. E.g. Ackermann’s function.
A(m,n)=n+1, if m==0;
A(m,n)=A(m-1,1), if n==0 but m!=0;
A(m,n)= A(m-1, A(m,n-1)), if m!=0 and n!=0;

Advantages of recursion

 The main advantage is usually simplicity.
 Through recursion we can solve problems in easy way while it is iterative

solution is huge and complex for example tower of Hanoi.
 You can reduce size of the code when you use a recursive call.

Disadvantage of recursion

 As the functions are called recursively, the system has to keep track return
addresses and system has to keep track of parameters and variables of each
recursive a call to the function. So recursive algorithm may require large

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

amount of memory if the depth of the recursive is very large which is not
required to be done in the case of non-recursive function call.

 Recursion cause system’s unavoidable function call overhead so
transformation from recursion to iteration can improve both speed and
space requirement

Difference between linear and non-linear data structure

Linear Data Structure Non-Linear Data Structure
Every item is related to its previous
and next items

Every item is attached with many
other items

Data is arranged in linear sequence Data is not arranged in sequence
Data items can traverse in a single
Run

Data cannot be traversed in a
single run

Implementation is easy Implementation is difficult
e.g array, stacks, linked list, queue e.g. tree, graph

Stack

STACK:

 Stack is a non-primitive linear data structure
 It is a data structure in which elements can be inserted and

deleted from only one end.
 It is also considered as an ADT (abstract data type).
 The end from which insertion and deletion is done is known as

“TOP”(top of stack).
 Since insertion and deletion are done from the single end,

its elements are removed in reverse order from which they
were inserted.

 That means the last item added will be the first to be removed.
 Because of this characteristic it is known as LIFO (Last In First Out) list.
 It is also called Push Down list or Pile.
 Real life example or stack are:

o Box containing books

o Tray holder in cafeteria
o Plates kept on one another

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

o Neatly folded

clothes Implementing:

Static Stack = Array

Dynamic stack= Linked list

Stack Operations:

Push : is inserting element in stack

Pop : Deleting element from stack

Change: for changing value of specific element from the top of stack

Peep : getting the value of specified element from

the top of stack

An Algorithm to Insert an element into stack

The task (objective)

 Check for overflow

 Increment TOP
 Insert the

element

PUSH(S,TOP,Item)

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

S: An array the represents the stack

Top: indicates the position of the top most element in the

stack Item: the value to be inserted

Max: Maximum number of elements

allowed Step 1: [Check for stack overflow]

If TOP >=Max

Write (“stack Overflow”)

Exit

[End of if]

Step 2:

[Increment TOP]

TOP=TOP+1

Step 3: [Insert Element]

S[TOP]=Item

Step 4: [Finished]

Exit/Return
An Algorithm to delete an element from stack

POP (S, TOP)

S: An array the represents the stack

TOP: indicates the position of the top most element in the stack

[Deletes ‘item’ from the ‘stack’, top is the number of elements currently
in ‘stack’.]

Step 1 : [Check for

Underflow] if TOP
= 0 then

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

write (Stack Underflow on POP”)
Exit
[End if structure]

Step 2 : [Decrement
Pointer]

TOP:=TOP-1
Step 3 : [Return top element of

stack] return (S[TOP+1])

An Algorithm to Change the value of Ith element from top of the stack

The main tasks in this algorithm are:

- Check for underflow
- Update the desired

element Change (S,TOP,ITEM,I)

S: Array representing stack

TOP: indicates position of top element in the stack.

I: Position of the element to be changed from TOP of the

stack ITEM: New value of Ith element from top of the stack.

Step-1 : [Check for stack

Underflow] If TOP -I +1<=0

then

Write (“Stack Underflow on change”)

Exit

Step-2: [Change Ith element from top of

stack] S[TOP-I+1]:=ITEM

Step-3 : [Finished]

Exit

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

Applications of stack

Stacks are frequently used to indicate the order of the processing of data

1. Converting infix to un-parenthesized (Polish-Prefix/Reverse Polish
Postfix notation)

a. Covert from infix to prefix
b. Convert from infix to postfix
c. Evaluate prefix
d. Evaluate postfix

2. Recursion
Algorithm to convert Infix to Suffix Expression/Postfix/Reverse polish notation

Algorithm to convert Infix to Suffix Expression/Postfix/Reverse polish

notation POSTFIX((Q,P)

STACK (S) : Stack to store operations

Q: Array Containing expression in infix

notation(input) P : is Equivalent postfix notation

(output)

Step-1: Push “(“ on to stack S and add “)” to the end of Q

Step-2 : Scan Q from left to right and repeat step-3 to 6 for each element of
Q until the stack is empty

Step-3: If an operand is encountered then add it to “P”

