UNIT-1 Introduction to SQLite

What is SQLite

SQlLite is embedded relational database management system. It is self-contained, serverless,
zero configuration and transactional SQL database engine.

SQLite is free to use for any purpose commercial or private. In other words, "SQLite is an open
source, zero-configuration, self-contained, stand alone, transaction relational database engine
designed to be embedded into an application".

SQLite is different from other SQL databases because unlike most other SQL databases, SQLite
does not have a separate server process. It reads and writes directly to ordinary disk files. A

complete SQL database with multiple tables, indices, triggers, and views, is contained in a single
disk file.

SQLite History

SQLite was designed originally on August 2000. It is named SQLite because it is very light weight
(less than 500Kb size) unlike other database management systems like SQL Server or Oracle.

Year Happenings

2000 SQLite was designed by D. Richard Hipp for the purpose of no administration required for
operating a program.

2000 In August SQLite 1.0 released with GNU database manager.

2011 Hipp announced to add UNQI interface to SQLite db and to develop UNQLite (Document
oriented database).

UNIT-1

Introduction to SQLite

Differences between SQL and SQLite

saL

SQL is a Structured Query Language used to
query a Relational Database System. It is
written in C language.

SQL is a standard which specifies how a
relational schema is created, data is inserted
or updated in the relations, transactions are
started and stopped, etc.

Main components of SQL are Data Definition

Language(DDL) , Data Manipulation
Language(DML), Embedded SQL and
Dynamic SQL.

SQL is Structured Query Language which is
used with databases like MySQL, Oracle,
Microsoft SQL Server, IBM DB2, etc. It is not
a database itself.

A conventional SQL database needs to be
running as a service like OracleDB to
connect to and provide a lot of
functionalities.

SQL is a query language which is used by
different SQL databases. It is not a database
itself.

SQLite

SQLite is an Embeddable Relational Database
Management System which is written in ANSI-C.

SQLite is file-based. It is different from other SQL
databases because unlike most other SQL databases,
SQLite does not have a separate server process.

SQLite supports many features of SQL and has high
performance and does not support stored procedures.

SQLite is a portable database resource. You have to
get an extension of SQLite in whatever language you
are programming in to access that database. You can
access all of the desktop and mobile applications.

SQLite database such

functionalities.

system doesn?t provide

SQLite is a database management system itself which
uses SQL.

UNIT-1 Introduction to SQLite

SQLite Installation

SQLite is known for its zero configuration which means no complex setup or administration is
required. Let's see how to install SQLite on your system.

Install SQLite on Windows

Follow the steps given below:

o Go to SQLite official website download page http://www.sqlite.org/download.html And
download precompiled binaries from Windows section.

B — EEE——™
n S0Lite Download Page X
C | ® www.sqlite.org/download.htm | 2

T e e Tl e e e T W wf o Tl TF

Precompiled Binaries for Windows

sqlite-dll-win32-x86- 32-bit DLL (x86) for SQLite version 3.17.0.
3170000.zip (shal:
(431.40 KiB) a97cebc176b3daad453189f2c0b7cf2a5a70f9c92)

sqlite-dll-win64-x64- 64-bit DLL (x64) for SQLite version 3.17.0.
3170000.zip (shal:
(715.39 KiB) deba09d3c18bfdcdf9e0c3af7f7e7147d9f4fab9)

sqlite-tools-win32- A bundle of command-line tools for managing
x86-3170000.zip SQLite database files, including the command-line
(1.54 MiB) shell program, the sqldiff.exe program, and the
sqlite3 analyzer.exe program.
(shal: -

Tafed T of F ol Wi ok e o of o o ol

o Download the sqlite-dll and sqlite-shell zip file. Or sqlite-tools-win32-x86-3170000.zip file.
o Create a folder named sqlite in C directory and expand these files.

UNIT-1 Introduction to SQLite

[E=E)
@\J w| | « Local Dis.. » sqlite - | +7| | Search sqlite 0O
Organize « Open Mew folder =« [l @

-~
I Favorites LI
Bl Desktop - [| sqlite3.def
& Downloads %] sqlite3.dll
i Recent Places = sqlite3
|%| test
=3 Libraries
2 Documnents - P =
' 3l sqlite3 Date modified: 03-Mov-15 1:45 AM
Application Size: 655 KB

o Open command prompt to set the path. Set your PATH environment variable and open sqlite3
command. It will look like this:

r ™
B Command Prompt E=tR= ﬁ

icrozoft Windows [Uersion 6.1.76811] A
Copyright <c?» 2809 Microsoft Corporation. All rights reserved.

CislUserssjavatpointl dcd. .
CisUsersdod. .
Cisded sglite

ineglite >

The above method facilitates you a permanent way to create database, attach database and
detach database.

There is another way to execute CRUD operation in SQLite. In this method, there is no need to
set a path.

o Just download the SQlite precompiled Binary zip file.
o Expand the zipped file, you will see a page like this:

UNIT-1 Introduction to SQLite

' E=E—)
(€] j=| . » Computer » Local Disk (C:) » sqlite-tools-win32-x85-3170000 w | 45 || Search sqlite-..
Organize » = Open Mew folder = v N 7

i & Marm e Date modified Type
I Favorites :
B Desktop - 7 sqldiff
8 Downloads 7 oqlite3 13-Feb-17 11:27 PM
| Recent Places 7 sqlite3_analyzer]
g Libraries
s Documents _ m b

o Runthe selected sqlite3 application:

Cpen File - Security Warning [i_:hJ

The publisher could not be verfied. Are you sure you want to
run this software?

== Mame: Chsglite-tools-win32-x86-3170000"sqlite3 exe
|L Publisher: Unknown Publisher

Type: Application

From: Chsglite-tools-win32-x86-31700000sglite3 . exe

Bun | [Cancel

o | Always ask before opening this file

publisher. *ou should onby run software from publishers you trust.

| 3 5 This file does not have a valid digital signature that verfies its
A How can | decide what software to nun?

' CAsqlite-tools-win32-x86-3170000\sglite3.exe E=NAC.
2-13 16:82:48 A

Enter “".help" for u
Connected to a .
n FILEMAHE' to weopen on a persistent database.

UNIT-1 Introduction to SQLite

SQLite Features/ Why to use SQLite

Following is a list of features which makes SQLite popular among other lightweight databases:

o SQLite is totally free: SQLite is open-source. So, no license is required to work with it.
o SQLite is serverless: SQLite doesn't require a different server process or system to operate.

o SQlite is very flexible: It facilitates you to work on multiple databases on the same session on
the same time.

o Configuration Not Required: SQLite doesn't require configuration. No setup or administration
required.

o SQlite is a cross-platform DBMS: You don't need a large range of different platforms like
Windows, Mac OS, Linux, and Unix. It can also be used on a lot of embedded operating systems
like Symbian, and Windows CE.

o Storing data is easy: SQLite provides an efficient way to store data.

o Variable length of columns: The length of the columns is variable and is not fixed. It facilitates
you to allocate only the space a field needs. For example, if you have a varchar(200) column,
and you put a 10 characters' length value on it, then SQLite will allocate only 20 characters'
space for that value not the whole 200 space.

o Provide large number of API's: SQLite provides APl for a large range of programming
languages. For example: .Net languages (Visual Basic, C#), PHP, Java, Objective C, Python and a
lot of other programming language.

o SQlite is written in ANSI-C and provides simple and easy-to-use API.

o SQliteis available on UNIX (Linux, Mac OS-X, Android, iOS) and Windows (Win32, WinCE,
WinRT).

SQLite Advantages

SQLite is a very popular database which has been successfully used with on disk file format for
desktop applications like version control systems, financial analysis tools, media cataloging and
editing suites, CAD packages, record keeping programs etc.

There are a lot of advantages to use SQLite as an application file format:

1) Lightweight

o SQlite is a very light weighted database so, it is easy to use it as an embedded software with
devices like televisions, Mobile phones, cameras, home electronic devices, etc.

2) Better Performance

o Reading and writing operations are very fast for SQLite database. It is almost 35% faster than
File system.

o Itonlyloads the data which is needed, rather than reading the entire file and hold it in memory.

UNIT-1 Introduction to SQLite

o If you edit small parts, it only overwrite the parts of the file which was changed.

3) No Installation Needed

o SQLite is very easy to learn. You don?t need to install and configure it. Just download SQLite
libraries in your computer and it is ready for creating the database.

4) Reliable
o It updates your content continuously so, little or no work is lost in a case of power failure or
crash.

o SQlite is less bugs prone rather than custom written file I/0O codes.

o SQLite queries are smaller than equivalent procedural codes so, chances of bugs are minimal.

5) Portable

o SQlite is portable across all 32-bit and 64-bit operating systems and big- and little-endian
architectures.

o Multiple processes can be attached with same application file and can read and write without
interfering each other.

o It can be used with all programming languages without any compatibility issue.

6) Accessible

o SQlite database is accessible through a wide variety of third-party tools.

o SQlite database's content is more likely to be recoverable if it has been lost. Data lives longer
than code.

7) Reduce Cost and Complexity

o It reduces application cost because content can be accessed and updated using concise SQL
queries instead of lengthy and error-prone procedural queries.

o SQLlite can be easily extended in in future releases just by adding new tables and/or columns. It
also preserve the backwards compatibility.

SQLite Disadvantages

o SQlite is used to handle low to medium traffic HTTP requests.

o Database size is restricted to 2GB in most cases.

UNIT-1 Introduction to SQLite

SQLite Commands

SQLite commands are similar to SQL commands. There are three types of SQLite commands:

o DDL: Data Definition Language
o DML: Data Manipulation Language
o DAQL: Data Query Language

Data Definition Language

There are three commands in this group:

CREATE: This command is used to create a table, a view of a table or other object in the
database.

ALTER: It is used to modify an existing database object like a table.

DROP: The DROP command is used to delete an entire table, a view of a table or other object in
the database.

Data Manipulation language

There are three commands in data manipulation language group:
INSERT: This command is used to create a record.
UPDATE: It is used to modify the records.

DELETE: It is used to delete records.

Data Query Language

SELECT: This command is used to retrieve certain records from one or more table.

UNIT-1 Introduction to SQLite

SQLite Data Types

SQLite data types are used to specify type of data of any object. Each column, variable and
expression has related data type in SQLite. These data types are used while creating table.
SQLite uses a more general dynamic type system. In SQLite, the datatype of a value is
associated with the value itself, not with its container.

Types of SQLite data types

SQLite Storage Classes

The stored values in a SQLite database has one of the following storage classes:

Storage Description

Class

NULL It specifies that the value is a null value.

INTEGER It specifies the value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes depending

on the magnitude of the value.

REAL It specifies the value is a floating point value, stored as an 8-byte |IEEE floating point
number.
Text It specifies the value is a text string, stored using the database encoding (utf-8, utf-

16be or utf-16le)

BLOB It specifies the value is a blob of data, stored exactly as it was input.

Note: SQLite storage class is slightly more general than a data type. For example: The INTEGER
storage class includes 6 different integer data types of different lengths.

UNIT-1 Introduction to SQLite

SQLite Afinity Types

SQLite supports type affinity for columns. Any column can still store any type of data but the
preferred storage class for a column is called its affinity.

There are following type affinity used to assign in SQLite3 database.

Affinity Description

TEXT This column is used to store all data using storage classes NULL, TEXT or BLOB.

NUMERIC = This column may contain values using all five storage classes.

INTEGER It behaves the same as a column with numeric affinity with an exception in a cast
expression.
REAL It behaves like a column with numeric affinity except that it forces integer values into

floating point representation

NONE A column with affinity NONE does not prefer one storage class over another and don't
persuade data from one storage class into another.

SQLite Affinity and Type Names

Following is a list of various data types names which can be used while creating SQLite tables.

Data Types Corresponding
Affinity

INT INTEGER TINYINT SMALLINT MEDIUMINT BIGINT UNSIGNED BIG INT | INTEGER
INT2 INT8

CHARACTER(20) VARCHAR(255) VARYING CHARACTER(255) NCHAR(55) TEXT
NATIVE CHARACTER(70) NVARCHAR(100) TEXT CLOB

RASHMI| PATEL Page 10

UNIT-1 Introduction to SQLite

BLOB no datatype specified NONE
REAL DOUBLE DOUBLE PRECISION FLOAT REAL
NUMERIC DECIMAL(10,5) BOOLEAN DATE DATETIME NUMERIC

Date and Time Data Type

In SQLite, there is no separate class to store dates and times. But you can store date and times
as TEXT, REAL or INTEGER values.

Storage Date Format

Class

TEXT It specifies a date in a format like "yyyy-mm-dd hh:mm:ss.sss".

REAL It specifies the number of days since noon in Greenwich on November 24, 4714
B.C.

INTEGER It specifies the number of seconds since 1970-01-01 00:00:00 utc.

Boolean Data Type

In SQLite, there is not a separate Boolean storage class. Instead, Boolean values are stored as
integers O (false) and 1 (true).

RASHMI| PATEL Page 11

UNIT-1 Introduction to SQLite

SQLite Operators

SQLite operators are reserved words or characters used in SQLite statements when we use
WHERE clause to perform operations like comparisons and arithmetic operations.

Operators can be used to specify conditions and as conjunction for multiple conditions in SQLite
statements.

There are mainly 4 type of operators in SQLite:

o Arithmetic operators
o Comparison operators
o Logical operators

o Bitwise operators

SQLite Arithmetic Operators

The following table specifies the different arithmetic operators in SQLite. In this table, we have
two variables "a" and "b" holding values 50 and 100 respectively.

Operator Description Example
+ Addition Operator: It is used to add the values of both side of the a+b =150
operator.

- Subtraction Operator: It is used to subtract the right hand operand from a-b =-50
left hand operand.

* Multiplication Operator: It is used to multiply the values of both sides. a*b =5000

/ Division Operator: It is used to divide left hand operand by right hand a/b=0.5
operand.

% Modulus Operator: It is used to divide left hand operand by right hand | b/a=0

operand and returns remainder.

RASHMI| PATEL Page 12

UNIT-1 Introduction to SQLite

SQLite Comparison Operator

The following table specifies the different comparison operators in SQLite.

have two variables "a" and "b" holding values 50 and 100 respectively.

Operator Description

== It is used to check if the values of two operands are equal or not, if
yes then condition becomes true.

= It is used to check if the values of two operands are equal or not, if
yes then condition becomes true.

I= It is used to check if the values of two operands are equal or not, if
values are not equal then condition becomes true.

<> It is used to check if the values of two operands are equal or not, if
values are not equal then condition becomes true.

> It is used to check if the values of left operand is greater than the
value of right operand, if yes then condition becomes true.

< It is used to check if the values of left operand is less than the value
of right operand, if yes then condition becomes true.

>= It is used to check if the value of left operand is greater than or equal
to the value of right operand, if yes then condition becomes true.

== It is used to check if the value of left operand is less than or equal to
the value of right operand, if yes then condition becomes true.

I< It is used to check if the value of left operand is not less than the
value of right operand, if yes then condition becomes true.

I> It is used to check if the value of left operand is not greater than the

value of right operand, if yes then condition becomes true.

In this table, we

Example

(a == b) is not
true.

(@ = b) is not
true.

(a!'=b)is true.

(a <> b) is
true.

(@ > b) is not
true.

(a < b)is true.

(a >= b) is not
true.

(@ <= b) s
true.
(a < b) is
false.

(a !> b)is true.

RASHMI| PATEL Page 13

UNIT-1 Introduction to SQLite

SQLite Logical Operator

Following is a list of logical operators in SQLite:
Operator Description

AND The AND operator allows the existence of multiple conditions in an SQL statement's
WHERE clause.

BETWEEN The BETWEEN operator is used to search for values that are within a set of values,
given the minimum value and the maximum value.

EXISTS The EXISTS operator is used to search for the presence of a row in a specified table
that meets certain criteria.

IN The IN operator is used to compare a value to a list of literal values that have been
specified.
NOT IN It is the negation of IN operator which is used to compare a value to a list of literal

values that have been specified.

LIKE The LIKE operator is used to compare a value to similar values using wildcard
operators.
GLOB The GLOB operator is used to compare a value to similar values using wildcard

operators. Also, glob is case sensitive, unlike like.

NOT The NOT operator reverses the meaning of the logical operator with which it is used.
For example: EXISTS, NOT BETWEEN, NOT IN, etc. These are known as negate
operator.

OR The OR operator is used to combine multiple conditions in an SQL statement's where
clause.

IS NULL The NULL operator is used to compare a value with a null value.

IS The IS operator work like =

RASHMI| PATEL Page 14

UNIT-1 Introduction to SQLite

IS NOT The IS NOT operator work like =
| This operator is used to add two different strings and make new one.

UNIQUE The UNIQUE operator searches every row of a specified table for uniqueness (no
duplicates).

SQLite Bitwise Operators
SQLite Bitwise operators work on bits and perform bit by bit operation.

See the truth table for Binary AND (&) and Binary OR (|):

P q p&q plg
0 0 0 0
0 1 0 1
1 1 1 1
1 0 0 1

Let's assume two variables "a" and "b", having values 60 and 13 respectively. So Binary values
of aand b are:

a= 0011 1100
b= 0000 1101
a&b =0000 1100
alb=0011 1101

~a=1100 0011

RASHMI| PATEL Page 15

UNIT-1 Introduction to SQLite

Operator Description Example
& Binary AND operator copies a bit to the result = (a & b) will give 12 which is 0000
if it exists in both operands. 1100

Binary OR Operator copies a bit if it exists in = (a | b) will give 61 which is 0011

either operand. 1101
~ Binary Ones Complement Operator is unary @ (~a) will give -61 which is 1100 0011
and has the effect of 'flipping' bits. in 2's complement form due to a

signed binary number.

<< Binary Left Shift Operator. The left operands a << 2 will give 240 which is 1111
value is moved left by the number of bits 0000
specified by the right operand.

>> Binary Right Shift Operator. The left operands = a >> 2 will give 15 which is 0000
value is moved right by the number of bits | 1111
specified by the right operand.

RASHMI| PATEL Page 16

UNIT-1 Introduction to SQLite

SQLite Expressions

SQLite Expressions are the combination of one or more values, operators and SQL functions.
These expressions are used to evaluate a value.

SQLite expressions are written in query language and used with SELECT statement.
Syntax:

SELECT columnl, column2, columnN
FROM table_name
WHERE [CONDITION | EXPRESSION];

There are mainly three types of SQLite expressions:

1) SQLite Boolean Expression
SQLite Boolean expressions are used to fetch the data on the basis of matching single value.

Syntax:

SELECT columnl, column2, columnN
FROM table_name
WHERE SINGLE VALUE MATCHTING EXPRESSION;

Example:

We have an existing table named "STUDENT", having the following data:

r ~
m Prompt - sqli P. [CD_[Q

B Command Prompt sqte3-JT db 7 —

sglite> SELECT»* FROM STUDENT;

1iAjeet 127 INoidai20000.8

2iAlleni25iUSAI115006.0

3iTomi23 iLondon i1260000.0

4:Lal Bahaduri38 iLucknow :15080.8

5 iMohsini21 iVaransii25080.0

sglite>

See this simple example of SQLite Boolean expression.