Step-4 : if “(“ is encountered push it into stack

Step-5 : If an operator is encountered then

a. Repeatedly pop from the stack and added to P each operator on the

top of stack which has the same or higher precedence than operator
b. Add to stack

Step 6: If “)” is encountered then

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

a. Repeatedly pop from the stack and add to P all the elements from the
stack till “(“ in stack is encountered

b. Remove “(“ from stack

Step 7 [finish]

Algorithm to convert Infix to Prefix /Polish notation

Prefix(Q,P)

Q->array representing infix notation

P -> array for prefix

Stack-> array representing stack

Step1 Push “)” on to stack and add “(“ to the beginning of Q

Step-2: Scan Q from right to left and repeat step-3 to 6 for each element
of Q until the stack is empty

Step3: If an operand is encountered add to P Step-4: If

“)” is found push it into stack

Step-5 : if operator is encountered then

a. Repeatedly pop from stack and add to P each operator on
the top stack which has the higher precedence then

operator

b. Add to stack

Step: 6 if “(“ is encountered then

a. Repeatedly pop from stack and add to P each operator
till the matching “)” is encountered from the stack

b. Remove “)” form the stack
Step-7 Reverse expression P

Step-8 [Finished]
Exit

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

Queue

A queue can be defined as an ordered list which enables insert operations to be
performed at one end called REAR and delete operations to be performed at
another end called FRONT.

Queue is referred to be as First In First Out list.

For example, people waiting in line for a rail ticket form a queue.

Applications of Queue

Due to the fact that queue performs actions on first in first out basis which is quite
fair for the ordering of actions. There are various applications of queues discussed
as below.

1. Queues are widely used as waiting lists for a single shared resource like
printer, disk, CPU.

2. Queues are used in asynchronous transfer of data (where data is not being
transferred at the same rate between two processes) for eg. pipes, file IO,
sockets.

3. Queues are used as buffers in most of the applications like MP3 media player,
CD player, etc.

4. Queue are used to maintain the play list in media players in order to add and
remove the songs from the play-list.

5. Queues are used in operating systems for handling interrupts.

Types of Queue
There are four different types of queue that are listed as follows -

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

o Simple Queue or Linear Queue

o Circular Queue

o Priority Queue

o Double Ended Queue (or Deque)

Let's discuss each of the type of queue.

Simple Queue or Linear Queue

In Linear Queue, an insertion takes place from one end while the deletion occurs from
another end. The end at which the insertion takes place is known as the rear end, and the
end at which the deletion takes place is known as front end. It strictly follows the FIFO
rule.

The major drawback of using a linear Queue is that insertion is done only from the rear
end. If the first three elements are deleted from the Queue, we cannot insert more
elements even though the space is available in a Linear Queue. In this case, the linear
Queue shows the overflow condition as the rear is pointing to the last element of the
Queue.

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return an
overflow error.

If the item is to be inserted as the first element in the list, in that case set the value of front
and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one having
rear as the index.

Algorithm

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: Set QUEUE[REAR] = NUM

Step 4: EXIT

Algorithm to delete an element from the queue

If, the value of front is -1 or value of front is greater than rear , write an underflow message
and exit.

Otherwise, keep increasing the value of front and return the item stored at the front end
of the queue at each time.

Algorithm

Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

[END OF IF]

Step 2: EXIT

Circular Queue

In Circular Queue, all the nodes are represented as circular. It is similar to the linear Queue
except that the last element of the queue is connected to the first element. It is also known
as Ring Buffer, as all the ends are connected to another end. The representation of circular
queue is shown in the below image -

The drawback that occurs in a linear queue is overcome by using the circular queue. If the
empty space is available in a circular queue, the new element can be added in an empty
space by simply incrementing the value of rear. The main advantage of using the circular
queue is better memory utilization.

Deque (or, Double Ended Queue)

In Deque or Double Ended Queue, insertion and deletion can be done from both ends of
the queue either from the front or rear. It means that we can insert and delete elements
from both front and rear ends of the queue. Deque can be used as a palindrome checker
means that if we read the string from both ends, then the string would be the same.

Deque can be used both as stack and queue as it allows the insertion and deletion
operations on both ends. Deque can be considered as stack because stack follows the
LIFO (Last In First Out) principle in which insertion and deletion both can be performed
only from one end. And in deque, it is possible to perform both insertion and deletion
from one end, and Deque does not follow the FIFO principle.

The representation of the deque is shown in the below image -

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

There are two types of deque that are discussed as follows -

o Input restricted deque - As the name implies, in input restricted queue, insertion

operation can be performed at only one end, while deletion can be performed from both

ends.

o Output restricted deque - As the name implies, in output restricted queue, deletion

operation can be performed at only one end, while insertion can be performed from both

ends.

Now, let's see the operations performed on the queue.

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

Operations performed on queue

The fundamental operations that can be performed on queue are listed as follows -

o Enqueue: The Enqueue operation is used to insert the element at the rear end of the

queue. It returns void.

o Dequeue: It performs the deletion from the front-end of the queue. It also returns the

element which has been removed from the front-end. It returns an integer value.

o Peek: This is the third operation that returns the element, which is pointed by the front

pointer in the queue but does not delete it.

o Queue overflow (isfull): It shows the overflow condition when the queue is completely

full.

o Queue underflow (isempty): It shows the underflow condition when the Queue is empty,

i.e., no elements are in the Queue.

Now, let's see the ways to implement the queue.

Ways to implement the queue

There are two ways of implementing the Queue:

o Implementation using array: The sequential allocation in a Queue can be implemented

using an array. For more details, click on the below link: https://www.javatpoint.com/array-

representation-of-queue

o Implementation using Linked list: The linked list allocation in a Queue can be

implemented using a linked list. For more details, click on the below

link: https://www.javatpoint.com/linked-list-implementation-of-queue

Compare dynamic allocation and static allocation.

Static Memory Allocation Dynamic Memory Allocation
Variables get allocated
Permanently

Variable get allocation only if your
program unit gets active

Allocation is done before program
Execution

Allocation is done during program
Execution

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

Faster execution compare to
Dynamic

Faster execution compare to
Dynamic

Less efficient More efficient
There is no memory reusability There is, memory reusability and

memory can be freed when not
Required

Memory can be wasted if allocated
memory is not used
e.g. int a[10];
if we store only 5 elements and 5
elements are wasted

Memory is not wasted

1. What do you mean by linear data structure?

A data structure is said to be linear if its elements form a sequence or a linear
list e.g. Array, Linked list, stack, queue

2. Operations that can be performed on data structure.

The operations that can be performed on data structure are :

o Traversal - Visit every part of data structure
o Search – Traversal through the data structure for a given element
o Insertion – Adding new element
o Deletion – Removing element form ds
o Sorting – Rearranging the elements
o Merging – Combining two similar ds in one

3. What is the difference between int *p & int **p?

int *p is a statement that declares p as pointer to integer. i.e. p is a pointer
type which can point to any variable of integer data type.

Int **p is a statement that declares p as pointer to pointer. “p” points to a
pointer that is pointing to variable of integer data type.

OOP & DS (304) UNIT-4

References:
Data Structures by R. D. Morena,Priti Tailor, Vaishali Dindoliwala

An Introduction to Data Structures with applications, Trembley – Tata McGraw Hill.
By: Jinal V. Purohit

4. What do you mean by non-linear data structure? List out various
advantages and disadvantages of non-linear data structure.

A data structure in which a data item is connected to several other data
items is known as non-linear data structure.

Advantages:

 Uses memory efficiently that free contiguous memory is not

needed.
 The length of the data items/number of data items is not

necessary to be known prior to allocation
Disadvantages:

 Overhead of the link to the next data item.

Non-linear data structure are:
 Tree
 Graph

Deque (or double-ended queue)

What is a queue?

A queue is a data structure in which whatever comes first will go out first, and it follows

the FIFO (First-In-First-Out) policy. Insertion in the queue is done from one end known

as the rear end or the tail, whereas the deletion is done from another end known as

the front end or the head of the queue.

The real-world example of a queue is the ticket queue outside a cinema hall, where the

person who enters first in the queue gets the ticket first, and the person enters last in

the queue gets the ticket at last.

What is a Deque (or double-ended queue)

The deque stands for Double Ended Queue. Deque is a linear data structure where the

insertion and deletion operations are performed from both ends. We can say that

deque is a generalized version of the queue.

Though the insertion and deletion in a deque can be performed on both ends, it does

not follow the FIFO rule. The representation of a deque is given as follows -

Types of deque

There are two types of deque -

o Input restricted queue

o Output restricted queue

Input restricted Queue

In input restricted queue, insertion operation can be performed at only one

end, while deletion can be performed from both ends.

Output restricted Queue

In output restricted queue, deletion operation can be performed at only one

end, while insertion can be performed from both ends.

Operations performed on deque

There are the following operations that can be applied on a deque -

o Insertion at front

o Insertion at rear

o Deletion at front

o Deletion at rear

We can also perform peek operations in the deque along with the operations

listed above. Through peek operation, we can get the deque's front and rear

elements of the deque. So, in addition to the above operations, following

operations are also supported in deque -

o Get the front item from the deque

o Get the rear item from the deque

o Check whether the deque is full or not

o Checks whether the deque is empty or not

Insertion at the front end

In this operation, the element is inserted from the front end of the queue.