RASHMI| PATEL Page 17

UNIT-1 Introduction to SQLite

SELECT * FROM STUDENT WHERE FEES = 20000;

Output:

r | — =
B8 Command Prompt - sqlite3 JTP.db E=HAC

- - 8 & e
sqlite> SELECT »* FROM STUDENT WHERE FEES = 280068; -
1:iAjeet 127 iNoidai20000.0
3iTomi23 iLondon 126000.0
sqlite>

2) SQLite Numeric Expressions
SQLite Numeric expression is used to perform any mathematical operations in the query.

Syntax:

SELECT numerical_expression as OPERATION_NAME
[FROM table_name WHERE CONDITION] ;

Examplel:
SELECT (25 + 15) AS ADDITION;

Output:

7

B Command Prompt - sqlite3 JTP.db

sglite> SELECT <25 + 15> AS ADDITION; &
40

Numeric expressions contain several built-in functions like avg(), sum(), count(), etc. These
functions are known as aggregate data calculation functions.

SELECT COUNT(*) AS "RECORDS" FROM STUDENT;

Output:

RASHMI| PATEL Page 18

UNIT-1 Introduction to SQLite

r | = Y

B Command Prompt - sqlite3 JTP.db _— o
- n
sglite> SELECT COUNT (> AS "RECORDS' FROM STUDENT;

3) SQlite Date Expression
SQlite Date expressions are used to fetch the current system date and time values.

Syntax:
SELECT CURRENT_TIMESTAMP;
SELECT CURRENT_TIMESTAMP;

Output:

r I . o
B Command Prompt - sqlite3 JTP.db
sglite> SELECT CURRENT TIMESTAMP;
2017-84-88 11:42:52

sqlite>

RASHMI| PATEL Page 19

UNIT-1 Introduction to SQLite

SQLite Transaction

A transaction is a unit of work that is performed against a database. Transactions are units or
sequences of work accomplished in a logical order, whether in a manual fashion by a user or
automatically by some sort of a database program.

A transaction is the propagation of one or more changes to the database. For example, if you
are creating, updating, or deleting a record from the table, then you are performing transaction
on the table. It is important to control transactions to ensure data integrity and to handle
database errors.

Practically, you will club many SQLite queries into a group and you will execute all of them
together as part of a transaction.

Properties of Transactions

Transactions have the following four standard properties, usually referred to by the acronym
ACID.

e Atomicity - Ensures that all operations within the work unit are completed successfully;
otherwise, the transaction is aborted at the point of failure and previous operations are
rolled back to their former state.

e Consistency — Ensures that the database properly changes states upon a successfully
committed transaction.

e Isolation — Enables transactions to operate independently of and transparent to each
other.

o Durability - Ensures that the result or effect of a committed transaction persists in case
of a system failure.

Transaction Control

Following are the following commands used to control transactions:

e BEGIN TRANSACTION - To start a transaction.

e COMMIT- To save the changes, alternatively you can use END
TRANSACTION command.

e ROLLBACK - To rollback the changes.

Transactional control commands are only used with DML commands INSERT, UPDATE, and
DELETE. They cannot be used while creating tables or dropping them because these operations
are automatically committed in the database.

BEGIN TRANSACTION Command

Transactions can be started using BEGIN TRANSACTION or simply BEGIN command. Such
transactions usually persist until the next COMMIT or ROLLBACK command is encountered.

RASHMI| PATEL Page 20

UNIT-1 Introduction to SQLite

However, a transaction will also ROLLBACK if the database is closed or if an error occurs.
Following is the simple syntax to start a transaction.

BEGIN;

or

BEGIN TRANSACTION;
COMMIT Command

COMMIT command is the transactional command used to save changes invoked by a
transaction to the database.

COMMIT command saves all transactions to the database since the last COMMIT or ROLLBACK
command.

Following is the syntax for COMMIT command.

COMMIT;

or

END TRANSACTION;
ROLLBACK Command

ROLLBACK command is the transactional command used to undo transactions that have not
already been saved to the database.

ROLLBACK command can only be used to undo transactions since the last COMMIT or
ROLLBACK command was issued.

Following is the syntax for ROLLBACK command.
ROLLBACK;

Example

Consider COMPANY table with the following records.
ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7

James 24 Houston 10000.0

Now, let's start a transaction and delete records from the table having age = 25. Then, use
ROLLBACK command to undo all the changes.

sqlite> BEGIN;
sqlite> DELETE FROM COMPANY WHERE AGE = 25;
sqglite> ROLLBACK;

RASHMI| PATEL Page 21

https://www.tutorialspoint.com/sqlite/company.sql

UNIT-1 Introduction to SQLite

Now, if you check COMPANY table, it still has the following records -
ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
2 Allen 25 Texas 15000.0
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7

James 24 Houston 10000.0

Let's start another transaction and delete records from the table having age = 25 and finally we
use COMMIT command to commit all the changes.

sqlite> BEGIN;
sqlite> DELETE FROM COMPANY WHERE AGE = 25;
sqlite> COMMIT;

If you now check COMPANY table is still has the following records -
ID NAME AGE ADDRESS SALARY

1 Paul 32 California 20000.0
3 Teddy 23 Norway 20000.0
5 David 27 Texas 85000.0
6 Kim 22 South-Hall 45000.0
7 James 24 Houston 10000.0
SQLite Create Table

In SQLite, CREATE TABLE statement is used to create a new table. While creating the table, we
name that table and define its column and data types of each column.

Syntax:

CREATE TABLE database_name.table_name(
columnl datatype PRIMARY KEY(one or more columns),
column?2 datatype,
column3 datatype,

columnN datatype,

);

RASHMI| PATEL Page 22

UNIT-1 Introduction to SQLite

Let's take an example to create table in SQLite database:

CREATE TABLE STUDENT(
ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,

AGE INT NOT NULL,
ADDRESS CHAR(50),
FEES REAL

JITP.dh
2.2 2015-11-82 18:31:45
“".help"” for usage hints.
CREATE TABLE STUDENT

ID INT PRIHMARY KEY MWOT HULL.

HAHE TEXT HOT MHULL.
> AGE IWHT HWOT HULL.
> ADDRESS CHAR<{SA>.
FEES REAL
Ty ow

Use the SQLite ".tables" command to see if your table has been created successfully.

.tables

B Command Prompt - sglite3 JTP.db = & ﬁ

C

yglited JIP.db

on 3.9.2 2015-11-82 18:31:45
elp" for usage hints.

REATE TABLE STUDENWT

I INT PRIMARY KEY MOT MWULL.
HAHE TEXT HOT HULL.
AGE INT MWOT HULL.
> ADDRESS CHAR<CSA>.
FEES REAL
Ty ow

Tﬂ.hlf-‘

Let's create another table DEPERTMENT for future operations.

CREATE TABLE DEPARTMENT(

RASHMI| PATEL Page 23

UNIT-1 Introduction to SQLite

ID INT PRIMARY KEY NOT NULL,
DEPT CHAR(50) NOT NULL,
EMP_ID INT NOT NULL

);

Now, we have two tables "DEPARTMENT" and "STUDENT".

Now check the created tables:

-

B Command Prompt - sglite3 JTP.db l = | & ﬁ

sgliter> .tables
S TUDENT

CREATE TABLE DEPARTMENT <

ID INT PRIMARY KEY WOT HULL.
DEPT CHAR<58) NHOT HULL.
EMP_ID INT HOT HULL

s li Edhlﬂ:
DEPARTMENT STUDENT
sqlite>

SQLite Drop Table

In SQLite, DROP TABLE statement is used to remove a table definition and all associated data,
indexes, triggers, constraints and permission specifications associated with that table.

Syntax:

DROP TABLE database_name.table_name;

Note: You must be very careful while using the DROP TABLE command because once the table is
deleted then all the information available in the phone is destroyed and you cannot recover.

Let's take an example to demonstrate how to delete a table in SQLite.

We have already two tables "DEPARTMENT" and "STUDENT". We can verify it by using .tables
command.

RASHMI| PATEL Page 24

UNIT-1 Introduction to SQLite

@8 Command Prompt - sglite3 JTP.db I = = ﬁ
ce? 23

So you can see that we have two tables.

Let's delete the "STUDENT" table.

DROP TABLE STUDENT;

You can verify it by using .tables command.

B Command Prompt - sqlited JTP.db

M1
E STUDENT;

sgliter _

You can see only one table is here in the database. It means the other table is dropped.

SQLite Insert Query

In SQLite, INSERT INTO statement is used to add new rows of data into a table. After creating
the table, this command is used to insert data into the table.

There are two types of basic syntaxes for INSERT INTO statement:
Syntax1:

INSERT INTO TABLE_NAME [(column1, column2, column3,...columnN)]

VALUES (valuel, value2, value3,...valueN);

Here, columnl, column2, column3,...columnN specifies the name of the columns in the table
into which you have to insert data.

RASHMI| PATEL Page 25

UNIT-1 Introduction to SQLite

You don't need to specify the columns name in the SQlite query if you are adding values to all
the columns in the table. But you should make sure that the order of the values is in the same
order of the columns in the table.

Syntax2:

INSERT INTO TABLE_NAME VALUES (valuel,value2,value3,...valueN);
Let's take an example to demonstrate the INSERT query in SQLite database.
We have already created a table named "STUDENT". Now enter some records in that table.

Inserting values by first method:

INSERT INTO STUDENT (ID,NAME,AGE,ADDRESS,FEES)
VALUES (1, 'Ajeet’, 27, 'Delhi', 20000.00);

INSERT INTO STUDENT (ID,NAME,AGE,ADDRESS,FEES)
VALUES (2, 'Akash’, 25, 'Patna’, 15000.00);

INSERT INTO STUDENT (ID,NAME,AGE,ADDRESS,FEES)
VALUES (3, 'Mark', 23, 'USA', 2000.00);

INSERT INTO STUDENT (ID,NAME,AGE,ADDRESS,FEES)
VALUES (4, 'Chandan’', 25, 'Banglore’, 65000.00);
INSERT INTO STUDENT (ID,NAME,AGE,ADDRESS,FEES)

INSERT INTO STUDENT <ID, NAME, AGE, ADDRESS, FEES)

UALUES
INSERT

> UALUES

'Ajeet’, 27,
STUDENT <ID,
‘Akash’, 25.

NAME.

'Delhi’,

'Patna’ .,

20060.88) ;
AGE, ADDRESS.
15080.80) ;

FEES>

lsqlite> INSERT
> UALUES
INSERT

STUDENT <ID, NAME.
"Mark’, 23, ‘USA’,
STUDENT <ID, NAME, AGE, ADDRESS, FEES)>
» 'Chandan’, 25, ’Bangalore’, 656000.00);
INTO STUDENT <ID, NAME, AGE, ADDRESS, FEES)
5, "Kunwar’, 26, ’'Agra’, 25000.00);

AGE, ADDRESS.
2000.08>;

FEES)

:qliié)
> UALUES

sqlite> INSERT
...> UALUES
sqlite)>

Second Method:

You can also insert the data into the table by second method.

RASHMI| PATEL

Page 26

UNIT-1 Introduction to SQLite

INSERT INTO STUDENT VALUES (6, 'Kanchan', 21, 'Meerut', 10000.00);
[BE§ Command Prompt - sqlite3 JTP.db; (== ﬁ

. RADDR
aaa.Bad;
AGE, ADDRESS.

»

'"Meerut’' . 100008.8083;

Output:

SELECT * FROM STUDENT;

-
B Command Prompt - sqlite3 JTP.db; E_li‘ é

SQLite SELECT Query

In SQLite database, SELECT statement is used to fetch data from a table. When we create a
table and insert some data into that, we have to fetch the data whenever we require. That's
why select query is used.

Syntax:

SELECT columnl, column2, columnN FROM table_name;

Here, columnl, column2...are the fields of a table, which values you have to fetch. If you want
to fetch all the fields available in the field then you can use following syntax:

SELECT * FROM table_name;

Let's see an example:

RASHMI| PATEL Page 27

UNIT-1 Introduction to SQLite

SELECT * FROM STUDENT;
Bl Command Prompt - sqlite3 JTP.db; I.E] ﬁ

. iBangalore i65868 .8
G it Kunwar 126 1Agra i 258080 .8
b i Kanchan i 21 iMeerut {10888 .8

sglite>

SQLite UPDATE Query

In SQLite, UPDATE query is used to modify the existing records in a table. It is used with WHERE
clause to select the specific row otherwise all the rows would be updated.

Syntax:

UPDATE table_name
SET column1l = valuel, column2 = value2...., columnN = valueN

WHERE [condition];
Example:

We have an existing table named "STUDENT", having the following data:

-
B Command Prompt - sqlite3 JTP.db l = H_é

i
Agra:25080.8

Examplel:

Update the ADDRESS of the student where ID is

UPDATE STUDENT SET ADDRESS ='Noida' WHERE ID = 1;

RASHMI| PATEL Page 28

UNIT-1 Introduction to SQLite

r] o~
B Command Prompt - sqlite3 JTP.db - E=NAC ﬁ

-
sglite> UPDATE STUDENT SET ADDRESS = ’Noida’ WHERE
sglite?>

Now the address is updated for the id 1. You can check it by using SELECT statement:

SELECT * FROM STUDENT;

Output:

r | o~ Py
B8 Command Prompt - sqlite3 JTP.db - =& s
- a A
sqlite> SELECT »* FROM STUDENT; -
1iAjeet 12?7 iNoida i20000.0
2iARkashi25 iPatnai15000.0
3 iMarki23iUSA 12000.0

iChandan i25 iBanglore i1656000.0
iKunwar 126 iAgra i250080.0
sglite>

Example2:
If you don't use WHERE clause, it will modify all address in the STUDENT table:

UPDATE STUDENT SET ADDRESS = 'Noida';

Output:

[=S

L5 SHEA .8
3 iMarki23 iNoid BB, 8

1dan {25 {Noida 65008 _A
5 {Hunwar |26 (Hoida ! 25000 _9
sglite

RASHMI| PATEL Page 29

UNIT-1 Introduction to SQLite

SQLite DELETE Query

In SQLite, DELETE query is used to delete the existing records from a table. You can use it with
WHERE clause or without WHERE clause. WHERE clause is used to delete the specific records
(selected rows), otherwise all the records would be deleted.

Syntax:

DELETE FROM table_name
WHERE [conditions.................... I

Note: We can use N number of "AND" or "OR" operators with "WHERE" clause.

Example:

We have an existing table named "STUDENT", having the following data:

-
Bl Command Prompt - sglite3 JTP.db I._':' ! H_ﬁ
.|I|.'IT'F-> '\]-iI-Llﬂ FROM STUDEMT ; .

Examplel:

Delete the records of a student from "STUDENT" table where ID is 4.

DELETE FROM STUDENT WHERE ID = 4;

v

&8 Command Prompt - sqlite3 JTP.db = | E X

sglite> DELETE FROM SUDEN'[WHERE 1D
sglite?

The student's record of id 4 is deleted; you can check it by using SELECT statement:

SELECT * FROM STUDENT;

RASHMI| PATEL Page 30

UNIT-1 Introduction to SQLite

Output:

r] ~ N
B Command Prompt - sqlite3 JTP.db _— o =1 - —'d‘i'-‘
- o
sgqlite> SELECT »* FROM STUDENT; -
1iAjeet oidai200006.0
2 iAkash iNoida:i15000.0
3 iMarki23 iNoida 126000.0
tKunwar 126 iNoida 125000.0

sqlite?

Example2:

If you want to delete all records from the table, don't use WHERE clause.

DELETE FROM STUDENT;

r | - ~
B Command Prompt - sqlite3 JTP.db E=NAC ﬁ

sqlite> DELETE FROM STUDENT ;

sglite> SELECT »* FROM STUDENT;
sqlite>

You can see that there is no data in the table "STUDENT".

SQLite WHERE Clause

The SQLite WHERE clause is generally used with SELECT, UPDATE and DELETE statement to
specify a condition while you fetch the data from one table or multiple tables.

If the condition is satisfied or true, it returns specific value from the table. You would use
WHERE clause to filter the records and fetching only necessary records.

WHERE clause is also used to filter the records and fetch only specific data.

Syntax:

SELECT columnl, column2, columnN

RASHMI| PATEL Page 31

UNIT-1 Introduction to SQLite

FROM table_name
WHERE [condition]

Example:

In this example, we are using WHERE clause with several comparison and logical operators. like
=, LIKE, NOT, etc.

We have a table student having the following data:

-

B Command Prompt - sqlite3 JTP.db E=aL= X
qllTF} H}lFfl =FROM Hi”hPHl

-:.Hanqlnre;bbmuﬂrﬂ
S i Kunwar 126 IAgrai 250608 .8

sglite >

Examplel:

Select students WHERE age is greater than or equal to 25 and fees is greater than or equal to
10000.00

SELECT * FROM STUDENT WHERE AGE >= 25 AND FEES >= 10000.00;

Output:

-

B Command Prompt - sqlited JTP.db = = ﬁ

"ROM STUDENT WHERE AGE »>= 25 AND FEES »= 10888.88;
1BEE. A
iPatn >BE8 . A
iBanglore | 658808
H.Lunu*r:_--ﬁqrn-_dﬂﬂh i
sglite >

Example2:

RASHMI| PATEL Page 32

UNIT-1 Introduction to SQLite

Select students form STUDENT table where name starts with 'A' doesn't matter what come
after 'A'.

SELECT * FROM STUDENT WHERE NAME LIKE 'A%";

Output:

-

B Command Prompt - sglited JTP.db

;T = FROH STUDENT WHERE MAME LIKE “fAx*;
i:280888.8
ailb>BBa. g

SQLite AND Operator

The SQLite AND Operator is generally used with SELECT, UPDATE and DELETE statement to
combine multiple conditions. It is a conjunctive operator which makes multiple comparisons
with different operators in the same SQLite statement.

It is always used with WHERE Clause.

Syntax:

SELECT columnl, column2, columnN
FROM table_name
WHERE [condition1] AND [condition2]...AND [conditionN];

Example:

We have a table named 'STUDENT' having following data:

RASHMI| PATEL Page 33

UNIT-1 Introduction to SQLite

-
B Command Prompt - sglite3 JTP.db; IE] ﬁ

sgglite? SELEC] O STUDEMT ; -
. LT .

Select all students from the table 'STUDENT' where AGE is greater than or equal to 25 AND fees
is greater than or equal to 20000.00

SELECT * FROM STUDENT WHERE AGE >= 25 AND FEES >= 15000;

Output:

-

B8 Command Prompt - sqlite3 JTP.db

sqgliter HSELECI = FROM !::'l'l_l]]E-ZN',I'.'.!HI-:]-IE-Z AGE »= 25 AND FEES »>= 158808;
) 3]

1o 1 Bang lo
SiKunwar i 26 iAgra i 258088 .8
sglite>

SQLite OR Operator

The SQLite OR Operator is generally used with SELECT, UPDATE and DELETE statement to
combine multiple conditions. OR operator is always used with WHERE clause and the complete
condition is assumed true if anyone of the both condition is true.

Syntax:

SELECT columnl, column2, columnN
FROM table_name
WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine multiple number of conditions using OR operator.