Before implementing the operation, we first have to check whether the

queue is full or not. If the queue is not full, then the element can be inserted

from the front end by using the below conditions -

o If the queue is empty, both rear and front are initialized with 0. Now,

both will point to the first element.

o Otherwise, check the position of the front if the front is less than 1 (front

< 1), then reinitialize it by front = n - 1, i.e., the last index of the array.

Insertion at the rear end

In this operation, the element is inserted from the rear end of the queue.

Before implementing the operation, we first have to check again whether the

queue is full or not. If the queue is not full, then the element can be inserted

from the rear end by using the below conditions -

o If the queue is empty, both rear and front are initialized with 0. Now,

both will point to the first element.

o Otherwise, increment the rear by 1. If the rear is at last index (or size -

1), then instead of increasing it by 1, we have to make it equal to 0.

Deletion at the front end

In this operation, the element is deleted from the front end of the queue.

Before implementing the operation, we first have to check whether the

queue is empty or not.

If the queue is empty, i.e., front = -1, it is the underflow condition, and we

cannot perform the deletion. If the queue is not full, then the element can

be inserted from the front end by using the below conditions -

If the deque has only one element, set rear = -1 and front = -1.

Else if front is at end (that means front = size - 1), set front = 0.

Else increment the front by 1, (i.e., front = front + 1).

Deletion at the rear end

In this operation, the element is deleted from the rear end of the queue.

Before implementing the operation, we first have to check whether the

queue is empty or not.

If the queue is empty, i.e., front = -1, it is the underflow condition, and we

cannot perform the deletion.

If the deque has only one element, set rear = -1 and front = -1.

If rear = 0 (rear is at front), then set rear = n - 1.

Else, decrement the rear by 1 (or, rear = rear -1).

Check empty

This operation is performed to check whether the deque is empty or not. If

front = -1, it means that the deque is empty.

Check full

This operation is performed to check whether the deque is full or not. If front

= rear + 1, or front = 0 and rear = n - 1 it means that the deque is full.

The time complexity of all of the above operations of the deque is O(1), i.e.,

constant.

Applications of deque

o Deque can be used as both stack and queue, as it supports both

operations.

o Deque can be used as a palindrome checker means that if we read the

string from both ends, the string would be the same.

Implementation of deque

Now, let's see the implementation of deque in C programming language.

#include <stdio.h>

#define size 5

int deque[size];

int f = -1, r = -1;

// insert_front function will insert the value from the front

void insert_front(int x)

{

 if((f==0 && r==size-1) || (f==r+1))

 {

 printf("Overflow");

 }

 else if((f==-1) && (r==-1))

 {

 f=r=0;

 deque[f]=x;

 }

 else if(f==0)

 {

 f=size-1;

 deque[f]=x;

 }

 else

 {

 f=f-1;

 deque[f]=x;

 }

}

// insert_rear function will insert the value from the rear

void insert_rear(int x)

{

 if((f==0 && r==size-1) || (f==r+1))

 {

 printf("Overflow");

 }

 else if((f==-1) && (r==-1))

 {

 r=0;

 deque[r]=x;

 }

 else if(r==size-1)

 {

 r=0;

 deque[r]=x;

 }

 else

 {

 r++;

 deque[r]=x;

 }

}

// display function prints all the value of deque.

void display()

{

 int i=f;

 printf("\nElements in a deque are: ");

 while(i!=r)

 {

 printf("%d ",deque[i]);

 i=(i+1)%size;

 }

 printf("%d",deque[r]);

}

// getfront function retrieves the first value of the deque.

void getfront()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else

 {

 printf("\nThe value of the element at front is: %d", deque[f]);

 }

}

// getrear function retrieves the last value of the deque.

void getrear()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else

 {

 printf("\nThe value of the element at rear is %d", deque[r]);

 }

}

// delete_front() function deletes the element from the front

void delete_front()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else if(f==r)

 {

 printf("\nThe deleted element is %d", deque[f]);

 f=-1;

 r=-1;

 }

 else if(f==(size-1))

 {

 printf("\nThe deleted element is %d", deque[f]);

 f=0;

 }

 else

 {

 printf("\nThe deleted element is %d", deque[f]);

 f=f+1;

 }

}

// delete_rear() function deletes the element from the rear

void delete_rear()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else if(f==r)

 {

 printf("\nThe deleted element is %d", deque[r]);

 f=-1;

 r=-1;

 }

 else if(r==0)

 {

 printf("\nThe deleted element is %d", deque[r]);

 r=size-1;

 }

 else

 {

 printf("\nThe deleted element is %d", deque[r]);

 r=r-1;

 }

}

int main()

{

 insert_front(20);

 insert_front(10);

 insert_rear(30);

 insert_rear(50);

 insert_rear(80);

 display(); // Calling the display function to retrieve the values of deque

 getfront(); // Retrieve the value at front-end

 getrear(); // Retrieve the value at rear-end

 delete_front();

 delete_rear();

 display(); // calling display function to retrieve values after deletion

 return 0;

}

Output:

Introduction to Circular Queue
•
•
•

What is a Circular Queue?
A Circular Queue is an extended version of a normal queue where the last
element of the queue is connected to the first element of the queue forming a
circle.