Example:

RASHMI| PATEL Page 34

UNIT-1 Introduction to SQLite

We have a table named 'STUDENT' having following data:

-

Bl Command Prompt - sglite3 JTP.db; I.E = ﬁ
sglite> SELECT = F » LUDENT ;

b i K .:_m
sglite >

Select all students from the table 'STUDENT' WHERE age is greater than or equal to 25 OR fees
is greater than or equal to 15000.00

SELECT * FROM STUDENT WHERE AGE >= 25 OR FEES >= 15000;

Output:

r e |
B Command Prompt - sglited JTP.db =) = ﬁ
i WHERE AGE >= 25 OR FEES »>= 15888; A

ore i6HHAEE .8
2LA88.8

sgliter

SQLite LIKE Clause (Operator)

The SQLite LIKE operator is used to match text values against a pattern using wildcards. In the
case search expression is matched to the pattern expression, the LIKE operator will return true,
which is 1.

There are two wildcards used in conjunction with the LIKE operator:

o The percent sign (%)

o The underscore (_)

RASHMI| PATEL Page 35

UNIT-1 Introduction to SQLite

The percent sign represents zero, one, or multiple numbers or characters. The underscore
represents a single number or character.

Syntax:

SELECT FROM table_name
WHERE column LIKE 'XXXX%'

or

SELECT FROM table_name
WHERE column LIKE '"%XXXX%'

or

SELECT FROM table_name
WHERE column LIKE 'XXXX_'

or

SELECT FROM table_name
WHERE column LIKE '_XXXX'

or

SELECT FROM table_name
WHERE column LIKE '_XXXX_'

Here, XXXX could be any numeric or string value.
Example:

We have a table named 'STUDENT' having following data:

RASHMI| PATEL Page 36

UNIT-1 Introduction to SQLite

-
B Command Prompt - sglite3 JTP.db; IE_EI ﬁ

In these examples the WHERE statement having different LIKE clause with '%' and ' ' operators
and operation is done on 'FEES":

Statement Description
Where FEES like '200%' It will find any values that start with 200.
Where FEES like '%200%' It will find any values that have 200 in any position.
Where FEES like '_00%' It will find any values that have 00 in the second and third positions.
Where FEES like '2_%_%' It will find any values that start with 2 and are at least 3 characters in length.
Where FEES like '%2' It will find any values that end with 2
Where FEES like '_2%3' It will find any values that have a 2 in the second position and end with a 3
Where FEES like '2___3' It will find any values in a five-digit number that start with 2 and end with 3

Examplel: Select all records from STUDENT table WHERE age start with 2.

SELECT * FROM STUDENT WHERE AGE LIKE 2%';

Output:

RASHMI| PATEL Page 37

UNIT-1 Introduction to SQLite

r e -
B Command Prompt - sqlited JTP.db _="1]| = ﬂ
T TROM STUDENT WHERE AGE LIKE “2%°; -

Example2:

Select all records from the STUDENT table WHERE ADDRESS will have "a" (a) inside the text:

SELECT * FROM STUDENT WHERE ADDRESS LIKE '%a%';

Output:

i o
@S Command Prompt - sqlite3 JTP.db | o | B e
1 s TUDENT WHERE ADDRESS LIKE ‘:

nail5A08.
2088 .8
» i Bang lore ib5HBH . KA
26 iAgra 258088 .8

SQLite LIMIT Clause

The SQLite LIMIT clause is used to limit the data amount fetched by SELECT command from a
table.

Syntax:

SELECT columni, column2, columnN
FROM table_name
LIMIT [no of rows]

The LIMIT clause can also be used along with OFFSET clause.

SELECT columnl, column2, columnN
FROM table_name
LIMIT [no of rows] OFFSET [row num]

RASHMI| PATEL Page 38

UNIT-1 Introduction to SQLite

Example:

Let's take an example to demonstrate SQLite LIMIT clause. We have a table named 'STUDENT'
having following data:

-
B Command Prompt - sqlite3 JTP.db; I.E (=l ﬁ

M STUDEMNT ; -
Ba.A

atn CAE8 .8

Ai2088.48

Examplel:

Fetch the records from the "STUDENT" table by using LIMIT according to your need of number
of rows.

SELECT * FROM STUDENT LIMIT 5;

Output:

LINIT 55

Example2:

OFFSET is used to not retrieve the offset records from the table. It is used in some cases where
we have to retrieve the records starting from a certain point:

Select 3 records form table "STUDENT" starting from 3 position.

SELECT * FROM STUDENT LIMIT 3 OFFSET 2;

Output:

RASHMI| PATEL Page 39

UNIT-1 Introduction to SQLite

B Command F"rampt sqlite3 JTP.db l =5 ﬁ
LECT = FROM STUDEMT LIMIT 3 OFFSET 2; |

= qlnrem B88 .8
S iKunwar 126 1Agra i 258080 .8 |
sgliter _

SQLite ORDER BY Clause

The SQLite ORDER BY clause is used to sort the fetched data in ascending or descending order,
based on one or more column.

Syntax:

SELECT column-list
FROM table_name
[WHERE condition]
[ORDER BY columni, column2, .. columnN] [ASC | DESC];

You can use one or more columns in ORDER BY clause. Your used column must be presented in
column-list.

Let's take an example to demonstrate ORDER BY clause. We have a table named "STUDENT"
having the following data:

i e -
B Command F'rompt sqllte3 ITP.db Bt ﬁ

lm-.lw iah -H-.rt-a L:t-

|.|J.11't' ? -

Examplel:

Select all records from "STUDENT" where FEES is in ascending order:

SELECT * FROM STUDENT ORDER BY FEES ASC;

RASHMI| PATEL Page 40

UNIT-1 Introduction to SQLite

Output:

,
BE™ =

Bl Command Prompt - sqlite3 JTP.db W

ASC;

sgliter _

Example2:

Fetch all data from the table "STUDENT" and sort the result in descending order by NAME and
FEES:

SELECT * FROM STUDENT ORDER BY NAME, FEES DESC;

Output:

-

B Command Prompt - sqlite3 JTP.db

‘ROH STUDENT ORDER BY MAME. FEES DESC;
Aee .8
HEE .8
re 650088

SQLite GROUP BY Clause

The SQLite GROUP BY clause is used with SELECT statement to collaborate the same identical
elements into groups.

The GROUP BY clause is used with WHERE clause in SELECT statement and precedes the ORDER
BY clause.

Syntax:

SELECT column-list
FROM table_name

RASHMI| PATEL Page 41

UNIT-1 Introduction to SQLite

WHERE [conditions]
GROUP BY columni, column2....columnN

ORDER BY columnl, column2....columnN

Let's take an example to demonstrate the GROUP BY clause. We have a table named
"STUDENT", having the following data:

-

B Command F"rcumpt sqlltES JTP.db =i E ﬁ

- |.|J.11't'>

Use the GROUP BY query to know the total amount of FEES of each student:

SELECT NAME, SUM(FEES) FROM STUDENT GROUP BY NAMIE;

Output:

-

| B
B Command Prompt - sqlite3 JTP.db =28 !ﬁ
ite> SELECT HAME. SUM<FEES> FROM STUDENT GROUF BY HAME;
20080.8
i Baaa .8
Chandan 658088 .8
Kunwar 25HHH . B
arkiZB008.8
sglitel _

Now, create some more records in "STUDENT" table using the following INSERT statement:

INSERT INTO STUDENT VALUES (7, 'Ajeet’, 27, 'Delhi', 10000.00);
INSERT INTO STUDENT VALUES (8, 'Mark', 23, 'USA', 5000.00);
INSERT INTO STUDENT VALUES (9, 'Mark', 23, 'USA', 9000.00);

RASHMI| PATEL Page 42

UNIT-1 Introduction to SQLite

g = = = —_— T
@8 Command Prompt - sqlite3 JTP.db L= | B

.-.|.|111'F-} ‘x]-ll-t' T= F [I]"I STUDENT ; -
D i 1088 .8 | |

usat BHHH 8
3ilsShi9884.8

The new updated table has the inserted entries. Now, use the same GROUP BY statement to
group-by all the records using NAME column:

SELECT NAME, SUM(FEES) FROM STUDENT GROUP BY NAME ORDER BY NAME;

Output:

r - I | - =
B Command Prompt - sqlite3 JTP.db E=NEC ﬁ

sglite> SELECT NAME, SUMCFEES)> FROM STUDENT GROUP BY NAME ORDER BY NAME; -
Njeet 130000.0 N
Nkashil15060.0

)handanl6SUMB.U

Kunwar 125000.

Marki166000.0

sglite>

You can use ORDER BY clause along with GROUP BY to arrange the data in ascending or
descending order.

SELECT NAME, SUM(FEES)
FROM STUDENT GROUP BY NAME ORDER BY NAME DESC;

Output:

RASHMI| PATEL Page 43

UNIT-1 Introduction to SQLite

F -
B Command Prompt - sglite3 JTP.db - . * I.Eﬂé

sglite> SE HAME, SUMCFEES »
! 3 JENT GROUP BY HAME ORDER BY HAME DESCG;

SQLite HAVING Clause

The SQLite HAVING clause is used to specify conditions that filter which group results appear in
the final results. The WHERE clause places conditions on the selected columns, whereas the
HAVING clause places conditions on groups created by the GROUP BY clause.

The position of HAVING clause in a SELECT query:

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY
Syntax:
SELECT columni, column2
FROM tablel, table2
WHERE [conditions]
GROUP BY columni, column?2
HAVING [conditions]
ORDER BY columnl, column?2

Example:

Let's take an example to demonstrate HAVING Clause. We have a table named "STUDENT",
having the following data:

RASHMI| PATEL Page 44

UNIT-1 Introduction to SQLite

B Command Prompt - sglite3 JTP.db . 8 & . =1l = ﬁ

"ROM STUDENT ; -
AR. e
LAAA .8
.8
anglore 165080 .8
.qua.-dﬁum a8
iDelhiil@BBEa.A

Examplel:

Display all records where name count is less than 2:

SELECT * FROM STUDENT GROUP BY NAME HAVING COUNT(NAME) < 2;

Output:

r T - a
@ Command Prompt - sqlite3 JTP.db P—— Lo | B S

sgqlite> SELECT »* FROM STUDENT GROUP BY NAME HAUING COUNTC(NAME> < 2; -
iAkashi25 iPatnai150600.0

4 iChandan i25 iBanglore i165000.0
iKunwar 126 iAgra i25000.0

sqlite>

Example2:

Display all records where name count is greater than 2:

SELECT * FROM STUDENT GROUP BY NAME HAVING COUNT(NAME) > 2;

Output:

r | 7
@ Command Prompt - sqlite3 JTP.db r——— Lo | E e

sgqlite> SELECT »* FROM STUDENT GROUP BY NAME HAUING COUNT(NAME> > 2;
iMarki231USAI9066.06
sqlite>

RASHMI| PATEL Page 45

UNIT-1 Introduction to SQLite

SQLite DISTINCT Clause

The SQLite DISTINCT clause is used with SELECT statement to eliminate all the duplicate records
and fetching only unique records.

It is used when you have multiple duplicate records in the table.

Syntax:

SELECT DISTINCT column1l, column2,.....columnN
FROM table_name
WHERE [condition]

Example:

We have a table named "STUDENT", having the following data:

@8 Command Prompt - sqlite3 JTP.db P— ESNEN™

ore 658088 .8
gra:25080 .8

Delhi {10080 A
USA 158080
31USA 19008.0

First Select NAME from "STUDENT" without using DISTINCT keyword. It will show the duplicate
records:

SELECT NAME FROM STUDENT ;

Output:

-
@8 Command Prompt - sglite3 JTP.db N T
zgglite> SELECT WAME FROHM STUDENT ;

t

Chandan
Kunwar

o

RASHMI| PATEL Page 46

UNIT-1 Introduction to SQLite

Now, select NAME from "STUDENT" using DISTINCT keyword.

SELECT DISTINCT NAME FROM STUDENT;

Output:

Bl Command Prompt - sglite3 JTP.db S BT [‘:' | & ﬁ

lite> SELECT DISTINCT MAME FHOM STUWDENT ;
t

.
sgliter _

SQLite Union Operator

SQLite UNION Operator is used to combine the result set of two or more tables using SELECT
statement. The UNION operator shows only the unique rows and removes duplicate rows.

While using UNION operator, each SELECT statement must have the same number of fields in
the result set.

Syntax:

SELECT expressionl, expression2, ... expression_n
FROM tables

[WHERE conditions]

UNION

SELECT expressionl, expression2, ... expression_n
FROM tables

[WHERE conditions];

The following picture illustrates the UNION operation of t1 and t2 tables:

RASHMI| PATEL Page 47

UNIT-1 Introduction to SQLite

=

T1 12 T1 UNION T2

Example:

We have two tables "STUDENT" and "DEPARTMENT".

i - |
Bl Command Prompt - sqlite3 JTP.db = | [=] ﬂ;

sgliter .tabhles -
PARTHENT STU
sgliter _

The "STUDENT" table is having the following data:

sglite >

The "DEPARTMENT" table is having the following data:

r - ™
B Command Prompt - sqlite3 JTP.db = =l ﬂ
sglite> SE # FROM DEPARTHENT ; -

sgliter

RASHMI| PATEL Page 48

UNIT-1 Introduction to SQLite

Examplel: Return Single Field

This simple example returns only one field from multiple SELECT statements where the both
fields have same data type.

Let's take the above two tables "STUDENT" and "DEPARTMENT" and select id from both table
to make UNION.

SELECT ID FROM STUDENT
UNION
SELECT ID FROM DEPARTMENT;

Output:

r g |

El Command Prompt - sqlite3 JTP.db =1

ites SELECT ID
"ROM STUDENT
UNHION
ELECT ID
» FROM DEPARTHMENT ;

Example2: Union with Inner and Outer Join

Let's take the above two tables "STUDENT" and "DEPARTMENT" and make an inner join and
outer join according to the below conditions along with UNION Clause:

SELECT EMP_ID, NAME, DEPT FROM STUDENT JOIN DEPARTMENT

ON STUDENT.ID = DEPARTMENT.EMP_ID

UNION

SELECT EMP_ID, NAME, DEPT FROM STUDENT LEFT OUTER JOIN DEPARTMENT
ON STUDENT.ID = DEPARTMENT.EMP_ID;

Output:

RASHMI| PATEL Page 49

UNIT-1 Introduction to SQLite

@ Command Prompt - sqlite3 JTP.db —_— Lo | B

sgliter SELECT EMP_ID. HARE. DEFT FROM STUDENT JOIN DEPARTHENT -
> ON STUDENT.ID = DEPARTMENT. EHF_ID
UNION
SELECT EMP_ID. HAHE. DEFT FROM STUDENT LEFT OUTER JOIN DEPARTHENT

.» ON r‘1'I.ID]':NT ID DEPARTMENT .EMP_ID; |
.Lul Bahadur i

iTom.

1 iAjeet iElectronics

2 iAllen iComputer Science

S iMHohsin iHechanical

sglite>

SQLite INTERSECT Operator

SQLite INTERSECT operator compares the result sets of two queries and returns distinct rows
that are output by both queries.

The following illustrates the syntax of the INTERSECT operator:

SELECT select_listl

The basic rules for combining the result sets of two queries are as follows:

e First, the number and the order of the columns in all queries must be the same.
e Second, the data types must be comparable.

For the demonstration, we will create two tables t1 and t2 and insert some data into both:

The following picture illustrates the INTERSECT operation:

IO D

T1 INTERSECT T2

RASHMI| PATEL Page 50

https://www.sqlitetutorial.net/sqlite-select/
https://www.sqlitetutorial.net/sqlite-create-table/
https://www.sqlitetutorial.net/sqlite-insert/

UNIT-1 Introduction to SQLite

SQLite INTERSECT example

For the demonstration, we will use the customers and invoices tables from the

customers
* Customerld
INVOoICES FirstMame

* Invoiceld Lasthame
Customerld Company
InvoiceDate Address
BillingAddress o H City
BillingCity State
BillingState Country
BillingCountry FostalCode
BillingPostalCode FPhaone
Total Fax

Email

SupportRepld

The following statement finds customers who have invoices:

SELECT Customerld FROM customer
INTERSECT
SELECT Customerld FROM invoices;

The following picture shows the partial output:

Custormerld

— o G e ohoLn s L o —

RASHMI| PATEL Page 51

UNIT-1 Introduction to SQLite

SQLite EXCEPT

SQLite EXCEPT operator compares the result sets of two queries and returns distinct rows from
the left query that are not output by the right query.

The following shows the syntax of the EXCEPT operator:

SELECT select_list1]

This query must conform to the following rules:

e First, the number of columns in the select lists of both queries must be the same.
e Second, the order of the columns and their types must be comparable.

The following picture illustrates the EXCEPT operation:

ODION B

T1 EXCEPT T2

We will use the artists and albums tables from the sample database for the demonstration.

albums artists
* Albumld e
(£
Title SE—+h N
ame
Artistld

RASHMI| PATEL Page 52

https://www.sqlitetutorial.net/sqlite-sample-database/

UNIT-1 Introduction to SQLite

The following statement finds artist ids of artists who do not have any album in the albums table:

FROM albums;

The output is as follows:

Artistld
25
26
28
29
30
#
32
33
34

SQLite Joins

In SQLite, JOIN clause is used to combine records from two or more tables in a database. It
unites fields from two tables by using the common values of the both table.

There are mainly three types of Joins in SQLite:

o SQLite INNER JOIN
o SQLite OUTER JOIN

o SQLite CROSS JOIN
Example:

We have two tables "STUDENT" and "DEPARTMENT".

RASHMI| PATEL Page 53

UNIT-1 Introduction to SQLite

i e N
@ Command Prompt - sqlite3 JTP.db = | © i

The "STUDENT" table is having the following data:

r e |
B Command Prompt - sqlited JTP.db =) = ﬂ

sglite> SELECT= FROM STUDENT ;
1ifjeet /hNu't apea .

3iTom ,_),;. Il.-cmdnn .dFJHHH i

FiLal Bahadur 38 iLuc]-.I'II]H i8aa. 8
5 iMohsini2l Waransii25800.8
sglite>

The "DEPARTMENT" table is having the following data:

r e N
B Command Prompt - sglited JTP.db == ﬂ

SQLite Inner Join

The SQlite Inner join is the most common type of join. It is used to combine all rows from
multiple tables where the join condition is satisfied.

The SQlite Inner join is the default type of join.

Syntax:

SELECT ... FROM tablel [INNER] JOIN table2 ON conditional_expression ...

RASHMI| PATEL Page 54

UNIT-1 Introduction to SQLite

or

SELECT ... FROM tablel JOIN table2 USING (columnl,...) ...

or

SELECT ... FROM table1l NATURAL JOIN table2...

Image representation:

We have two tables "STUDENT" and "DEPARTMENT".

-

Bl Command Prompt - sqlite3 JTP.db (==l x

The "STUDENT" table is having the following data:

-

@S Command Prompt - sqlite3 JTP.db o | B i

The "DEPARTMENT" table is having the following data:

RASHMI| PATEL Page 55

UNIT-1 Introduction to SQLite

r e N
B Command Prompt - sglite3 JTP.db =@ ﬁ
sqlite> SELECT = FROM DEPARTMENT; -

Let's take the above two tables "STUDENT" and "DEPARTMENT" and make an inner join
according to the below conditions:

Example:

SELECT EMP_ID, NAME, DEPT FROM STUDENT INNER JOIN DEPARTMENT
ON STUDENT.ID = DEPARTMENT.EMP_ID;

Output:

i - -
@8 Command Prompt - sqlite3 JTP.db = | B e

[EMP_ID, NAME. DEPT FROM STUDENT INMER JOIN DEPARTHENT -
DEN! = DEPARTHENT .EMP_ID;

Electron
Computer ience
iniMechanica

SQLite Outer Join

In SQL standard, there are three types of outer joins:

o Leftouter join
o Right outer join

o Full outer join.