The operations are performed based on FIFO (First In First Out) principle. It is
also called ‘Ring Buffer’.

In a normal Queue, we can insert elements until queue becomes full. But once
queue becomes full, we can not insert the next element even if there is a space
in front of queue.

Operations on Circular Queue:
• Front: Get the front item from the queue.
• Rear: Get the last item from the queue.
• enQueue(value) This function is used to insert an element into the

circular queue. In a circular queue, the new element is always inserted
at the rear position.

• Check whether the queue is full – [i.e., the rear end is in just
before the front end in a circular manner].

• If it is full then display Queue is full.
• If the queue is not full then, insert an element at the

end of the queue.
• deQueue() This function is used to delete an element from the circular

queue. In a circular queue, the element is always deleted from the front
position.

• Check whether the queue is Empty.
• If it is empty then display Queue is empty.

https://www.geeksforgeeks.org/queue-data-structure/

• If the queue is not empty, then get the last element and
remove it from the queue.

Illustration of Circular Queue Operations:
Follow the below image for a better understanding of the enqueue and dequeue operations.

How to Implement a Circular Queue?
A circular queue can be implemented using two data structures:

• Array

Here we have shown the implementation of a circular queue using an array
data structure.

Implement Circular Queue using Array:
1. Initialize an array queue of size n, where n is the maximum number of

elements that the queue can hold.
2. Initialize two variables front and rear to -1.
3. Enqueue: To enqueue an element x into the queue, do the following:

• Increment rear by 1.
• If rear is equal to n, set rear to 0.

• If front is -1, set front to 0.
• Set queue[rear] to x.

4. Dequeue: To dequeue an element from the queue, do the following:
• Check if the queue is empty by checking if front is -1.

• If it is, return an error message indicating that the
queue is empty.

https://www.geeksforgeeks.org/introduction-to-arrays-data-structure-and-algorithm-tutorials/

• Set x to queue[front].
• If front is equal to rear, set front and rear to -1.
• Otherwise, increment front by 1 and if front is equal to n,

set front to 0.
• Return x.

Complexity Analysis of Circular Queue Operations:

• Time Complexity:
• Enqueue: O(1) because no loop is involved for a single

enqueue.
• Dequeue: O(1) because no loop is involved for one dequeue

operation.
• Auxiliary Space: O(N) as the queue is of size N.

Applications of Circular Queue:
1. Memory Management: The unused memory locations in the case of

ordinary queues can be utilized in circular queues.
2. Traffic system: In computer controlled traffic system, circular queues

are used to switch on the traffic lights one by one repeatedly as per the
time set.

3. CPU Scheduling: Operating systems often maintain a queue of
processes that are ready to execute or that are waiting for a particular
event to occur.

How Circular Queue Works

Circular Queue works by the process of circular increment i.e. when we try to increment

the pointer and we reach the end of the queue, we start from the beginning of the queue.

Here, the circular increment is performed by modulo division with the queue size. That is,

if REAR + 1 == 5 (overflow!), REAR = (REAR + 1)%5 = 0 (start of queue)

Circular Queue Operations

The circular queue work as follows:

• two pointers FRONT and REAR

• FRONT track the first element of the queue

• REAR track the last elements of the queue

• initially, set value of FRONT and REAR to -1

1. Enqueue Operation

• check if the queue is full

• for the first element, set value of FRONT to 0

• circularly increase the REAR index by 1 (i.e. if the rear reaches the end, next it would

be at the start of the queue)

• add the new element in the position pointed to by REAR

2. Dequeue Operation

• check if the queue is empty

• return the value pointed by FRONT

• circularly increase the FRONT index by 1

• for the last element, reset the values of FRONT and REAR to -1

However, the check for full queue has a new additional case:

• Case 1: FRONT = 0 && REAR == SIZE - 1

• Case 2: FRONT = REAR + 1

The second case happens when REAR starts from 0 due to circular increment and when its

value is just 1 less than FRONT, the queue is full.