But, SQLite supports only Left Outer Join.

RASHMI| PATEL Page 56

UNIT-1 Introduction to SQLite

SQlite Left Outer Join

The SQLite left outer join is used to fetch all rows from the left hand table specified in the ON
condition and only those rows from the right table where the join condition is satisfied.

Syntax:

SELECT ... FROM tablel LEFT OUTER JOIN table2 ON conditional_expression

Or

SELECT ... FROM tablel LEFT OUTER JOIN table2 USING (columni,......

Image representation:

table2

We have two tables "STUDENT" and "DEPARTMENT".

i N
Bl Command Prompt - sqlite3 JTP.db | o | = ﬁ
sgliter .tables

ITHENT STUDEMT
ite>

The "STUDENT" table is having the following data:

RASHMI| PATEL Page 57

UNIT-1 Introduction to SQLite

F e -
Bl Command Prompt - sqlite3 JTP.db =l ﬁ

sqlite H}IF{IH FROM STUDEMT ;
1iAjeet 127 iNoida i20008.8
2iAllen 25 1USA 115
FiTomid3 i London i 288808 .8

4 iLal Bahadur 38 iLucknow i5888.08
b iMohsinidl iWarans 125008 .8

=glite>

The "DEPARTMENT" table is having the following data:

r e |
Bl Command Prompt - sglite3 JTP.db = | © ﬁ

sglite> SELECT = FROH DEPARTHENT ; -

) 4[_|1F‘|‘||II‘L'F' i

3 iHechanicaliS
sglite>

Let's take the above two tables "STUDENT" and "DEPARTMENT" and make an inner join
according to the below conditions:

Example:

SELECT EMP_ID, NAME, DEPT FROM STUDENT LEFT OUTER JOIN DEPARTMENT
ON STUDENT.ID = DEPARTMENT.EMP_ID;
B Command F"rompt- sqlite3 JTP.db l 1) = ﬁ

iTomi
iLal Bahaduwr:

L iMohsin iHechanical
sgliter _

RASHMI| PATEL Page 58

UNIT-1 Introduction to SQLite

SQLite Cross Join

The SQLite Cross join is used to match every rows of the first table with every rows of the
second table. If the first table contains x columns and second table contains y columns then the
resultant Cross join table will contain the x*y columns.

Syntax:

SELECT ... FROM table1 CROSS JOIN table2

Image Representation:

Cross Join

We have two tables "STUDENT" and "DEPARTMENT".

Bl Command Prompt - sqlite3 JTP.db | = | & ﬁ

40 | lite> .tables
) iTHENT STUDENT
sgliter _

The "STUDENT" table is having the following data:

RASHMI| PATEL Page 59

UNIT-1 Introduction to SQLite

F e -
B Command F"r{:urr'pt sqlite3 ITP.db =l ﬁ

3 3 j !Luc muH :';-HHH.H
b iMohs 1r|... IUa.t*a.n:z F4-10 1515

=glite>

The "DEPARTMENT" table is having the following data:

r e |
Bl Command Prompt - sglite3 JTP.db = | © ﬁ

3 4I'1n=clﬂr|1| alib
|_|J.11'F->

Example:

Select all records from tables STUDENT and DEPARTBMENT after cross join:

SELECT * FROM COMPANY CROSS JOIN DEPARTMENT;

e |
Bl Command Prompt - sqlite3 JTP.db = | (=l ﬂ
.I_IlITF} 5 LI:E[# FRO \[lll]]:,ﬂ]_ CROSS] . ITHEMNT ; m
i ¥ .1

== DD DD DD

2 iComputer Science
: i B3 HLl'lh-.lI'I icalib
4 i1Lal Bahadur 3B ! Lucknow 15088. iElectr»onic

4 iLal Bahadur ! ucknow ”EBHF]- iComputer Sciencel2
cknow 15088.8:3 IMechanicali5
120088.811 'Electron
1125008832 iComputer &
20000.812 'Mechanical it

RASHMI| PATEL Page 60

UNIT-1 Introduction to SQLite

SQLite Triggers

SQlLite Trigger is an event-driven action or database callback function which is invoked

automatically when an INSERT, UPDATE, and DELETE statement is performed on a specified
table.

The main tasks of triggers are like enforcing business rules, validating input data, and keeping
an audit trail.

Usage of Triggers:
o Triggers are used for enforcing business rules.
o Validating input data.
o Generating a unique value for a newly-inserted row in a different file.
o Write to other files for audit trail purposes.
o Query from other files for cross-referencing purposes.
o Used to access system functions.

o Replicate data to different files to achieve data consistency.

Advantages of using triggers:

o Triggers make the application development faster. Because the database stores triggers, you do

not have to code the trigger actions into each database application.
o Define a trigger once and you can reuse it for many applications that use the database.

o Maintenance is easy. If the business policy changes, you have to change only the corresponding

trigger program instead of each application program.

RASHMI| PATEL Page 61

UNIT-1 Introduction to SQLite

How to create trigger

The CREATE TRIGGER statement is used to create a new trigger in SQLite. This statement is also
used to add triggers to the database schema.

Syntax:

CREATE TRIGGER trigger_name [BEFORE|AFTER] event_name
ON table_name

BEGIN

-- Trigger logic goes here....

END;

Here, trigger_name is the name of trigger which you want to create.
event_name could be INSERT, DELETE, and UPDATE database operation.
table_name is the table on which you do the operation.

If you combine the time when the trigger is fired and the event that cause the trigger to be
fired,you have a total of 9 possibilities.

e BEFORE INSERT

e AFTER INSERT

e BEFORE UPDATE

e AFTER UPDATE

e BEFORE DELETE

e AFTER DELETE

e |INSTEAD OF INSERT

e INSTEAD OF DELETE

e INSTEAD OF UPDATE

Suppose you use a UPDATE statement to update 10 rows in a table,the trigger that associated
with the table is fired 10 times.This trigger is called FOR EACH ROW trigger.If the trigger
associated with the table is fired one time,we call this trigger a FOR EACH STATEMENT trigger.

RASHMI| PATEL Page 62

UNIT-1 Introduction to SQLite

The following table illustrates the rules:

Action References

INSERT NEW is available

UPDATE Both NEW and OLD are available
DELETE OLD is available

SQLite Triggers:Example AFTER INSERT

In the following example, we have two tables : emp_details and emp_log. To insert
some information into emp_logs table (which have three fields emp_id and salary and
edttime) every time, when an INSERT happen into emp_details table we have used the
following trigger :

CREATE TRIGGER aft_insert AFTER INSERT ON emp_details

BEGIN

INSERT INTO emp_log(emp_id,salary,edittime)
VALUES(NEW.employee_id,NEW.salary,current_date);

END;

SQLite Triggers:Example BEFORE INSERT

In the following example, before inserting a new record in emp_details table, a trigger
check the column value of FIRST_NAME, LAST_NAME, JOB_ID and

- If there are any space(s) before or after the FIRST_NAME, LAST_NAME, LTRIM()
function will remove those.

- The value of the JOB_ID will be converted to upper cases by UPPER() function.

RASHMI| PATEL Page 63

UNIT-1 Introduction to SQLite

Here is the trigger befo_insert:

CREATE TRIGGER befo_insert BEFORE INSERT ON emp_details
BEGIN
SELECT CASE

WHEN ((SELECT emp_details . employee_id FROM emp_details WHERE
emp_details.employee_id = NEW.employee_id) ISNULL)

THEN RAISE(ABORT, 'This is an User Define Error Message - This employee_id does not exist.')
END;

END;

SQLite Triggers:Example AFTER UPDATE

We have two tables student_mast and stu_log. student_mast have three columns
STUDENT _ID, NAME, ST_CLASS. stu_log table has two columns user_id and description.

CREATE TRIGGER aft_update AFTER UPDATE ON student_mast

BEGIN

INSERT into stu_log (description) values('Update Student Record '| |
OLD.NAME || " Previous Class:'||OLD.ST_CLASS ||' PresentClass'| |
NEW.st_class);

END;

SQLite Triggers:Example BEFORE UPDATE

We have two tables student_mast and student_marks. Here are the sample tables
below. The student_id column of student_mast table is the primary key and in
student_marks table, it is a foreign key, the reference to student_id column of
student_mast table.

RASHMI| PATEL Page 64

UNIT-1 Introduction to SQLite

CREATE TRIGGER befo_update BEFORE UPDATE ON student_mast
BEGIN
SELECT CASE

WHEN ((SELECT student_id FROM student_marks WHERE student_id = NEW.student_id)
ISNULL)

THEN RAISE(ABORT, 'This is a User Define Error Message - This ID can not be updated.')
END;

END;

SQLite Triggers:Example AFTER DELETE

In our 'AFTER UPDATE' example, we had two tables student_mast and stu_log.
student_mast have three columns STUDENT _ID, NAME, ST_CLASS and stu_log table has
two columns user_id and description. We want to store some information in stu_log
table after a delete operation happened on student_mast table. Here is the trigger :

Here is the trigger

CREATE TRIGGER aft_delete AFTER DELETE ON student_mast

BEGIN

INSERT into stu_log (description) VALUES ('Update Student Record '| |
OLD.NAME| |"'Class :'| |OLD.ST_CLASS| |"'-> Deleted on '| |
date('NOW'));

END;

RASHMI| PATEL Page 65

UNIT-1 Introduction to SQLite

SQLite Triggers:Example BEFOR DELETE

We have two tables student_mast and student_marks. Here are the sample tables
below. The student_id column of student_mast table is the primary key and in
student_marks table, it is a foreign key, a reference to student_id column of
student_mast table.

CREATE TRIGGER befo_delete BEFORE DELETE ON student_marks
BEGIN
SELECT CASE

WHEN (SELECT COUNT(student_id) FROM student_mast WHERE student_id=OLD.student_id) >
0

THEN RAISE(ABORT,
'Foreign Key Violation: student_masts rows reference row to be deleted.")
END;

END;
How to DROP trigger

To delete or destroy a trigger, use a DROP TRIGGER statement. To execute this
command, the current user must be the owner of the table for which the trigger is
defined.

Syntax:

I DROP TRIGGER trigger_name
Example:

If you delete or drop the just created trigger delete_stu the following statement can be
used:

DROP TRIGGER delete_stu on student_mast;

RASHMI| PATEL Page 66

UNIT-2 Database backup and CSV handling

2.1 SQLite dump:[How To Use The SQLite Dump Command]

The SQLite dump command to backup and restore a database.

.dump command that give you the ability to dump the entire database or table into text file.

2.1.1 Dump the entire database into a file using the SQLite dump command

The following command opens a new SQLite database connection to the student.db file.

C:\sqlite>sqlite3 c:/sqlite/student.db
SQLite version 3.13.0 2016-05-18 10:57:30
Enter”.help”for usage hints.
Sqlite>

To dump a database into a file, you use the .dump command. The .dump command converts the entire
structure and data of an SQLite database into a single text file.

By default, the .dump command outputs the SQL statements on screen. To issue the output to a file, you
use the .output FILENAME command.

The following commands specify the output of the dump file to student.sql and dump the student
database into the student.sql file.

sqlite> .output c:/sqlite/student.sql

2.1.2 Dump a specific table using the SQLite dump command

To dump a specific table, you specify the table name after the .dump command. For example, the
following command saves the albums table to the albums.sql file.

UNIT-2 Database backup and CSV handling

The following picture shows the contents of the albums.sql file.

PRAGMA foreign keys=0FF:
—|BEGIN TRANSACTION:
CREATE TABLE "albums"
=1
[AlbumId] INTEGER PRIMARY EKEEY AUTOINCREMENT NOT NULL,
[Title] MVARCHAR(_:c0) NOT NULL,
[Arti=stId] INTEGEE HNOT HNULL,
FOREIGH EEY ([ArtistId]) REFERENCES "zrtists" ([ArtistId])
ON DELETE NHO ACTICHN ON UPDATE NO ACTION

-3

INSERT INTO "album=" VALUES(l,'For Those Lbout To Rock We Salute You',l):
INSERT INTO "albums" VALUES(Z,'Balls toc the Wall',2):

INSERT INTO "albums" VALUES (3, 'Restlessz and Wild',2):

INSERT INTO "albums" VALUES(4,'Let There EBe Rock',1l):

INSERT INTO "albums" VALUES (S, 'Big Cmes',3):

INSERT INTO "album=s" VALUES (¢, 'Jagged Little Pill',4);

INSERT INTO "albums" VALUES(7,'Facelift',S):

THSERT. THNTO "alkhypms" WALTRES (2, 'Warner 75 Rnos'.f)

2.1.3 Dump tables structure only using schema commandTo dump the table structures in
a database, you use the .schema command.

The following commands set the output file to student_structure.sql file and save the table structures into
the student_structure.sql file:

sqlite> .output c:/sqlite/student_structure.sql

The following picture shows the content of the student_structure.sql file.

CREATE TABLE "albums"

[AlbumId] INTEGER PRIMARY EEY AUTCINCEEMENT NOT HULL,

[Title] HVARCHAR (. c0) HNOT HOULL,

[Arti=stId] INTEGER HNOT HOULL,

FOREIGH EEY ([ArtistId]) REFERENCES "artists" ([ArtistId])
ON DELETE HO ACTIOHN ON UPDATE HO ACTION

=)

CREATE TABLE "artistcs"

=N
[Arti=tId] INTEGER PFRIMARY EEY AUTOINCEEMENT HNOT HNULL,
[Mame] NVARCHAR(.Z0O)
=)
CREATE TABLE "customers"
=K

UNIT-2 Database backup and CSV handling

2.1.4 Dump data of one or more tables into a file

To dump the data of a table into a text file, you use these steps:

First, set the mode to insert using the .mode command as follows:

sglite> .mode insert

Code language: CSS (css)

From now on, every SELECT statement will issue the result as the INSERT statements instead of pure
text data.

Second, set the output to a text file instead of the default standard output. The following command sets
the output file to the data.sql file.

sqlite> .output data.sql

Third, issue the SELECT statements to query data from a table that you want to dump. The following
command returns data from the artists table.

sqlite> select * from artists;

Check the content of the data.sql file, if everything is fine, you will see the following output:

INSERT INTO table VALUES(Z,°
INSERT INTO tabkle VALUES(Z,°
INSERT INTO table VALUES(Z,°
IHNSERT INTO table VALUES (<,
IHNSERT INTO table VALUES(Z,
INSERT INTO tabkle VALUES(S,°
v
v

[
| =]

T
HoO

v
¥
m o 0

= I | (I e |

d
m -

[a1]

=]
[¥]

1= I
i
ot

0 H
fu J
-

o 0
a1}

=]

INSERT INTO table VALUES (7,
INSERT INTO table VALUES (S
INSERT INTO tabkle VALUES (=,°
IHNSERT IHTO table VALUES(O,'Billv

L]
s

e
i

a
udio
=

3ot
= m H

[

Lt
oo
0
()
]

T =
o
=

To dump data from other tables, you need to issue the SELECT statements to query data from those
tables.

https://www.sqlitetutorial.net/sqlite-select/
https://www.sqlitetutorial.net/sqlite-insert/
https://www.sqlitetutorial.net/sqlite-select/

UNIT-2 Database backup and CSV handling

2.2 CSV file handling:
2.2.1 Import a CSV file into a table

In the first scenario, you want to import data from CSV file into a table that does not exist in the SQLite
database.

1. First, the sqlite3 tool creates the table. The sqlite3 tool uses the first row of the CSV file as the
names of the columns of the table.

2. Second, the sqlite3 tool import data from the second row of the CSV file into the table.

We will import a CSV file named student.csv with following format.

A B C D E
1 [RollMo Mame Class Narks Grade
2 1 Rakesh 4 67 C
3 2 Rishav 3 a6 D
4 3 Harshit G 90 A
5 4 Diksha 3 36 D
6 5 Rajesh g 98 A
7 6 Tarun 7 87 A
8 7 Binita G 76 B
9 8 Seema 5 29 A
10 9 Mohit 4 05 C
11 10 Sumit 3 76 B
12 11 Ramesh 7 B9 C

To import the c:\sqlite\student.csv file into the stud table:

First, set the mode to CSV to instruct the command-line shell program to interpret the input file as a
CSV file. To do this, you use the .mode command as follows:

sqlite> .mode csv

Second, use the command .import FILE TABLE to import the data from the student.csv file into the stud
table.

sqlite>.import c:/sqlite/student.csv stud

To verify the import, you use the command .schema to display the structure of the stud table.

UNIT-2 Database backup and CSV handling

sqlite> .schema stud
CREATE TABLE IF NOT EXISTS "stud"(

"Roll No" TEXT, "Name"” TEXT, "Class” TEXT, "Marks" TEXT,
"Grade" TEXT);
sqlite>

To view the data of the student table, you use the following SELECT statement.

SELECT * FROM STUD;

Then the output is:

sqlite> select * from stud;
1,Rakesh,4,67,C
2,Rishav,5,56,D
3,Harshit,6,90,A
4,Diksha,3,56,D
5,Rajesh,8,98,A

6, Tarun,/7,87,A
7,Binita,6,76,B
8,Seema,5,89,A
9,Mohit,4,65,C
10,Sumit,5,76,B
11,Ramesh,7,69,C

Here Record are separate in comma beacase we give mode in csv and not there header.
If we want to header and table format we write following command.
Sqlite>.header on
Sqlite>.mode box
OR

Sqlite>.mode column

UNIT-2 Database backup and CSV handling

sqlite> .
sqlite> .mode box
sqlite> select * from stud;

Rakesh
Rishav
Harshit
Diksha
Rajesh
Tarun
Binita
Seema
Mohit
Sumit
Ramesh

1
2
3
4
5
6
7
8
9

SN U R TSN 00w Y B
O WO WP 0> 00

2.2.3 Export a CSV file from a table

SQLite project provides you with a command-line program called sqlite3 or sqlite3.exe on
Windows. By using the sqlite3 tool, you can use the SQL statements and dot-commands to
interact with the SQLite database.

To export data from the SQLite database to a CSV file, you use these steps:

1. Turn on the header of the result set using the .header on command.

2. Set the output mode to CSV to instruct the sqlite3 tool to issue the result in the CSV
mode.

3. Send the output to a CSV file.

4. Issue the query to select data from the table to which you want to export.

UNIT-2 Database backup and CSV handling

First you create table employee in sqlite like following formate.

sqlite> select * from employee;

Rakesh Executive manager | 80000.0
Rahul Executive manager | 80000.0
Vikash Asst manager 80000.0
Varun Manager 80000.0
Harshit | Supervisor 80000.0
Tarun senior manager 80000.0
Rishav Supervisor 80000.0
Rakesh Executive manager | 80000.0

OOV B WwWwNE

The following commands select data from the employee table and export it to the emp.csv file.

.header on
.mode csv
.output C:\sqlite\emp.csv

select * from employee;
.quit

If you check the emp.csv file, you will see the following output.

A B C D
1 |eno !ename desg salary
2 1 Rakesh Executive manager 80000
3 2 Rahul Executive manager 80000
4 3 Vikash Asst manager 80000
5 4 Varun Manager 20000
& 5 Harshit Supervisor 80000
7 6 Tarun senior manager 20000
8 7 Rishav Supervisor 80000
9 8 Rakesh Executive manager 80000

UNIT-3 Python Intraction With SQLite

Python Modules

A python module can be defined as a python program file which contains a python code
including python functions, class, or variables. In other words, we can say that our python code
file saved with the extension (.py) is treated as the module. We may have a runnable code
inside the python module.

Modules in Python provides us the flexibility to organize the code in a logical way.

To use the functionality of one module into another, we must have to import the specific
module.

Example

In this example, we will create a module named as file.py which contains a function func that
contains a code to print some message on the console.

Let's create the module named as file.py.

#displayMsg prints a message to the name being passed.
def displayMsg(name)

print("Hi "+name);

Here, we need to include this module into our main module to call the method displayMsg()
defined in the module named file.

Loading the module in our python code

We need to load the module in our python code to use its functionality. Python provides two
types of statements as defined below.

1. The import statement

2. The from-import statement

The import statement

The import statement is used to import all the functionality of one module into another. Here,
we must notice that we can use the functionality of any python source file by importing that file
as the module into another python source file.

UNIT-3 Python Intraction With SQLite

We can import multiple modules with a single import statement, but a module is loaded once
regardless of the number of times, it has been imported into our file.

The syntax to use the import statement is given below.

import modulel,module2,........ module n

Hence, if we need to call the function displayMsg() defined in the file file.py, we have to import
that file as a module into our module as shown in the example below.

Example:

import file;
name = input("Enter the name?")

file.displayMsg(name)

Output:

Hi John
The from-import statement

Instead of importing the whole module into the namespace, python provides the flexibility to
import only the specific attributes of a module. This can be done by using from? import
statement. The syntax to use the from-import statement is given below.

from < module-name> import <name 1>, <name 2>..,<name n>

Consider the following module named as calculation which contains three functions as
summation, multiplication, and divide.

calculation.py:

#place the code in the calculation.py
def summation(a,b):
return a+b
def multiplication(a,b):
return a*b;
def divide(a,b):

return a/b;

UNIT-3 Python Intraction With SQLite

Main.py:

from calculation import summation

#it will import only the summation() from calculation.py

a = int(input("Enter the first number"))

b = int(input("Enter the second number"))

print("Sum =",summation(a,b)) #we do not need to specify the module name while accessing s

ummation()

Output:

Enter the first number10
Enter the second number20
Sum = 30

The from...import statement is always better to use if we know the attributes to be imported
from the module in advance. It doesn't let our code to be heavier. We can also import all the
attributes from a module by using *.

Consider the following syntax.

from <module> import *

Renaming a module

Python provides us the flexibility to import some module with a specific name so that we can
use this name to use that module in our python source file.

The syntax to rename a module is given below.
import <module-name> as <specific-name>

Example

#the module calculation of previous example is imported in this example as cal.
import calculation as cal;
a = int(input("Enter a?"));
b = int(input("Enter b?"));

print("Sum =",cal.summation(a,b))

UNIT-3 Python Intraction With SQLite

Output:

Enter a?10
Enter b?20
Sum = 30

PYTHONPATH

PYTHONPATH is an environment variable which you can set to add additional directories where
python will look for modules and packages. For most installations, you should not set these
variables since they are not needed for Python to run. Python knows where to find its standard
library.

The only reason to set PYTHONPATH is to maintain directories of custom Python libraries that
you do not want to install in the global default location (i.e., the site-packages directory).

Setting PYTHONPATH on a windows machine follow the below step:
1. Right click on My Computer and click on properties.

2. Click on Advanced System settings

View basic information about your computer

e & e
> »om
;]
8

vemory (RAM

Lenove suppon

UNIT-3 Python Intraction With SQLite

3. Click on Environment Variable tab.

System Properties — | X
|| | Computer Name] Hardware | Advanced | System Protection | Remote |
A You must be logged on as an Administrator to make most of these changes
Pedormance
)
Visual eflects. processor scheduling, memory usage. and virtual memory
]
| Semngs_ |
User Profles
Deskiop settings related 1o your logon
L Setiogs- |
Startup and Recovery
f System stariup. system fadure. and debugging informabon
. Y
: Settings.. |
[S
‘. Enviconment Vatiables.. |
N L J
"
| L oK Cancel A

4. Click on new tab of user variables.

rErwi«mmem Vanables e s » wum JQLLJ.

User variables for OM
Variable Value
classpath C:\oraclexe\app'oracie\product\10.2.0\,...
JAVA_HOME C:\Program Files\Java\jdk1.7.0
TEMP SUSERPROFILES:\AppData\Local\Temp
TMP FUSERPROFILE%\AppData\Local\Temp
| Mew.qul. Edt.. || Delete
System variables
Variable Value -
CQLASSPATH 2
ComSpec C:\Windows\system32\omd. exe
FP_NO_HOST_C... NO
NUMBER_OF_PR...

4

UNIT-3 Python Intraction With SQLite

5. Write path in variable name

New User Variable X
Variable name: path
Variable value:
‘ cancel |

6. Copy the path of Python folder

7. Paste path of Python in variable value.

—

New User Variable ,,gg
Variable name: path
Variable value: C:\Python27
OK Cancel j

UNIT-3 Python Intraction With SQLite

8. Click on Ok button:

- : -
Emmvmm—-l-&i
User variables for OM "
‘ Variable Vaiuve -
dasspath C:\oradexe\app\oracie\product\10.2.0\... _["
JAVA_HOME C:\Program Files\Java\)dki.7.0 3 ’
path C:\Python27
TEMP RUSERPROFILE%\AppData\Local\Temp
Nl 1 ']
| mew.. |[et |[oeere | |
System variables
Varisble Value a
CLASSPATH =)
ComSpec C:\Windows\system32\omd, exe
FP_NO_MOST_C... NO
NUMBER_OF PR... 4
=
| New.. || ede

| Computer Name | Hardware | Advanced | System Protecson | Remote| ‘

You must be logged on as an Administratos to make most of these changes
Performance
Visual eflects, processor scheduling, memory usage. and virtual memory

User Profles
Deskiop settings related 1o your logon

Startup and Recovery
System startup, system fadure, and debugging informaton

UNIT-3 Python Intraction With SQLite

Concepts of Namespace and scope

In python we deal with variables, functions, libraries and modules etc. There is a chance the name of the
variable you are going to use is already existing as name of another variable or as the name of another
function or another method. In such scenario, we need to learn about how all these names are managed
by a python program. This is the concept of namespace.

Following are the three categories of namespace

e Local Namespace: All the names of the functions and variables declared by a program
are held in this namespace. This namespace exists as long as the program runs. < /p>

e Global Namespace: This namespace holds all the names of functions and other variables
that are included in the modules being used in the python program. It encompasses all
the names that are part of the Local namespace.

e Built-in Namespace: This is the highest level of namespace which is available with default
names available as part of the python interpreter that is loaded as the programing
environment. It encompasses Global Namespace which in turn encompasses the local
namespace.

Built-in
namespace

Global

namespace

Local
namespace

Type of Namespaces

Scope of Namespace

The namespace has a lifetime when it is available. That is also called the scope. Also the scope
will depend on the coding region where the variable or object is located. You can see in the
below program how the variables declared in an inner loop are available to the outer loop but
not vice-versa. Also please note how the name of the outer function also becomes part of a
global variable.

UNIT-3 Python Intraction With SQLite

Example

prog_var = 'Hello'
def outer_func():

outer_var ="x'

def inner_func():
inner_var ="'y’

print(dir(), ' Local Variable in Inner function')

inner_func()

print(dir(), 'Local variables in outer function')

outer_func()
print(dir(), 'Global variables ')

Running the above code gives us the following result -

Output

['inner_var'] Local Variable in Inner function

['inner_func', 'outer_var'] Local variables in outer function

,'_name__',

['__annotations_ ', ' builtins_',' cached ' ' doc_'' file ' ' loader _
' package_',' spec_ ', 'outer_func', 'prog_var'] Global variables

UNIT-3 Python Intraction With SQLite

Package in Python

We organize a large number of files in different folders and subfolders based on some
criteria, so that we can find and manage them easily. In the same way, a package in
Python takes the concept of the modular approach to next logical level. As you know,
a module can contain multiple objects, such as classes, functions, etc. A package can
contain one or more relevant modules. Physically, a package is actually a folder
containing one or more module files.

Let's create a package named mypackage, using the following steps:

o Create a new folder named D:\MyApp.

e Inside MyApp, create a subfolder with the name 'mypackage’.

e Create an empty __init__.py file in the mypackage folder.

e Using a Python-aware editor like IDLE, create modules greet.py and functions.py
with the following code:

greet.py

def SayHello(name):
print("Hello ", name)
functions.py

Copy
def sum(x,y):

return x+y

def average(x,y):
return (x+y)/2

def power(x,y):
return x**y

That's it. We have created our package called mypackage. The following is a folder
structure:

[\
__init__.py

S
MyApp e mypackage greet.py

S
functions.py

RASHMI| PATEL Page 10

https://www.tutorialsteacher.com/Content/images/python/package.png
https://www.tutorialsteacher.com/python/python-module
https://www.tutorialsteacher.com/Content/images/python/package.png

UNIT-3 Python Intraction With SQLite

Importing sqlite3 module

SQLite3 can be integrated with Python using sqlite3 module, which was written by Gerhard
Haring. It provides an SQL interface compliant with the DB-API 2.0 specification described by
PEP 249. You do not need to install this module separately because it is shipped by default
along with Python version 2.5.x onwards.

To use sqlite3 module, you must first create a connection object that represents the database
and then optionally you can create a cursor object, which will help you in executing all the SQL
statements.

Importing sqlite3:

Import sqlite3

Connect to Database

Here to connect with database we use connect()

connect()

This routine opens a connection to the SQLite database file.You can use “.memory:” to
open a database connection to database that resides in RAM instead of on disk.If database is
opened successfully,it return a connection object.

When a database is accessed by multiple connections,and one of the processes modify the
database,the sqlite database is locked until that transaction is committed.

Syntax:
sglite3.connect(database[,timeout,other optional arguments])
Example:

Following Python code shows how to connect to an existing database. If the database does not
exist, then it will be created and finally a database object will be returned.

import sqlite3
conn = sqlite3.connect(‘example.db’)

print(‘Opened database successfully’)

Now, let's run the above program to create our database test.db in the current directory. You
can change your path as per your requirement. Keep the above code in sqlite.py file and

RASHMI| PATEL Page 11

UNIT-3 Python Intraction With SQLite

execute it as shown below. If the database is successfully created, then it will display the
following message.

Output:

Open database successfully

Execute()

This routine execute an SQL statement may be parameterize.The sqlite3 module
supports two kinds of placeholders:question marks and named placeholder.

Syntax:
Cursor.execute(sql,[,optional parameters])

Example:

Cursor.execute(“insert into student(sno,sname) values(1,’Ram’)”)

Create a Table

Following Python program will be used to create a table in the previously created database.
import sqlite3

conn = sqlite3.connect('example.db’)

print(‘Opened database successfully’)

cursor = conn.cursor()

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

sql ="'CREATE TABLE EMPLOYEE(

FIRST_NAME CHAR(20) NOT NULL, LAST_NAME CHAR(20),

AGE INT,SEX CHAR(1), INCOME FLOAT)""

cursor.execute(sql)

print("Table created successfully........ ")

Output:

RASHMI| PATEL Page 12

UNIT-3 Python Intraction With SQLite

Opened database successfully

Table created successfully........

Insert Operation

Following Python program shows how to create records in the COMPANY table created in the
above example.

import sqlite3

conn = sqlite3.connect('example.db')

print(‘Opened database successfully’)

cursor = conn.cursor()

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

sql =""CREATE TABLE EMPLOYEE(

FIRST_NAME CHAR(20) NOT NULL, LAST_NAME CHAR(20),
AGE INT,SEX CHAR(1), INCOME FLOAT)""
cursor.execute(sql)

print("Table created successfully........ ")

cursor.execute("'INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, INCOME)
VALUES ('Ramya’, 'Rama Priya', 27, 'F', 9000)"")

cursor.execute('"'INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, INCOME)
VALUES ('Vinay', 'Battacharya’, 20, 'M', 6000)""')

cursor.execute("'INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, INCOME)
VALUES ('Sharukh', 'Sheik’, 25, 'M', 8300)"")

cursor.execute("'INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, INCOME)
VALUES ('Sarmista’, 'Sharma', 26, 'F', 10000)""')

cursor.execute(""INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX,INCOME)
VALUES ('Tripthi', 'Mishra', 24, 'F', 6000)"")

RASHMI| PATEL Page 13

UNIT-3 Python Intraction With SQLite

print("Records inserted........ ")

When the above program is executed, it will create the given records in the COMPANY table
and it will display the following two lines —

Output:
Opened database successfully
Table created successfully........

Records inserted........

Select Operation

For fetch and display record from table we use two methods fetchone() and fetchall().
Fetchone():
fetchone() method returns a single record or none if no more rows are available.

To fetch a single row from a result set we can use cursor,fetchone().this method return a single
tuple.

Syntax:
Cursor.fetchone()

Fetchone():

fetchall() method fetches all row of query result, returning a list. An empty set is returned when
no rows are available.Get resultset from the cursor object using a cursor.fetchall().

Syntax:
Cursor.fetchall()
Example of fetchone() and fetchall():

Following Python program shows how to fetch and display records from the COMPANY table
created in the above example.

import sqlite3

RASHMI| PATEL Page 14

UNIT-3 Python Intraction With SQLite

conn = sqlite3.connect('example.db')

cursor = conn.cursor()
cursor.execute("SELECT * from EMPLOYEE")
result = cursor.fetchone();

print(result)

result = cursor.fetchall();

print(result)

conn.commit()

conn.close()

When the above program is executed, it will produce the following result.
Output:

(‘Ramya’, 'Rama Priya', 27, 'F', 9000.0)

[('"Vinay', 'Battacharya’, 20, 'M', 6000.0), (‘Sharukh’, 'Sheik', 25, 'M', 8300.0), ('Sarmista’, 'Sharma', 26, 'F',
10000.0), ('Tripthi', '"Mishra', 24, 'F', 6000.0)]

Update operation

Following Python code shows how to use UPDATE statement to update any record and then
fetch and display the updated records from the COMPANY table.

import sqlite3

conn = sqlite3.connect('example.db')

conn.execute("update EMPLOYEE set FIRST_NAME='Kavya' where LAST_NAME='Sharma""')
print("record updated.....")

cursor = conn.cursor()

cursor.execute("SELECT * from EMPLOYEE")

result = cursor.fetchall();

RASHMI| PATEL Page 15

UNIT-3 Python Intraction With SQLite

print(result)
conn.commit()

conn.close()

When the above program is executed, it will produce the following result.

Output:
record updated.....

[('Ramya’, 'Rama Priya', 27, 'F', 9000.0), ('Sharukh', 'Sheik’, 25, 'M', 8300.0), ('Kavya', 'Sharma’', 2
6, 'F', 10000.0), (‘Tripthi', '"Mishra', 24, 'F', 6000.0)]

Delete Operation

Following Python code shows how to use DELETE statement to delete any record and then
fetch and display the remaining records from the COMPANY table.

import sqlite3

conn = sqlite3.connect('example.db')
conn.execute("delete from EMPLOYEE where AGE=20")
print("record deleted.....")

cursor = conn.cursor()

cursor.execute("SELECT * from EMPLOYEE")

result = cursor.fetchall();

print(result)

conn.commit()

conn.close()

Output:
record deleted.....

[('Ramya’, 'Rama Priya', 27, 'F', 9000.0), ('Sharukh', 'Sheik', 25, 'M', 8300.0), ('Sarmista’, 'Sharma'
, 26, 'F', 10000.0), ('Tripthi', '"Mishra', 24, 'F', 6000.0)]

RASHMI| PATEL Page 16

UNIT-4 Python Intraction With text and CSV

Python File Handling

The file handling plays an important role when the data needs to be stored permanently into
the file. A file is a named location on disk to store related information. We can access the stored
information (non-volatile) after the program termination.

The file-handling implementation is slightly lengthy or complicated in the other programming
language, but it is easier and shorter in Python.

In Python, files are treated in two modes as text or binary. The file may be in the text or binary
format, and each line of a file is ended with the special character.

Hence, a file operation can be done in the following order.

o Openafile
o Read or write - Performing operation

o Close the file

Opening a file
Python provides an open() function that accepts two arguments, file name and access mode in
which the file is accessed. The function returns a file object which can be used to perform

various operations like reading, writing, etc.

Syntax:

file object = open(<file-name>, <access-mode>, <buffering>)

The files can be accessed using various modes like read, write, or append. The following are the
details about the access mode to open a file.

SN | Access Description
mode

1 r It opens the file to read-only mode. The file pointer exists at the beginning. The file is by
default open in this mode if no access mode is passed.

2 rb It opens the file to read-only in binary format. The file pointer exists at the beginning of the
file.

3 r+ It opens the file to read and write both. The file pointer exists at the beginning of the file.

4 rb+ It opens the file to read and write both in binary format. The file pointer exists at the
beginning of the file.

5 w It opens the file to write only. It overwrites the file if previously exists or creates a new one

UNIT-4 Python Intraction With text and CSV

if no file exists with the same name. The file pointer exists at the beginning of the file.

6 wb It opens the file to write only in binary format. It overwrites the file if it exists previously or
creates a new one if no file exists. The file pointer exists at the beginning of the file.

7 w+ It opens the file to write and read both. It is different from r+ in the sense that it overwrites
the previous file if one exists whereas r+ doesn't overwrite the previously written file. It
creates a new file if no file exists. The file pointer exists at the beginning of the file.

8 whb+ It opens the file to write and read both in binary format. The file pointer exists at the
beginning of the file.

9 a It opens the file in the append mode. The file pointer exists at the end of the previously
written file if exists any. It creates a new file if no file exists with the same name.

10 | ab It opens the file in the append mode in binary format. The pointer exists at the end of the
previously written file. It creates a new file in binary format if no file exists with the same
name.

11 | a+ It opens a file to append and read both. The file pointer remains at the end of the file if a
file exists. It creates a new file if no file exists with the same name.

12 | ab+ It opens a file to append and read both in binary format. The file pointer remains at the end
of the file.

Let's look at the simple example to open a file named "file.txt" (stored in the same directory) in
read mode and printing its content on the console.

Example

#opens the file file.txt in read mode

fileptr = open("file.txt","r")

if fileptr:

print("file is opened successfully")
Output:
file is opened successfully

In the above code, we have passed filename as a first argument and opened file in read mode
as we mentioned r as the second argument. The fileptr holds the file object and if the file is
opened successfully, it will execute the print statement

UNIT-4 Python Intraction With text and CSV

Reading and Writing Files

The file object provides a set of access methods to make our lives easier. We would see how to
use read() and write() methods to read and write files.

Write() Method

The write() method writes any string to an open file. It is important to note that Python strings
can have binary data and not just text.

The write() method does not add a newline character ('\n') to the end of the string -
Syntax

fileObject.write(string)

Here, passed parameter is the content to be written into the opened file.

Example

fo = open("demo.txt", "wh")
fo.write("Python is a great language.\nYeah its great!!\n")
fo.close()

The above method would create foo.txt file and would write given content in that file and
finally it would close that file. If you would open this file, it would have following content.

Output:

Python is a great language.

Yeah its great!!