Enque and Deque Operations
// Circular Queue implementation in C++

#include <iostream>

#define SIZE 5 /* Size of Circular Queue */

using namespace std;

class Queue {

 private:

 int items[SIZE], front, rear;

 public:

 Queue() {

 front = -1;

 rear = -1;

 }

 // Check if the queue is full

 bool isFull() {

 if (front == 0 && rear == SIZE - 1) {

 return true;

 }

 if (front == rear + 1) {

 return true;

 }

 return false;

 }

 // Check if the queue is empty

 bool isEmpty() {

 if (front == -1)

 return true;

 else

 return false;

 }

 // Adding an element

 void enQueue(int element) {

 if (isFull()) {

 cout << "Queue is full";

 } else {

 if (front == -1) front = 0;

 rear = (rear + 1) % SIZE;

 items[rear] = element;

 cout << endl

 << "Inserted " << element << endl;

 }

 }

 // Removing an element

 int deQueue() {

 int element;

 if (isEmpty()) {

 cout << "Queue is empty" << endl;

 return (-1);

 } else {

 element = items[front];

 if (front == rear) {

 front = -1;

 rear = -1;

 }

 // Q has only one element,

 // so we reset the queue after deleting it.

 else {

 front = (front + 1) % SIZE;

 }

 return (element);

 }

 }

 void display() {

 // Function to display status of Circular Queue

 int i;

 if (isEmpty()) {

 cout << endl

 << "Empty Queue" << endl;

 } else {

 cout << "Front -> " << front;

 cout << endl

 << "Items -> ";

 for (i = front; i != rear; i = (i + 1) % SIZE)

 cout << items[i];

 cout << items[i];

 cout << endl

 << "Rear -> " << rear;

 }

 }

};

int main() {

 Queue q;

 // Fails because front = -1

 q.deQueue();

 q.enQueue(1);

 q.enQueue(2);

 q.enQueue(3);

 q.enQueue(4);

 q.enQueue(5);

 // Fails to enqueue because front == 0 && rear == SIZE - 1

 q.enQueue(6);

 q.display();

 int elem = q.deQueue();

 if (elem != -1)

 cout << endl

 << "Deleted Element is " << elem;

 q.display();

 q.enQueue(7);

 q.display();

 // Fails to enqueue because front == rear + 1

 q.enQueue(8);

 return 0;

}

Dequeue in CPP

The dequeue stands for Double Ended ;. In the queue, the insertion takes place

from one end while the deletion takes place from another end. The end at which

the insertion occurs is known as the rear end whereas the end at which the

deletion occurs is known as front end.

Deque is a linear data structure in which the insertion and deletion operations are

performed from both ends. We can say that deque is a generalized version of the

queue.

In deque, the insertion and deletion operation can be performed from one side. The

stack follows the LIFO rule in which both the insertion and deletion can be

performed only from one end; therefore, we conclude that deque can be considered

as a stack.

In deque, the insertion can be performed on one end, and the deletion can be done

on another end. The queue follows the FIFO rule in which the element is inserted

on one end and deleted from another end. Therefore, we conclude that the deque

can also be considered as the queue.

There are two types of Queues, Input-restricted queue, and output-restricted

queue.

1. Input-restricted queue: The input-restricted queue means that some

restrictions are applied to the insertion. In input-restricted queue, the

insertion is applied to one end while the deletion is applied from both the

ends.

2. Output-restricted queue: The output-restricted queue means that some

restrictions are applied to the deletion operation. In an output-restricted

queue, the deletion can be applied only from one end, whereas the insertion

is possible from both ends.

Operations on Deque

The following are the operations applied on deque:

o Insert at front

o Insert at rear

o Delete at front

o Delete from rear

Implementation of Deque using a circular array

The following are the steps to perform the operations on the

Deque:

Enqueue operation

1. Initially, we are considering that the deque is empty, so both

front and rear are set to -1, i.e., f = -1 and r = -1.

2. As the deque is empty, so inserting an element either from the

front or rear end would be the same thing. Suppose we have

inserted element 1, then front is equal to 0, and the rear is also

equal to 0.

3. Suppose we want to insert the next element from the rear. To

insert the element from the rear end, we first need to increment

the rear, i.e., rear=rear+1. Now, the rear is pointing to the

second element, and the front is pointing to the first element.

4. Suppose we are again inserting the element from the rear end.

To insert the element, we will first increment the rear, and now

rear points to the third element.

5. If we want to insert the element from the front end, and insert an

element from the front, we have to decrement the value of front

by 1. If we decrement the front by 1, then the front points to -1

location, which is not any valid location in an array. So, we set

the front as (n -1), which is equal to 4 as n is 5. Once the front is

set, we will insert the value as shown in the below figure:

Dequeue Operation

1. If the front is pointing to the last element of the array, and we

want to perform the delete operation from the front. To delete

any element from the front, we need to set front=front+1.

Currently, the value of the front is equal to 4, and if we

increment the value of front, it becomes 5 which is not a valid

index. Therefore, we conclude that if front points to the last

element, then front is set to 0 in case of delete operation.