Read() Method

The read() method reads a string from an open file. It is important to note that Python strings
can have binary data. apart from text data.

Syntax

fileObject.read([count])

Here, passed parameter is the number of bytes to be read from the opened file. This method
starts reading from the beginning of the file and if count is missing, then it tries to read as
much as possible, maybe until the end of file.

UNIT-4 Python Intraction With text and CSV

Example

Let's take a file foo.txt, which we created above.
fo = open("demo.txt", "r+")

str = fo.read(10);

print "Read String is : ", str

fo.close()
Output:

Read String is : Python is

Readline() Method

readline() method will return a line from the file when called.

This is line 1
This is line 2
This is line 3
This is line 4
This is line 5

This is line 1

Syntax

file.readline()
Example

Let us suppose we have a text file with the name examples.txt with the following content.
examples.txt
Python is the best programming language in the world in 2020

Edureka is the biggest Ed-tech platform to learn python
Python programming is as easy as writing a program in simple English language

https://www.edureka.co/blog/file-handling-in-python/

UNIT-4 Python Intraction With text and CSV

Now, to use the readline, we will have to open the example.txt file.

file = open("example.txt", "r")
examplel = file.readline()
example2 = file.readline(14)
print(examplel)
print(example2)

Output:

Python is the best programming language in the world in 2020
Edureka is the

Readlines() Method

readlines() method will return all the lines in a file in the format of a list where each element is
a line in the file.

This is line 1

This is line 2

This is line 3

This is line 4

This is line 5
[This is line 1,
This is line 2,
This is line 3,
This is line 4,
This is line 5]

Syntax

file.readlines()
Example

Let us suppose we have a text file with the name examples.txt with the following content.
examples.txt
Python is the best programming language in the world in 2020

Edureka is the biggest Ed-tech platform to learn python
Python programming is as easy as writing a program in simple English language

https://www.edureka.co/blog/lists-in-python/

UNIT-4 Python Intraction With text and CSV

Now, to use the readline, we will have to open the example.txt file.

file = open("example.txt", "r")
examplel = file.readlines()
example2 = file.readlines(80)
print(examplel)
print(example2)

Output: ['Python is the best programming language in the world in 2020',
'Edureka is the biggest Ed-tech platform to learn python',
'Python programming is as easy as writing a program in simple English language']

['Python is the best programming language in the world in 2020',
‘Edureka is the biggest Ed-tech platform to learn python']

The close() method

Once all the operations are done on the file, we must close it through our Python script using
the close() method. Any unwritten information gets destroyed once the close() method is called
on a file object.

We can perform any operation on the file externally using the file system which is the currently
opened in Python; hence it is good practice to close the file once all the operations are done.

The syntax to use the close() method is given below.

Syntax

fileobject.close()

Consider the following example.

fileptr = open("file.txt","r")
if fileptr:
print("file is opened successfully")
fileptr.close()
After closing the file, we cannot perform any operation in the file. The file needs to be properly
closed. If any exception occurs while performing some operations in the file then the program

terminates without closing the file.

We should use the following method to overcome such type of problem.

try:

UNIT-4 Python Intraction With text and CSV

fileptr = open("file.txt")
perform file operations
finally:

fileptr.close()

The with statement

The with statement was introduced in python 2.5. The with statement is useful in the case of
manipulating the files. It is used in the scenario where a pair of statements is to be executed
with a block of code in between.

The syntax to open a file using with the statement is given below.

with open(<file name>, <access mode>) as <file-pointer>:

#istatement suite

The advantage of using with statement is that it provides the guarantee to close the file
regardless of how the nested block exits.

It is always suggestible to use the with statement in the case of files because, if the break,
return, or exception occurs in the nested block of code then it automatically closes the file, we

don't need to write the close() function. It doesn't let the file to corrupt.

Consider the following example.

Example

with open("file.txt",'r') as f:
content = f.read();

print(content)

UNIT-4 Python Intraction With text and CSV

What is the CSV File?

A CSV file (Comma Separated Values file) is a type of plain text file that uses specific structuring
to arrange tabular data. Because it’s a plain text file, it can contain only actual text data—in
other words, printable ASCI| or Unicode characters.

The structure of a CSV file is given away by its name. Normally, CSV files use a comma to
separate each specific data value. Here’s what that structure looks like:

column 1 name,column 2 name, column 3 name
first row data 1,first row data 2,first row data 3

second row data 1,second row data 2,second row data 3

Notice how each piece of data is separated by a comma. Normally, the first line identifies each
piece of data—in other words, the name of a data column. Every subsequent line after that is
actual data and is limited only by file size constraints.

In general, the separator character is called a delimiter, and the comma is not the only one

used. Other popular delimiters include the tab (\t), colon (:) and semi-colon (;) characters.
Properly parsing a CSV file requires us to know which delimiter is being used.

Reading a csv file in Python

To read a CSV file in Python, you follow these steps:
First, import the csv module:
csV,

Second, open the CSV file using the built-in open() function in the read mode:

f = open('path/to/csv_file')

If the CSV contains UTF8 characters, you need to specify the encoding like this:

f = open('path/to/csv_file', encoding='UTF8')

Third, pass the file object () to the reader() function of the csv module. The reader() function
returns a csv reader object:

csv_reader = csv.reader(f)

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode

UNIT-4 Python Intraction With text and CSV

The csv_reader is an iterable object of lines from the CSV file. Therefore, you can iterate over the
lines of the CSV file using a for loop:

line in csv_reader:
print(line)

Each line is a list of values. To access each value, you use the square bracket notation []. The
first value has an index of 0. The second value has an index of 1, and so on.

For example, the following accesses the first value of a particular line:

Finally, always close the file once you’re no longer access it by calling the close() method of the
file object:

f.close()

It’ll be easier to use the with statement so that you don’t need to explicitly call
the close() method.

The following illustrates all the steps for reading a CSV file:

CSV|

open('path/to/csv_file', 'r') as f:
csv_reader = csv.reader(f)

line in csv_reader:
print(line)

Reading a CSV file examples

We’'ll use the country.csv file that contains country information including name, area, 2-letter
country code, 3-letter country code:

"name","area","country code2","country code3"
"Afghanistan","652090.00","AF", "AFG"
"Albania","28748.00","AL","ALB"

"Algeria™,"2381741.00","DZ","DZA"
"American Samoa","199.0@","AS","ASM"
"Andorra","468.00","AD", "AND"
"Angola","1246700.00","A0", "AGO"

https://www.pythontutorial.net/python-basics/python-iterables/
https://www.pythontutorial.net/python-basics/python-list/

UNIT-4 Python Intraction With text and CSV

country.csv file

A B C D

1 name area country code2 country code3
2 | Afghanistan 652090 AF AFG

3 Albania 28748 AL ALB

4 |Algeria 2381741 DZ DZA

5 American Samoa 199 AS ASM

6 |Andorra 468 AD AND

7 Angola 1246700 AO AGO

8 |Anguilla 96 Al AlA

The following shows how to read the country.csv file and display each line to the screen:

CSV|

open('country.csv', encoding="utf8") as f:
csv_reader = csv.reader(f)

line in csv_reader:
print(line)

Output:

['name’, 'area’, 'country_code2', 'country_code3']
['Afghanistan’, '652090.00', 'AF', 'AFG']
['Albania’, '28748.00', 'AL', 'ALB']

['Algeria’, '2381741.00', 'DZ', 'DZA']
['American Samoa', '199.00', 'AS', 'ASM']

Reading a CSV file using the DictReader class

When you use the csv.reader() function, you can access values of the CSV file using the bracket
notation such as line[0], line[1], and so on. However, using the csv.reader() function has two main
limitations:

e First, the way to access the values from the CSV file is not so obvious. For example,
the line[0] implicitly means the country name. It would be more expressive if you can access the
country name like line['country_name'].

RASHMI PATEL Page 10

https://www.pythontutorial.net/country/

UNIT-4 Python Intraction With text and CSV

e Second, when the order of columns from the CSV file is changed or new columns are added, you
need to modify the code to get the right data.

This is where the DictReader class comes into play. The DictReader class also comes from
the csv module.

The DictReader class allows you to create an object like a regular CSV reader. But it maps the
information of each line to a dictionary (dict) whose keys are specified by the values of the first

line.

By using the DictReader class, you can access values in the country.csv file
like line['name'], line['area'], line['country_code2'], and line['country_code3'].

The following example uses the DictReader class to read the country.csv file:

CSV|

open('country.csv', encoding="utf8") as f:
csv_reader = csv.DictReader(f)
line in csv_reader:
print(f"The area of {line['name']} is {line['area']} km2")

Output:

The area of Afghanistan is 652090.00 km2
The area of Albania is 28748.00 km2

The area of Algeria is 2381741.00 km2

If you want to have different field names other than the ones specified in the first line, you can
explicitly specify them by passing a list of field names to the DictReader() constructor like this:

CSV|

fieldnames = ['country_name', 'area’, 'code2’, 'code3']

open('country.csv', encoding="utf8") as f:
csv_reader = csv.DictReader(f, fieldnames)
next(csv_reader)

line in csv_reader:
print(f"The area of {line['country_name'l} is {line['area']} km2")
In this example, instead of using values from the first line as the field names, we explicitly pass
a list of field names to the DictReader constructor.

RASHMI PATEL Page 11

https://www.pythontutorial.net/python-basics/python-dictionary/

UNIT-4 Python Intraction With text and CSV

Steps for writing a CSV file

To write data into a CSV file, you follow these steps:

e First, open the CSV file for writing (w mode) by using the open() function.

e Second, create a CSV writer object by calling the writer() function of the csv module.

e Third, write data to CSV file by calling the writerow() or writerows() method of the CSV
writer object.

e Finally, close the file once you complete writing data to it.

The following code illustrates the above steps:

f = open('path/to/csv_file', 'w')
writer = csv.writer(f)
writer.writerow(row)

It’ll be shorter if you use the with statement so that you don’t need to call the close() method to
explicitly close the file:

with open('path/to/csv_file', 'w') as f:

writer = csv.writer(f)
writer.writerow(row)

If you’re dealing with non-ASClI characters, you need to specify the character encoding in
the open() function.

The following illustrates how to write UTF-8 characters to a CSV file:

with open('path/to/csv_file', 'w', encoding='UTF8') as f:
writer = csv.writer(f)

writer.writerow(row)

Writing to CSV files example

The following example shows how to write data to the CSV file:

import csv|

RASHMI PATEL Page 12

UNIT-4 Python Intraction With text and CSV

header = ['name’, 'area’, 'country_code?2', 'country_code3']
data = ['Afghanistan’, 652090, 'AF', 'AFG']

with open('countries.csv', 'w', encoding="'UTF8') as f:
writer = csv.writer(f)

writer.writerow(header)
writer.writerow(data)

If you open the countries.csv, you’ll see one issue that the file contents have an additional blank
line between two subsequent rows:

name, area,country code2,country code3

Afghanistan,652090,AF,AFG

To remove the blank line, you pass the keyword argument newline=" to the open() function as
follows:

import csv|

header = ['name’, 'area’, 'country_code2', 'country_code3']
data = ['Afghanistan’, 652090, 'AF', 'AFG']

with open('countries.csv', 'w', encoding='UTF8', newline=") as f:
writer = csv.writer(f)

writer.writerow(header)
writer.writerow(data)

Output:

name,area,country code2,country code3

Afghanistan,652090,AF,AFG

Writing multiple rows to CSV files

To write multiple rows to a CSV file at once, you use the writerows() method of the CSV writer
object.

The following uses the writerows() method to write multiple rows into the countries.csv file:

import csv,

RASHMI PATEL Page 13

UNIT-4 Python Intraction With text and CSV

header = ['name’, 'area’, 'country code2', 'country code3']

['Albania’, 28748, 'AL', 'ALB'],
['Algeria’, 2381741, 'DZ', 'DZA'],
['American Samoa', 199, 'AS', 'ASM'],
['Andorra’, 468, 'AD', 'AND'],
['Angola’, 1246700, 'AQ', 'AGO']

with open('countries.csv', 'w', encoding="UTF8&', newline=") as f:
writer = csv.writer(f)

writer.writerow(header)
writer.writerows(data)

Writing to CSV files using the DictWriter class

If each row of the CSV file is a dictionary, you can use the Dictwriter class of the csv module to
write the dictionary to the CSV file.

The example illustrates how to use the DictWriter class to write data to a CSV file:

import csv|

fieldnames = ['name’, 'area’, 'country_code?2', 'country_code3']

{'name': 'Albania’,
'area': 28748,
'country_code2': 'AL,
'country_code3': 'ALB'},
{'name': 'Algeria’,

'area': 2381741,
'country_code2': 'DZ',
'‘country_code3': 'DZA'},
{'name': '"American Samoa',
'area': 199,
'country_code2': 'AS',
'country_code3': 'ASM'

RASHMI PATEL Page 14

UNIT-4 Python Intraction With text and CSV

with open('countries.csv', 'w', encoding='UTF8', newline="

writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(rows)

How it works.

o First, define variables that hold the field names and data rows of the CSV file.

e Next, open the CSV file for writing by calling the open() function.

e Then, create a new instance of the Dictwriter class by passing the file object (f)
and fieldnames argument to it.

e After that, write the header for the CSV file by calling the writeheader() method.

e Finally, write data rows to the CSV file using the writerows() method.

DataFrame Handling using Panda and Numpy

Python Pandas Introduction

Pandas is defined as an open-source library that provides high-performance data manipulation
in Python. The name of Pandas is derived from the word Panel Data, which means an
Econometrics from Multidimensional data. It is used for data analysis in Python and developed
by Wes McKinney in 2008.

Data analysis requires lots of processing, such as restructuring, cleaning or merging, etc. There
are different tools are available for fast data processing, such as Numpy, Scipy, Cython,
and Panda. But we prefer Pandas because working with Pandas is fast, simple and more
expressive than other tools.

Pandas is built on top of the Numpy package, means Numpy is required for operating the
Pandas.

Before Pandas, Python was capable for data preparation, but it only provided limited support
for data analysis. So, Pandas came into the picture and enhanced the capabilities of data
analysis. It can perform five significant steps required for processing and analysis of data
irrespective of the origin of the data, i.e., load, manipulate, prepare, model, and analyze.

Key Features of Pandas

o It has afast and efficient DataFrame object with the default and customized indexing.

o Used for reshaping and pivoting of the data sets.

RASHMI PATEL Page 15

UNIT-4 Python Intraction With text and CSV

o Group by data for aggregations and transformations.
o ltis used for data alighment and integration of the missing data.
o Provide the functionality of Time Series.

o Process a variety of data sets in different formats like matrix data, tabular heterogeneous, time

series.

o Handle multiple operations of the data sets such as subsetting, slicing, filtering, groupBy, re-

ordering, and re-shaping.
o ltintegrates with the other libraries such as SciPy, and scikit-learn.

o Provides fast performance, and If you want to speed it, even more, you can use the Cython.

Benefits of Pandas

The benefits of pandas over using other language are as follows:

o Data Representation: It represents the data in a form that is suited for data analysis through its

DataFrame and Series.

o Clear code: The clear APl of the Pandas allows you to focus on the core part of the code. So, it

provides clear and concise code for the user.

Python Pandas Data Structure

The Pandas provides two data structures for processing the data, i.e., Series and DataFrame,
which are discussed below:

1) Series

It is defined as a one-dimensional array that is capable of storing various data types. The row
labels of series are called the index. We can easily convert the list, tuple, and dictionary into
series using "series' method. A Series cannot contain multiple columns. It has one parameter:
Data: It can be any list, dictionary, or scalar value.

Creating Series from Array:

Before creating a Series, Firstly, we have to import the numpy module and then use array()
function in the program.

RASHMI PATEL Page 16

UNIT-4 Python Intraction With text and CSV

import pandas as pd

import numpy as np

info = np.array(['P','a','n",'d",'a’,'s'])
a = pd.Series(info)

print(a)

Output

0]
1
2
3
4
)

Explanation: In this code, firstly, we have imported the pandas and numpy library with
the pd and np alias. Then, we have taken a variable named "info" that consist of an array of

some values. We have called the info variable through a Series method and defined it in an "a
variable. The Series has printed by calling the print(a) method.

2) DataFrame

It is a widely used data structure of pandas and works with a two-dimensional array with
labeled axes (rows and columns). DataFrame is defined as a standard way to store data and has
two different indexes, i.e., row index and column index. It consists of the following properties:

o The columns can be heterogeneous types like int, bool, and so on.

o It can be seen as a dictionary of Series structure where both the rows and columns are indexed.

It is denoted as "columns" in case of columns and "index" in case of rows.
Create a DataFrame using List:

We can easily create a DataFrame in Pandas using list.

import pandas as pd

x = ['Python', 'Pandas']
df = pd.DataFrame(x)
print(df)

Output

RASHMI PATEL Page 17

UNIT-4 Python Intraction With text and CSV

0]
0 Python
1 Pandas

Explanation: In this code, we have defined a variable named "x" that consist of string values.
The DataFrame constructor is being called on a list to print the values.

Create a DataFrame from Dict of equal length of lists

All the list in dict must be of same length.If index is passed,then the length of the index should
equal to the length of the arrays.If no index is passed,then by default,index will be
range(n),where n is the array length.

Example

import pandas as pd
Dict={'"Name":['ram’,'deep’,'pankaj','jay'],'marks':[44,65,75,48]}
df=pd.DataFrame(Dict)

print(df)
Output:

Name marks
0 ram 44
1 deep 65
2 pankaj 75
3 jay 48

Example: create a DataFrame from List of Dicts

List of Dictionaries can be passed as input data to create a DataFrame.The dictionary
keys are by default taken as column names.

Import pandas as pd
Data=[{'x’:10,’y’:20}.{'x’":55,’y’:15,’2":88}]
Df=pd.DtaFrame(data)

Output

X
0

1 55

RASHMI PATEL Page 18

UNIT-4 Python Intraction With text and CSV

Create Data Frame from Excel Spreadsheet

The Pandas library provides features using which we can read the Exel file in full as well in parts
for only a selected group of data,we can also read an Exel file with multiple sheets in it.we use
the read_excel function to read the data from it.you can create this file using the Exel program
and save the file as demo.xIsx.

A B C D
1 |Eno Mame Salary Dept
2 101 amit 20000 account
3 102 deep 25000 sales
4 103 jay 21500 design
5 104 nency 21000 account
3] 105 shree 15000 sales

import pandas as pd
data=pd.read_excel('demo.xlIsx')
print(data)

Output

Eno Name Salary Dept
0 101 amit 20000 account
1 102 deep 25000 sales
2 103 jay 21500 design
3 104 nency 21000 account
4 105 shree 15000 sales

Create Data Frame from .csv file

A CSV 1is a comma-separated values file,which allows data to be saved in a
tabular format.CSVs look like a garden-variety spreadsheet but with a .csv
extension.read csv () function is used to load data from .csv file in pytho
n data frame.save the file as demo.csv.

import pandas as pd
data=pd.read_csv('demo.csv')
print(data)

Output

Eno Name Salary Dept
0 101 amit 20000 account
1 102 deep 25000 sales
2 103 jay 21500 design
3 104 nency 21000 account
4 105 shree 15000 sales

RASHMI PATEL Page 19

UNIT-4 Python Intraction With text and CSV

Extracting Specific Attributes and Rows

Extract Specific Columns

import pandas as pd
data=pd.read_csv('demo.csv')
print(data)

Get column 'Name'
print(data['Name'])

Get multiple columns
print(data[['Name', 'Salary']])

Extract Specific Rows

Get first row
print(data.iloc[0])

Get rows by condition
print(data[data['Salary'] > 15000])

Central Tendency Measures

Mathematically central tendency means measuring the center or distribution of location of
values of a data set. It gives an idea of the average value of the data in the data set and also an
indication of how widely the values are spread in the data set. That in turn helps in evaluating
the chances of a new input fitting into the existing data set and hence probability of success.
There are three main measures of central tendency which can be calculated using the methods
in pandas python library.

e Mean:-
Purpose: Measures the average value of a dataset.

Use: Helpful to understand the central value of numeric columns (e.g., average marks of
students).

Example: print("Mean Salary:", data['Salary'].mean())

RASHMI PATEL Page 20

UNIT-4 Python Intraction With text and CSV

e Maedian :-
Purpose: Gives the middle value when the data is sorted.

Use: Useful when data contains outliers or skewed distribution. Unlike mean, it's not
affected by extreme values.

Example: print("Median Salary:", data['Salary'].median())
e Mode:-
Purpose: Returns the most frequently occurring value.
Use: Useful to find popular or common values (e.g., most common age or marks).
Example: print("Mode 'Salary":", data['Salary'].mode())
e Variance :-
Purpose: Measures the spread of data points from the mean.

Use: Tells how much the data varies. High variance means data is spread out; low means it is
closely clustered.

Example: print("Variance of 'Salary":", data['Salary'].var())

e Standard Deviation:-
Purpose: Square root of variance; shows how much values deviate from the mean.
Use: Common in data science to measure consistency or risk.

Example: print("Standard Deviation of 'Salary":", data['Salary'].std())

RASHMI PATEL Page 21

UNIT-4 Python Intraction With text and CSV

DataFrame Functions

(1) head(n) : Returns the first n rows

Example

First 2 rows
print (data.head (2))

(2) tail(n) : Returns the last n rows
Example

Last 2 rows
print (data.tail (2))

(3)loc[]:Access rows/columns using labels
Example

print (data.loc[0:2, ['Name', 'Salary']l])

(4)iloc[] :Access rows/columns using index numbers
Example

print (data.iloc[0:3, 1:37])
(5) to_numpy () :Convert to NumPy array (recommended)
Example

print (data.to numpy())

(6)describe () : Summary statistics of numerical columns
Example

print (data.describe())

RASHMI PATEL Page 22

UNIT-5 Data Visualization using dataframe

Matplotlib Pyplot
Pyplot

Most of the Matplotlib utilities lies under the pyplot submodule, and are usually imported under
the plt alias:

import matplotlib.pyplot as plt
Now the Pyplot package can be referred to as plt.

Example
Draw a line in a diagram from position (0,0) to position (6,250):

import matplotlib.pyplot as plt
import numpy as np

xpoints = np.array([0, 6])
ypoints = np.array([0, 250])
plt.plot(xpoints, ypoints)
plt.show()

Result:

2501

200 4

150 -

100 -

50

Matplotlib Plotting
Plotting x and y points

The plot() function is used to draw points (markers) in a diagram.

UNIT-5 Data Visualization using dataframe

By default, the plot() function draws a line from point to point.
The function takes parameters for specifying points in the diagram.
Parameter 1 is an array containing the points on the x-axis.
Parameter 2 is an array containing the points on the y-axis.

If we need to plot a line from (1, 3) to (8, 10), we have to pass two arrays [1, 8] and [3, 10] to the
plot function.

Example

Draw a line in a diagram from position (1, 3) to position (8, 10):
import matplotlib.pyplot as plt
import numpy as np

xpoints = np.array([1, 8])
ypoints = np.array([3, 10])

plt.plot(xpoints, ypoints)
plt.show()

Result:

-
[N]
w
S
w4
o
~
=)

UNIT-5 Data Visualization using dataframe

Matplotlib Markers
Markers

You can use the keyword argument marker to emphasize each point with a specified marker:

Example
Mark each point with a circle:

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, marker = '0')
plt.show()

Result:

101

T T T T T T T
0.0 0.5 10 15 2.0 2.5 3.0

Example

Mark each point with a star:

plt.plot(ypoints, marker = '*')

UNIT-5 Data Visualization using dataframe

Result:

101

T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

Marker Reference

You can choose any of these markers:

Marker Description
'o' Circle

Bl Star

. Point

Y Pixel

'x' X

https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_o
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_star
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_point
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_pixel
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_x

UNIT-5 Data Visualization using dataframe

X' X (filled)

"+ Plus

'p' Plus (filled)

's' Square

‘D' Diamond

'd' Diamond (thin)
i) Pentagon

'H' Hexagon

'h' Hexagon

'v' Triangle Down
A Triangle Up

https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_x_filled
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_plus
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_plus_filled
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_s
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_D
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_thin_d
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_p
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_H
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_hexagon
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_v
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_triangle_up

UNIT-5 Data Visualization using dataframe

< Triangle Left
> Triangle Right
1 Tri Down

2' Tri Up

'3’ Tri Left

'4' Tri Right

Vline

Hline

Format Strings fmt

You can use also use the shortcut string notation parameter to specify the marker.
This parameter is also called fmt, and is written with this syntax:
marker | line | color

Example

Mark each point with a circle:

https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_triangle_left
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_triangle_right
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_1
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_2
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_3
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_4
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_vline
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_marker_hline

UNIT-5 Data Visualization using dataframe

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, 'o:r')

plt.show()
Result:
10 ~ b
8 '..
6 4
4 1 B
c".
21 .
0.‘0 0:5 l.IO l.‘5 2:0 2.‘5 3.‘0

The marker value can be anything from the Marker Reference above.

The line value can be one of the following:
Line Reference

Line Syntax Description

! Solid line

Dotted line

https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_fmt_line_solid
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_fmt_line_dot

UNIT-5 Data Visualization using dataframe

-- Dashed line

) Dashed/dotted line

Note: If you leave out the line value in the fmt parameter, no line will be plotted.

The short color value can be one of the following:

Color Reference

Color Syntax Description
r' Red

'g' Green

‘b’ Blue

'c' Cyan

'm' Magenta

'y Yellow

https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_fmt_line_dash
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_fmt_line_dashdot
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_fmt_y

UNIT-5 Data Visualization using dataframe

'k' Black

‘W' White

Marker Size

You can use the keyword argument markersize or the shorter version, ms to set the size of the
markers:

Example
Set the size of the markers to 20:

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([3, 8, 1, 10])
plt.plot(ypoints, marker = '0', ms = 20)
plt.show()

Result:

101

T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_fmt_k
https://www.w3schools.com/python/trypython.asp?filename=demo_matplotlib_fmt_w

UNIT-5 Data Visualization using dataframe

Marker Color

You can use the keyword argument markeredgecolor or the shorter mec to set the color of
the edge of the markers:

Example
Set the EDGE color to red:

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, marker = 'o', ms = 20, mec ='r')
plt.show()

Result:

101

0.0 0.5 10 15 2.0 2.5 3.0

You can use the keyword argument markerfacecolor or the shorter mfc to set the color inside the
edge of the markers:

Example
Set the FACE color to red:

import matplotlib.pyplot as plt
import numpy as np

RASHMI PATEL Page 10

UNIT-5 Data Visualization using dataframe

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, marker = '0', ms = 20, mfc = 'r')
plt.show()

Result:

10 A

T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

Use both the mec and mfc arguments to color of the entire marker:
Example

Set the color of both the edge and the face to red:

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, marker = '0', ms = 20, mec ='r', mfc ="'r')
plt.show()

RASHMI PATEL Page 11

UNIT-5 Data Visualization using dataframe

Result:

You can also use Hexadecimal color values:

Example

Mark each point with a beautiful green color:

plt.plot(ypoints, marker = 'o', ms = 20, mec = '#4CAF50', mfc = '#4CAF50')

Result:

Or any of the 140 supported color names.

RASHMI PATEL Page 12

https://www.w3schools.com/colors/colors_hexadecimal.asp
https://www.w3schools.com/colors/colors_names.asp

UNIT-5 Data Visualization using dataframe

Example

Mark each point with the color named "hotpink":

plt.plot(ypoints, marker = 'o', ms = 20, mec = 'hotpink', mfc = 'hotpink’)

Result:

10 4

T T T T T T T
0.0 0.5 10 15 2.0 2.5 3.0

Matplotlib Line

Linestyle

You can use the keyword argument linestyle, or shorter Is, to change the style of the plotted line:

Example
Use a dotted line:

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, linestyle = 'dotted')
plt.show()

RASHMI PATEL Page 13

UNIT-5 Data Visualization using dataframe

Result:
10 4
el
6
al
21
0.‘0 0:5 1.‘0 l.‘5 2:0 2:5 3.‘0
Example
Use a dashed line:
plt.plot(ypoints, linestyle = 'dashed')
Result:
10 - ;
8 “ ,’l
] ,”z \‘\\ I,”
4 y \\\ rl"
2 \\ .rlf
0.‘0 0:5 1.‘0 l.‘5 2:0 2.‘5 3.‘0
Shorter Syntax

The line style can be written in a shorter syntax:

linestyle can be written as Is.

dotted can be written as :.

RASHMI PATEL Page 14

UNIT-5 Data Visualization using dataframe

dashed can be written as --.

Example
Shorter syntax:

plt.plot(ypoints, Is = ":")

Result:

104

T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Line Styles

You can choose any of these styles:

Style Or

'solid' (default) B

‘dotted’ "

'dashed' -

RASHMI PATEL Page 15

UNIT-5 Data Visualization using dataframe

'dashdot’ -

'None' "or"'

Line Color

You can use the keyword argument color or the shorter c to set the color of the line:

Example
Set the line color to red:

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, color = 'r')
plt.show()

Result:

10 +

T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

You can also use Hexadecimal color values:

RASHMI PATEL Page 16

https://www.w3schools.com/colors/colors_hexadecimal.asp

UNIT-5 Data Visualization using dataframe

Example

Plot with a beautiful green line:

plt.plot(ypoints, ¢ = '#4CAF50")

Result:

10 +

T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Or any of the 140 supported color names.

Line Width

You can use the keyword argument linewidth or the shorter Iw to change the width of the line.
The value is a floating number, in points:
Example

Plot with a 20.5pt wide line:

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, linewidth = '20.5")
plt.show()

RASHMI PATEL Page 17

https://www.w3schools.com/colors/colors_names.asp

UNIT-5 Data Visualization using dataframe

Result:

10 4

Multiple Lines

Example

import matplotlib.pyplot as plt
import numpy as np

vyl = np.array([3, 8, 1, 10])

y2 = np.array([6, 2, 7, 11])
plt.plot(y1)

plt.plot(y2)

plt.show()

Result:

10 4

T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

RASHMI PATEL Page 18

UNIT-5 Data Visualization using dataframe

You can also plot many lines by adding the points for the x- and y-axis for each line in the
same plt.plot() function. The x- and y- values come in pairs:

Example

Draw two lines by specifiyng the x- and y-point values for both lines:

import matplotlib.pyplot as plt
import numpy as np

x1 =np.array([0, 1, 2, 3])
vyl = np.array([3, 8, 1, 10])
x2 = np.array([0, 1, 2, 3])
y2 = np.array([6, 2, 7, 11])

plt.plot(x1, y1, x2, y2)
plt.show()

Result:

10 4

T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

RASHMI PATEL Page 19

UNIT-5 Data Visualization using dataframe

Create Labels for a Plot

With Pyplot, you can use the xlabel() and ylabel() functions to set a label for the x- and y-axis.

Example
Add labels to the x- and y-axis:

import numpy as np
import matplotlib.pyplot as plt

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt.plot(x, y)

plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")

plt.show()

Result:

320 4

w
S
S

[

@

(=]
L

Calorie Burnage

~
=}
o

240 4

T T T T T
80 90 100 110 120
Average Pulse

Create a Title for a Plot

With Pyplot, you can use the title() function to set a title for the plot.

Example

RASHMI PATEL Page 20

UNIT-5 Data Visualization using dataframe

Add a plot title and labels for the x- and y-axis:

import numpy as np
import matplotlib.pyplot as plt

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt.plot(x, y)

plt.title("Sports Watch Data")
plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")

plt.show()
Result:
Sports Watch Data
320 4
v 300
g
5
o
£ 2801
=l
&
260
240
HID 9‘0 160 liD 12ID

Average Pulse

Set Font Properties for Title and Labels

You can use the fontdict parameter in xlabel(), ylabel(), and title() to set font properties for the
title and labels.

Example

Set font properties for the title and labels:

import numpy as np
import matplotlib.pyplot as plt

RASHMI PATEL Page 21

UNIT-5 Data Visualization using dataframe

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

fontl = {'family':'serif','color':'blue’,'size':20}
font2 = {'family":'serif','color':'darkred’,'size':15}

plt.title("Sports Watch Data", fontdict = font1)

plt.xlabel("Average Pulse", fontdict = font2)
plt.ylabel("Calorie Burnage", fontdict = font2)

plt.plot(x, y)

plt.show()
Result:
Sports Watch Data
3204
<]
g 300
g
=
[na]
_E 280
2
o]
@]
260 4
2404
8‘0 9‘0 160 liO l2|0

Average Pulse

Position the Title

You can use the loc parameter in title() to position the title.

Legal values are: 'left’, 'right', and 'center'. Default value is 'center".

Example
Position the title to the left:

import numpy as np
import matplotlib.pyplot as plt

RASHMI PATEL Page 22

UNIT-5 Data Visualization using dataframe

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt.title("Sports Watch Data", loc = "left")

plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")

plt.plot(x, y)
plt.show()

Result:

Sports Watch Data

320 1

w
=]
=]

N

@

[=]
L

Calorie Burnage

)

=

o
L

240

80 90 100 110 120
Average Pulse

Matplotlib Adding Grid Lines
Add Grid Lines to a Plot

With Pyplot, you can use the grid() function to add grid lines to the plot.

Example
Add grid lines to the plot:

import numpy as np
import matplotlib.pyplot as plt

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

RASHMI PATEL Page 23

UNIT-5 Data Visualization using dataframe

plt.title("Sports Watch Data")
plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")

plt.plot(x, y)

plt.grid()
plt.show()
Result:
Sports Watch Data
320
o 300
g
E
£ 280
o
8
260
240
80 % 100 110 120

Average Pulse

Specify Which Grid Lines to Display

You can use the axis parameter in the grid() function to specify which grid lines to display.
Legal values are: 'x', 'y', and 'both'. Default value is 'both'.
Example

Display only grid lines for the x-axis:

import numpy as np
import matplotlib.pyplot as plt

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt.title("Sports Watch Data")

RASHMI PATEL Page 24

UNIT-5 Data Visualization using dataframe

plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")

plt.plot(x, y)

plt.grid(axis = 'x')

plt.show()
Result:
Sports Watch Data
320 |
» 300
2
E
5]
2 2801
=
]
(9]
260
240
80 % 100 110 120
Average Pulse
Example

Display only grid lines for the y-axis:

import numpy as np
import matplotlib.pyplot as plt

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt.title("Sports Watch Data")

plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")

plt.plot(x, y)

plt.grid(axis = 'y')

RASHMI PATEL Page 25

UNIT-5 Data Visualization using dataframe

plt.show()
Result:
Sports Watch Data
320 4
» 300
B
£
@
g 280
o
8
260 -
240
80 % 100 110 120

Average Pulse

Set Line Properties for the Grid

You can also set the line properties of the grid, like this: grid(color = 'color', linestyle = 'linestyle',
linewidth = number).

Example
Set the line properties of the grid:

import numpy as np
import matplotlib.pyplot as plt

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt.title("Sports Watch Data")
plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")
plt.plot(x, y)

plt.grid(color = 'green’, linestyle = '--', linewidth = 0.5)

plt.show()

RASHMI PATEL Page 26

UNIT-5 Data Visualization using dataframe

Result:
Sports Watch Data
320
v 300
B
E
@
£ 280
S
-]
[&]
260
240
80 90 100 110 120
Average Pulse

Display Multiple Plots

With the subplot() function you can draw multiple plots in one figure:

Example
Draw 2 plots:

import matplotlib.pyplot as plt
import numpy as np

#plot 1:
x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])

plt.subplot(1, 2, 1)
plt.plot(x,y)

#plot 2:
x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])

plt.subplot(1, 2, 2)
plt.plot(x,y)

RASHMI PATEL Page 27

UNIT-5 Data Visualization using dataframe

plt.show()
Result:
10 4 40 4
35 A
N
30 4
6_
25 1
4 20
15 4
24
10 4
0 1 2 § 0 1 2 3

The subplot() Function

The subplot() function takes three arguments that describes the layout of the figure.

The layout is organized in rows and columns, which are represented by
the first and second argument.

The third argument represents the index of the current plot.

plt.subplot(1, 2, 1)
#the figure has 1 row, 2 columns, and this plot is the first plot.

plt.subplot(1, 2, 2)
#the figure has 1 row, 2 columns, and this plot is the second plot.

So, if we want a figure with 2 rows an 1 column (meaning that the two plots will be displayed on top
of each other instead of side-by-side), we can write the syntax like this:

Example

Draw 2 plots on top of each other:

RASHMI PATEL Page 28

UNIT-5 Data Visualization using dataframe

import matplotlib.pyplot as plt
import numpy as np

#plot 1:
x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])

plt.subplot(2, 1, 1)
plt.plot(x,y)

#plot 2:
x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])

plt.subplot(2, 1, 2)
plt.plot(x,y)

plt.show()
Result:
10
E 4
6
al
N
0.‘0 0:5 1.‘0 l.‘5 2:0 2.‘5 3.‘()
40
30 1
20
10 L T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

You can draw as many plots you like on one figure, just descibe the number of rows, columns, and
the index of the plot.

Example

Draw 6 plots:

RASHMI PATEL Page 29

UNIT-5 Data Visualization using dataframe

import matplotlib.pyplot as plt
import numpy as np

x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])

plt.subplot(2, 3, 1)
plt.plot(x,y)

x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])

plt.subplot(2, 3, 2)
plt.plot(x,y)

x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])

plt.subplot(2, 3, 3)
plt.plot(x,y)

x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])

plt.subplot(2, 3, 4)
plt.plot(x,y)

x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])

plt.subplot(2, 3, 5)
plt.plot(x,y)

x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])

plt.subplot(2, 3, 6)
plt.plot(x,y)

plt.show()

RASHMI PATEL Page 30

UNIT-5 Data Visualization using dataframe

Result:
10 4 40 10 4
8 4 8
30
6 - 6
44 20 44
2 2
1Cl-I
0 2 0 2 0 2
40 10 40]
o
30 1 30
N
201 4 20
2_
107\ T T T loi\
0 2 0 2 0 2
[itle

You can add a title to each plot with the title() function:

Example
2 plots, with titles:

import matplotlib.pyplot as plt
import numpy as np

#plot 1:
x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])

plt.subplot(1, 2, 1)

plt.plot(x,y)
plt.title("SALES")

#plot 2:
x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])

plt.subplot(1, 2, 2)

plt.plot(x,y)
plt.title("INCOME")

RASHMI PATEL Page 31

UNIT-5 Data Visualization using dataframe

plt.show()
Result:
SALES INCOME
10 4 40 4
35 4
el
30 +
6
25 1
4 20
15
21
10
0 1 2 é 0 1 2 3
Super Title

You can add a title to the entire figure with the suptitle() function:

Example
Add a title for the entire figure:

import matplotlib.pyplot as plt
import numpy as np

#plot 1:
x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])

plt.subplot(1, 2, 1)

plt.plot(x,y)
plt.title("SALES")

#plot 2:
x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])

plt.subplot(1, 2, 2)

RASHMI PATEL Page 32

UNIT-5 Data Visualization using dataframe

plt.plot(x,y)
plt.title("INCOME")

plt.suptitle("MY SHOP")

plt.show()
Result:
MY SHOP
SALES INCOME
10 A 40 -
35 4
ol
30 1
6
25 1
4 20 1
15 4
5
10
0 1 2 é 0 1 2 3

Matplotlib Scatter
Creating Scatter Plots

With Pyplot, you can use the scatter() function to draw a scatter plot.