2. If we want to delete the element from rear end then we need to

decrement the rear value by 1, i.e., rear=rear-1 as shown in the

below figure:

3. If the rear is pointing to the first element, and we want to delete

the element from the rear end then we have to set rear=n-

1 where n is the size of the array as shown in the below figure:

Algorithm for Insertion at front end

Step-1 : [Check for the front position]

 if(f=0 && r=r-1 || f=r+1)

 Print("Cannot add item at the front overflow”);

 return;

Step-2 : If f=-1 set f=r=0

 Else if f=0 set f=n-1

 Else f=f-1

Step-3 : [Insert at front]

 q[f]=data;

Step-4 : Return

Algorithm for Insertion at rear end

Step-1: [Check for overflow]

 if(rear==MAX)

https://iq.opengenus.org/content/images/2018/05/push_front-1.png

 Print("Queue is Overflow”);

 return;

Step-2: [Insert Element]

 else

 rear=rear+1;

 q[rear]=no;

 [Set rear and front pointer]

 if rear=0

 rear=1;

 if front=0

 front=1;

Step-3: return

Algorithm for Deletion from front end

Step-1 [Check for front pointer]

 if front=0

 print(" Queue is Underflow”);

 return;

Step-2 [Perform deletion]

https://iq.opengenus.org/content/images/2018/05/push_back.png

 else

 no=q[front];

 print(“Deleted element is”,no);

 [Set front and rear pointer]

 if front=rear

 front=0;

 rear=0;

 else

 front=front+1;

Step-3 : Return

Algorithm for Deletion from rear end

Step-1 : [Check for the rear pointer]

 if rear=0

 print(“Cannot delete value at rear end”);

 return;

Step-2: [perform deletion]

 else

https://iq.opengenus.org/content/images/2018/05/pop_front-1.png

 no=q[rear];

 [Check for the front and rear pointer]

 if front= rear

 front=0;

 rear=0;

 else

 rear=rear-1;

 print(“Deleted element is”,no);

Step-3 : Return

Algorithm for input restricted dequeue.

Step1 [check for under flow condition]

 if front = -1 & rear = -1, then

 output underflow & exit

Step2 [delete element at the front end]

 if [front] >= 0 then

 item =Q[front]

Step3 [check queue for empty]

 if front = rear, then

 rear = -1

 front = -1

 else

 front = front+1

Step4 [delete element at the rear end]

 if rear > = 0

 item = Q[rear]

Step5 [check queue for empty]

 if front = rear, then

 front = -1

 rear = -1

 else

 rear = rear – 1

Step6 exit

Algorithm for output restricted dequeue

 Step1 [check for overflow condition]

 If front = 0 & rear >= size -1

 Output over flow & exit

Step2 : [check front pointer value]

 If front >0, then

 Front = front -1

Step3: [insert element at the front end]

 Q[front] = value

Step4 : [check rear pointer value]

 If rear < size-1

 Rear = rear+1

Step5: [insert element at the rear end]

 Q[rear] = value

Step6 : exit

Check empty

This operation is performed to check whether the deque is empty or not. If

front = -1, it means that the deque is empty.

Check full

This operation is performed to check whether the deque is full or not. If front

= rear + 1, or front = 0 and rear = n - 1 it means that the deque is full.

The time complexity of all of the above operations of the deque is O(1), i.e.,

constant.

Applications of deque

o Deque can be used as both stack and queue, as it supports both

operations.

o Deque can be used as a palindrome checker means that if we read the

string from both ends, the string would be the same.

304 Object Oriented Programming and Data Structures (OOP & D.S.)

Question Bank

UNIT – 1

 Short Questions:-

1) What are the Characteristics of OOPs?

2) Define Class and Object

3) Explain limitation of inline function.

4) List out the advantages of inline function.

5) What are the advantages of cin and cout compared to printf and scanf?

6) What is the use of scope resolution operator?

7) What is the use of ‘this’ pointer?

8) What is containership?

9) What is the use of ‘new’ operator?

10) What is reference variable?

11) What is application of scope resolution operator (::) in C++?

12) State the difference between ios::in and ios::out.

13) Differentiate between int *p and int **p.

 Long Questions:-

1) What is header file? Explain various header file used in C++.

2) Write a short note on String functions with appropriate example.

3) Explain different data types in OOPs.

4) State the difference between C and C++.

5) Write a note on Procedural and Object oriented Programming.

6) What is object oriented programming ? Write the difference between OOP and POP.

7) Compare call by value and call by reference with appropriate example.

8) Explain array of objects with example.

9) Explain memory management operator. Discuss advantages of new over malloc.

10) Explain default argument and function prototyping with an example

304 Object Oriented Programming and Data Structures (OOP & D.S.)

UNIT – 2

 Short Questions:-

1) What is Visibility modifier?

2) What is the use of ‘Protected’ over ‘Private’ modifier?

3) What is meant by Encapsulation?

4) Explain data hiding concept in classes.

5) What are the types of inheritance?

6) Differentiate between copy and parameterized constructor.

7) What is constructor with default argument?

8) What is the use of destructor? How is it created?