The scatter() function plots one dot for each observation. It needs two arrays of the same length,
one for the values of the x-axis, and one for values on the y-axis:

Example
A simple scatter plot:

import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])

plt.scatter(x, y)
plt.show()

RASHMI PATEL Page 33

UNIT-5 Data Visualization using dataframe

Result:

110 1

105 4

100 1

95 4

90

85 L]

80

The observation in the example above is the result of 13 cars passing by.
The X-axis shows how old the car is.

The Y-axis shows the speed of the car when it passes.

Are there any relationships between the observations?

It seems that the newer the car, the faster it drives, but that could be a coincidence, after all we
only registered 13 cars.

Compare Plots

In the example above, there seems to be a relationship between speed and age, but what if we plot
the observations from another day as well? Will the scatter plot tell us something else?

Example
Draw two plots on the same figure:

import matplotlib.pyplot as plt
import numpy as np

#day one, the age and speed of 13 cars:

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])

y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
plt.scatter(x, y)

RASHMI PATEL Page 34

UNIT-5 Data Visualization using dataframe

#day two, the age and speed of 15 cars:

x = np.array([2,2,8,1,15,8,12,9,7,3,11,4,7,14,12])

y = np.array([100,105,84,105,90,99,90,95,94,100,79,112,91,80,85])
plt.scatter(x, y)

plt.show()
Result:
[]
110 - ¢
1054 & @
[]
100 e @ . .
95 4 . .]
90 ° [] []
¢ L]
85 + e e [] [] ®
80 1 L]
H
L]
2 4 6 8 lID lIZ 14 16

Note: The two plots are plotted with two different colors, by default blue and orange, you will learn
how to change colors later in this chapter.

By comparing the two plots, | think it is safe to say that they both gives us the same conclusion: the
newer the car, the faster it drives.

Colors

You can set your own color for each scatter plot with the color or the c argument:

Example
Set your own color of the markers:

import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])

RASHMI PATEL Page 35

UNIT-5 Data Visualization using dataframe

plt.scatter(x, y, color = 'hotpink’)

x = np.array([2,2,8,1,15,8,12,9,7,3,11,4,7,14,12])

y = np.array([100,105,84,105,90,99,90,95,94,100,79,112,91,80,85])
plt.scatter(x, y, color = '#88c999')

plt.show()

Result:

110 4

105 1

100 -

95 1

90

854

80+

Color Each Dot

You can even set a specific color for each dot by using an array of colors as value for
the c argument:

Note: You cannot use the color argument for this, only the c argument.

Example
Set your own color of the markers:

import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors =

np.array(["red","green","blue","yellow","pink","black","orange","purple","beige","brown","gray","c

RASHMI PATEL Page 36

UNIT-5 Data Visualization using dataframe

yan","magenta"])

plt.scatter(x, y, c=colors)

plt.show()
Result:
110 1
105 A
100 A .
95 -
90 4
&5 e e *°* L]
80 1
* L J
2 4 6 8 lIO 1I2 14 16

ColorMap

The Matplotlib module has a number of available colormaps.

A colormap is like a list of colors, where each color has a value that ranges from 0 to 100.

Here is an example of a colormap:

1ee

88
[:1:]
a8

28

RASHMI PATEL Page 37

UNIT-5 Data Visualization using dataframe

This colormap is called 'viridis' and as you can see it ranges from 0, which is a purple color, and up
to 100, which is a yellow color.

How to Use the ColorMap

You can specify the colormap with the keyword argument cmap with the value of the colormap, in
this case 'viridis' which is one of the built-in colormaps available in Matplotlib.

In addition you have to create an array with values (from 0 to 100), one value for each of the point
in the scatter plot:

Example

Create a color array, and specify a colormap in the scatter plot:

import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])

plt.scatter(x, y, c=colors, cmap="viridis')

plt.show()
Result:
[]
110 1
105 +
[]
100 A ®
95 ®
90 4
[
o5 | ° e @ .
80 1
®
2 4 33 8 lID 12 14 16

RASHMI PATEL Page 38

UNIT-5 Data Visualization using dataframe

Size
You can change the size of the dots with the s argument.

Just like colors, make sure the array for sizes has the same length as the arrays for the x- and y-axis:

Example
Set your own size for the markers:

import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])

y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])

sizes = np.array([20,50,100,200,500,1000,60,90,10,300,600,800,75])
plt.scatter(x, y, s=sizes)

plt.show()

Result:

no | @

105 A
100 A
95
90 4

[
®
N Y ®

804

T T T T T T T
2 4 6 8 10 12 14 16

Alpha

You can adjust the transparency of the dots with the alpha argument.

Just like colors, make sure the array for sizes has the same length as the arrays for the x- and y-axis:

RASHMI PATEL Page 39

UNIT-5 Data Visualization using dataframe

Example
Set your own size for the markers:

import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
sizes = np.array([20,50,100,200,500,1000,60,90,10,300,600,800,75])

plt.scatter(x, y, s=sizes, alpha=0.5)

plt.show()
Result:
r"ﬁ\,
1104
105 -
)
100 -
95 -
90
° "6’ LY h
85 4 N ‘\ y 4
80 - .
o
2 4 6 8 10 12 14 16

Combine Color Size and Alpha

You can combine a colormap with different sizes on the dots. This is best visualized if the dots are
transparent:

Example
Create random arrays with 100 values for x-points, y-points, colors and sizes:

import matplotlib.pyplot as plt
import numpy as np

RASHMI PATEL Page 40

UNIT-5 Data Visualization using dataframe

X = np.random.randint(100, size=(100))

y = np.random.randint(100, size=(100))

colors = np.random.randint(100, size=(100))

sizes = 10 * np.random.randint(100, size=(100))

plt.scatter(x, y, c=colors, s=sizes, alpha=0.5, cmap="nipy_spectral')
plt.colorbar()

plt.show()

Result:

100

K oS
80 - o

oy

20 A

Matplotlib Bars

Creating Bars

With Pyplot, you can use the bar() function to draw bar graphs:

Example
Draw 4 bars:

import matplotlib.pyplot as plt
import numpy as np

X = np.array([llAll’ IIBII’ IICII’ IIDII])

RASHMI PATEL Page 41

UNIT-5 Data Visualization using dataframe

y = np.array([3, 8, 1, 10])

plt.bar(x,y)
plt.show()

Result:

The bar() function takes arguments that describes the layout of the bars.
The categories and their values represented by the first and second argument as arrays.

Example

x = ["APPLES", "BANANAS"]
y = [400, 350]
plt.bar(x, y)

Horizontal Bars

If you want the bars to be displayed horizontally instead of vertically, use the barh() function:

Example
Draw 4 horizontal bars:

import matplotlib.pyplot as plt
import numpy as np

X = np.array([llA"' llBII' IICII' IIDII])

RASHMI PATEL Page 42

UNIT-5 Data Visualization using dataframe

y = np.array([3, 8, 1, 10])

plt.barh(x, y)

plt.show()
Result:
Bar Color

The bar() and barh() takes the keyword argument color to set the color of the bars:

Example
Draw 4 red bars:

import matplotlib.pyplot as plt
import numpy as np

X = np.array([llA"' llBII' IlCll' IIDII])
y = np.array([3, 8, 1, 10])

plt.bar(x, y, color = "red")
plt.show()

Result:

RASHMI PATEL Page 43

UNIT-5 Data Visualization using dataframe

Color Names

You can use any of the 140 supported color names.

Example
Draw 4 "hot pink" bars:

import matplotlib.pyplot as plt
import numpy as np

x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt.bar(x, y, color = "hotpink")
plt.show()

Result:

RASHMI PATEL Page 44

https://www.w3schools.com/colors/colors_names.asp

UNIT-5 Data Visualization using dataframe

Color Hex

Or you can use Hexadecimal color values:

Example
Draw 4 bars with a beautiful green color:

import matplotlib.pyplot as plt
import numpy as np

X = np.al’ray(["A", ”B"' IlCll' IIDII])
y = np.array([3, 8, 1, 10])

plt.bar(x, y, color = "#4CAF50")
plt.show()

Result:

Bar Width

The bar() takes the keyword argument width to set the width of the bars:

Example
Draw 4 very thin bars:

import matplotlib.pyplot as plt
import numpy as np

RASHMI PATEL Page 45

https://www.w3schools.com/colors/colors_hexadecimal.asp

UNIT-5 Data Visualization using dataframe

X = np.array([llAll’ IIBII’ IICII’ IIDII])
y = np.array([3, 8, 1, 10])

plt.bar(x, y, width = 0.1)
plt.show()

Result:

10 4

The default width value is 0.8

Note: For horizontal bars, use height instead of width.

Bar Height

The barh() takes the keyword argument height to set the height of the bars:

Example
Draw 4 very thin bars:

import matplotlib.pyplot as plt
import numpy as np

X = np.array([llA"' llBII' IICII' IIDII])
y = np.array([3, 8, 1, 10])

RASHMI PATEL Page 46

UNIT-5 Data Visualization using dataframe

plt.barh(x, y, height = 0.1)
plt.show()

Result:

D-—

Matplotlib Histograms

Histogram

A histogram is a graph showing frequency distributions.
It is a graph showing the number of observations within each given interval.

Example: Say you ask for the height of 250 people, you might end up with a histogram like this:

50 -

20

10 4

140 150 160 170 180 190

RASHMI PATEL Page 47

UNIT-5 Data Visualization using dataframe

You can read from the histogram that there are approximately:

2 people from 140 to 145cm

5 people from 145 to 150cm

15 people from 151 to 156cm
31 people from 157 to 162cm
46 people from 163 to 168cm
53 people from 168 to 173cm
45 people from 173 to 178cm
28 people from 179 to 184cm
21 people from 185 to 190cm
4 people from 190 to 195cm

Create Histogram

In Matplotlib, we use the hist() function to create histograms.

The hist() function will use an array of numbers to create a histogram, the array is sent into the
function as an argument.

For simplicity we use NumPy to randomly generate an array with 250 values, where the values will
concentrate around 170, and the standard deviation is 10. Learn more about Normal Data
Distribution in our Machine Learning Tutorial.

Example
A Normal Data Distribution by NumPy:

import numpy as np
X = np.random.normal(170, 10, 250)
print(x)

Result:

This will generate a random result, and could look like this:

[167.62255766 175.32495609 152.84661337 165.50264047 163.17457988
162.29867872 172.83638413 168.67303667 164.57361342 180.81120541

170.57782187 167.53075749 176.15356275 176.95378312 158.4125473
187.8842668 159.03730075 166.69284332 160.73882029 152.22378865
164.01255164 163.95288674 176.58146832 173.19849526 169.40206527

RASHMI PATEL Page 48

https://www.w3schools.com/python/python_ml_normal_data_distribution.asp
https://www.w3schools.com/python/python_ml_normal_data_distribution.asp
https://www.w3schools.com/python/python_ml_getting_started.asp

UNIT-5 Data Visualization using dataframe

166.88861903 149.90348576 148.39039643 177.90349066 166.72462233
177.44776004 170.93335636 173.26312881 174.76534435 162.28791953
166.77301551 160.53785202 170.67972019 159.11594186 165.36992993
178.38979253 171.52158489 173.32636678 159.63894401 151.95735707
175.71274153 165.00458544 164.80607211 177.50988211 149.28106703
179.43586267 181.98365273 170.98196794 179.1093176 176.91855744
168.32092784 162.33939782 165.18364866 160.52300507 174.14316386
163.01947601 172.01767945 173.33491959 169.75842718 198.04834503
192.82490521 164.54557943 206.36247244 165.47748898 195.26377975
164.37569092 156.15175531 162.15564208 179.34100362 167.22138242
147.23667125 162.86940215 167.84986671 172.99302505 166.77279814
196.6137667 159.79012341 166.5840824 170.68645637 165.62204521

174.5559345 165.0079216 187.92545129 166.86186393 179.78383824

161.0973573 167.44890343 157.38075812 151.35412246 171.3107829

162.57149341 182.49985133 163.24700057 168.72639903 169.05309467
167.19232875 161.06405208 176.87667712 165.48750185 179.68799986
158.7913483 170.22465411 182.66432721 173.5675715 176.85646836

157.31299754 174.88959677 183.78323508 174.36814558 182.55474697
180.03359793 180.53094948 161.09560099 172.29179934 161.22665588
171.88382477 159.04626132 169.43886536 163.75793589 157.73710983
174.68921523 176.19843414 167.39315397 181.17128255 174.2674597

186.05053154 177.06516302 171.78523683 166.14875436 163.31607668
174.01429569 194.98819875 169.75129209 164.25748789 180.25773528
170.44784934 157.81966006 171.33315907 174.71390637 160.55423274
163.92896899 177.29159542 168.30674234 165.42853878 176.46256226
162.61719142 166.60810831 165.83648812 184.83238352 188.99833856
161.3054697 175.30396693 175.28109026 171.54765201 162.08762813
164.53011089 189.86213299 170.83784593 163.25869004 198.68079225
166.95154328 152.03381334 152.25444225 149.75522816 161.79200594
162.13535052 183.37298831 165.40405341 155.59224806 172.68678385
179.35359654 174.19668349 163.46176882 168.26621173 162.97527574
192.80170974 151.29673582 178.65251432 163.17266558 165.11172588
183.11107905 169.69556831 166.35149789 178.74419135 166.28562032
169.96465166 178.24368042 175.3035525 170.16496554 158.80682882
187.10006553 178.90542991 171.65790645 183.19289193 168.17446717
155.84544031 177.96091745 186.28887898 187.89867406 163.26716924
169.71242393 152.9410412 158.68101969 171.12655559 178.1482624

187.45272185 173.02872935 163.8047623 169.95676819 179.36887054
157.01955088 185.58143864 170.19037101 157.221245 168.90639755

178.7045601 168.64074373 172.37416382 165.61890535 163.40873027
168.98683006 149.48186389 172.20815568 172.82947206 173.71584064
189.42642762 172.79575803 177.00005573 169.24498561 171.55576698
161.36400372 176.47928342 163.02642822 165.09656415 186.70951892
153.27990317 165.59289527 180.34566865 189.19506385 183.10723435
173.48070474 170.28701875 157.24642079 157.9096498 176.4248199 |

RASHMI PATEL Page 49

UNIT-5 Data Visualization using dataframe

The hist() function will read the array and produce a histogram:

Example
A simple histogram:

import matplotlib.pyplot as plt
import numpy as np

X = np.random.normal(170, 10, 250)

plt.hist(x)
plt.show()

Result:

50

40 |

30 4

204

10 4

140

Matplotlib Pie Charts
Creating Pie Charts

With Pyplot, you can use the pie() function to draw pie charts:

Example
A simple pie chart:

import matplotlib.pyplot as plt
import numpy as np

RASHMI PATEL Page 50

UNIT-5 Data Visualization using dataframe

y = np.array([35, 25, 25, 15])

plt.pie(y)
plt.show()

Result:

As you can see the pie chart draws one piece (called a wedge) for each value in the array (in this
case [35, 25, 25, 15]).

By default the plotting of the first wedge starts from the x-axis and move counterclockwise:

Note: The size of each wedge is determined by comparing the value with all the other values, by
using this formula:

The value divided by the sum of all values: x/sum(x)

RASHMI PATEL Page 51

UNIT-5 Data Visualization using dataframe

Labels

Add labels to the pie chart with the label parameter.
The label parameter must be an array with one label for each wedge:

Example
A simple pie chart:

import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

plt.pie(y, labels = mylabels)
plt.show()

Result:

Bananas

Cherries

Start Angle

As mentioned the default start angle is at the x-axis, but you can change the start angle by
specifying a startangle parameter.

The startangle parameter is defined with an angle in degrees, default angle is 0:

RASHMI PATEL Page 52

UNIT-5 Data Visualization using dataframe

90

180 (%)

270

Example
Start the first wedge at 90 degrees:

import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

plt.pie(y, labels = mylabels, startangle = 90)
plt.show()

Result:

Dates

Apples

Cherries

Bananas

RASHMI PATEL

UNIT-5 Data Visualization using dataframe

Explode

Maybe you want one of the wedges to stand out? The explode parameter allows you to do that.

The explode parameter, if specified, and not None, must be an array with one value for each
wedge.

Each value represents how far from the center each wedge is displayed:
Example

Pull the "Apples" wedge 0.2 from the center of the pie:

import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

myexplode = [0.2, 0, 0, 0]

plt.pie(y, labels = mylabels, explode = myexplode)
plt.show()

Result:

Bananas

Cherries

RASHMI PATEL Page 54

UNIT-5 Data Visualization using dataframe

Shadow

Add a shadow to the pie chart by setting the shadows parameter to True:

Example
Add a shadow:

import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

myexplode = [0.2, 0, 0, 0]

plt.pie(y, labels = mylabels, explode = myexplode, shadow = True)
plt.show()

Result:

Bananas

Cherries

Colors
You can set the color of each wedge with the colors parameter.
The colors parameter, if specified, must be an array with one value for each wedge:

Example

RASHMI PATEL

UNIT-5 Data Visualization using dataframe

Specify a new color for each wedge:

import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])
mylabels = ["Apples”, "Bananas", "Cherries", "Dates"]
mycolors = ["black", "hotpink", "b", "#4CAF50"]

plt.pie(y, labels = mylabels, colors = mycolors)
plt.show()

Result

Bananas

Cherries

You can use Hexadecimal color values, any of the 140 supported color names, or one of these
shortcuts:

'r' - Red

'g' - Green

'b' - Blue

'c' - Cyan
'm'- Magenta
'v' - Yellow

'k' - Black

'w' - White

RASHMI PATEL Page 56

https://www.w3schools.com/colors/colors_hexadecimal.asp
https://www.w3schools.com/colors/colors_names.asp

UNIT-5 Data Visualization using dataframe

Legend

To add a list of explanation for each wedge, use the legend() function:

Example
Add a legend:

import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

plt.pie(y, labels = mylabels)
plt.legend()
plt.show()

Result:

mm Apples
W Bananas
B Cherries
I Dates

Bananas

Dates

Cherries

Legend With Header

To add a header to the legend, add the title parameter to the legend function.

Example

Add a legend with a header:

RASHMI PATEL Page 57

UNIT-5 Data Visualization using dataframe

import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

plt.pie(y, labels = mylabels)
plt.legend(title = "Four Fruits:")
plt.show()

Result:

Four Fruits:
B Apples
B Bananas
B Cherries
I Dates

Bananas

Dates

Cherries

RASHMI PATEL Page 58