9) What is Object? Give one example of it.

10) What is an abstract class? What is use of it?

11) What is the meaning of "IS-A" and "HAS-A" relationship

12) What is Containership?

 Long Questions:-

1) Explain Access modifier with example.

2) What is constructor? Explain parameterized constructor with an example.

3) What is constructor and destroyed in C++? How are they defined and when are they used? Illustrate

with an example for each.

4) What is destructor? How it is written in C++? When it is called? Differentiate between constructor

and destructor with proper example.

5) Explain Inheritance and types of inheritance with examples.

6) What is the purpose of inheritance? Explain multilevel inheritance with example.

7) Explain data abstraction and encapsulation.

8) What is containership? How does it differ from Inheritance? Give example.

9) How to remove ambiguity occurred in the case of hybrid inheritance?

10) Write a program to create a class student stores the roll_no, class test stores the mark obtained in

two subjects and class result contains the total marks obtained the test. The class result can inherit

the details of the marks obtained in the test and the roll_no of stusent class.

11) Create an abstract class “Shape” which stores data members like length, breadth and radius, Create

two classes “Circle” and “Rectangle” which stores data members like area respectively. Write a

function to calculate area and display it.

304 Object Oriented Programming and Data Structures (OOP & D.S.)

UNIT – 3

 Short Questions:-

1) What is polymorphism?

2) Explain use of late binding.

3) What is static binding?

4) What do you mean by function overloading?

5) What is function overriding?

6) Explain pure virtual function.

7) Which function in C++ is defined to do nothing? Explain it.

8) List the operators which cannot be overloaded .

9) What are the rules for the Unary operator overloading using friend?

 Long Questions:-

1) Write a note on Polymorphism.

2) What is dynamic binding? Explain it with proper example.

3) What is polymorphism? Explain different types of polymorphism in brief.

4) How runtime polymorphism is achieved in C++? Explain with example.

5) Explain type conversion with example.

6) What is type conversion? Explain explicit type conversion with example.

7) Explain operator overloading with example.

8) Differentiate between overloading and overriding. Explain the concept of overriding with example.

9) What is friend function? Why we need to write friend function? Explain with example. Discuss its

advantages.

10) Explain pure virtual function? When it is necessary? Explain rules of pure virtual function

11) Explain virtual base class. How it is differ from virtual function. Explain with proper example.

12) Write a program to overload >> and << operators

13) Write a program to overload == and += operator (String object)

14) Write + operator to concate two string. Use = operator to copy one string to another string.

304 Object Oriented Programming and Data Structures (OOP & D.S.)

UNIT – 4

Short Questions:-

1) What is Data structure? List various data structures.

2) Differentiate Linear and non linear data structure.

3) What is stack? How it is differ from array?

4) Write application of stack.

5) What is Recursion? Define recursive function.

6) List out applications of stack.

7) What is Top pointer in stack?

8) Evaluate Postfix expression : (i) 2, 3, 4, *, + (ii) 3, 4, *, 2, 5, *, + (iii) 5, 6, 2, +, *, 12, 4, /, - (iv) 3, 2, 4, -

, +

9) Convert from Infix to Postfix : (i) A+ (B * C – D / E * G) + H

Long Questions:-

1) What is linear data structure? Discuss difference between FIFO and LIFO concept.

2) What is stack? Write algorithm for push and pop operation of Stack.

3) What is stack? Write a program to perform Push, Pop, Display operation.

4) Explain Tower of Hanoi as application of stack.

5) What is recursion? Write an algorithm to find factorial number.

6) Write an algorithm to convert infix expression to prefix.

7) Write an algorithm to convert infix expression to postfix.

8) Convert following expression into postfix

(i) (A + B) * (C – D / E) * G + H

(ii) (A + B / C) * (D + E) / F

(iii) A / (B – C + D) * E + F ^ G

304 Object Oriented Programming and Data Structures (OOP & D.S.)

UNIT – 5

Short Questions:-

1) What is Queue? List out types of queues.

2) Define D-queue with an example.

3) What are the advantages of circular queue?

4) What are the properties of circular queue?

5) Discuss the real world example of Queue.

6) What will be the position of front and rear if circular queue is empty?

7) Write an overflow and underflow conditions of input restricted Dqueue.

8) Write an overflow and underflow conditions of output restricted Dqueue.

Long Questions:-

1) What is Queue? List out types of queue. Write an algorithm to insert and delete elements in a

queue.

2) What is D-queue? Write an algorithm to insert and delete elements from output restricted D-

queue?

3) What is D-queue? Explain difference between input restricted and output restricted D-queue?

4) Write an algorithm to perform insert and delete operations on circular queue.

5) Define circular queue. Discuss advantages of circular queue over simple queue. Write algorithm to

insert and delete element in circular queue.

