


NoSQL Databases
A database is a collection of structured data or information which is stored in a
computer system and can be accessed easily. A database is usually managed by
a Database Management System (DBMS).

NoSQL is a non-relational database that is used to store the data in the
nontabular form. NoSQL stands for Not only SQL. The main types are
documents, key-value, wide-column, and graphs.

Types of NoSQL Database:

 Document-based databases
 Key-value stores
 Column-oriented databases
 Graph-based databases

Document-Based Database:

The document-based database is a nonrelational database. Instead of storing
the data in rows and columns (tables), it uses the documents to store the data
in the database. A document database stores data in JSON, BSON, or XML
documents.

Documents can be stored and retrieved in a form that is much closer to the data
objects used in applications which means less translation is required to use
these data in the applications. In the Document database, the particular
elements can be accessed by using the index value that is assigned for faster
querying.

Collections are the group of documents that store documents that have similar
contents. Not all the documents are in any collection as they require a similar
schema because document databases have a flexible schema.

Key features of documents database:

 Flexible schema: Documents in the database has a flexible schema. It
means the documents in the database need not be the same schema.

 Faster creation and maintenance: the creation of documents is easy
and minimal maintenance is required once we create the document.

 No foreign keys: There is no dynamic relationship between two
documents so documents can be independent of one another. So,
there is no requirement for a foreign key in a document database.

 Open formats: To build a document we use XML, JSON, and others.

Key-Value Stores:

A key-value store is a nonrelational database. The simplest form of a NoSQL
database is a key-value store. Every data element in the database is stored in
key-value pairs. The data can be retrieved by using a unique key allotted to each
element in the database. The values can be simple data types like strings and
numbers or complex objects.

A key-value store is like a relational database with only two columns which is
the key and the value.

Key features of the key-value store:

 Simplicity.
 Scalability.
 Speed.

Column Oriented Databases:

A column-oriented database is a non-relational database that stores the data in
columns instead of rows. That means when we want to run analytics on a small
number of columns, you can read those columns directly without consuming
memory with the unwanted data.

Columnar databases are designed to read data more efficiently and retrieve the
data with greater speed. A columnar database is used to store a large amount
of data. Key features of columnar oriented database:

 Scalability.
 Compression.
 Very responsive.

Graph-Based databases:

Graph-based databases focus on the relationship between the elements. It
stores the data in the form of nodes in the database. The connections between
the nodes are called links or relationships.

Key features of graph database:

 In a graph-based database, it is easy to identify the relationship
between the data by using the links.

 The Query’s output is real-time results.
 The speed depends upon the number of relationships among the

database elements.
 Updating data is also easy, as adding a new node or edge to a graph

database is a straightforward task that does not require significant
schema changes.

Time Series Database

A time-series database (TSDB) is a computer system that is designed to store
and retrieve data records that are part of a “time series,” which is a set of data
points that are associated with timestamps. The timestamps provide a critical
context for each of the data points in how they are related to others. Time series
data is often a continuous flow of data like measurements from sensors and
intraday stock prices. A time-series database lets you store large volumes of
timestamped data in a format that allows fast insertion and fast retrieval to
support complex analysis on that data.

MongoDB

MongoDB is a popular open source document database that’s widely used in modern

web and mobile applications. It’s categorized as a NoSQL database, which means it takes a

flexible, document-oriented approach to storing data rather than a traditional table-based

relational method.The MongoDB is an open-source document database and leading NoSQL

database.

MongoDB features are flexible data models that allows the storage of unstructured

data. This provides full support indexing, replication, capabilities and also user friendly APIs.

Working of MongoDB

MongoDB is a database server and the data is stored in these databases. In other

words, MongoDB environment gives us a server that we can start and then create multiple

databases on it using MongoDB. Because of its NoSQL database, the data is stored in the

collections and documents. Hence the database, collection, and documents are related to each

other as shown below:

Basic Architecture of MongoDB

MongoDB database structure consists of the following components:

Component Equivalent in RDBMS Description

Database Database Stores multiple collections.

Collection Table Groups related documents.

Document Row A BSON object containing key-value pairs.

Field Column Stores data attributes within documents.

https://www.geeksforgeeks.org/introduction-to-nosql/

2. Storage Format: BSON (Binary JSON)

MongoDB uses BSON, an extended version of JSON, which supports additional data

types like binary data, dates, and nested arrays, improving query efficiency and storage

performance.

3. Data Storage and Querying

Data is stored in collections of documents, making it highly flexible.

MongoDB supports powerful indexing and real-time queries, ensuring faster read/write

operations.

Developers can store, retrieve, and update data using MongoDB Query Language

(MQL), which is similar to JSON queries.

4. Schema Flexibility

MongoDB allows schema-less data storage, meaning:Collections can store documents

with different structures.Fields are not predefined, allowing dynamic updates.Suitable

for applications where data structures frequently change.

5. Data Relationships in MongoDB

Unlike SQL databases that rely on foreign keys and JOIN operations, MongoDB supports:

Embedded Documents – Store related data in a single document (reducing the need for

joins).

Reference Documents – Use unique identifiers to establish relationships between

documents.

6. Scalability: Horizontal vs. Vertical Scaling

MongoDB is designed for horizontal scaling, meaning it can:Distribute data

across multiple servers using sharding.Support automatic load balancing and

replication for high availability.Handle big data and distributed workloads efficiently.

For example: we have a database named GeeksforGeeks. Inside this database, we

have two collections and in these collections we have two documents. And in these

documents we store our data in the form of fields. As shown in the below image:

Features of MongoDB
MongoDB offers a wide range of features that make it a preferred choice for

modern applications.

1. Schema-less Database

Unlike traditional relational databases, MongoDB collections:

 Allow different structures within the same collection.

 Do not require fixed column definitions.

 Enable easy updates and modifications.

2. Document Oriented

In MongoDB, all the data stored in the documents instead of tables like

in RDBMS. In these documents, the data is stored in fields(key-value pair) instead of rows

and columns which make the data much more flexible in comparison to RDBMS. And each

document contains its unique object id.

3. Indexing

In MongoDB database, every field in the documents is indexed with primary and

secondary indices this makes easier and takes less time to get or search data from the

pool of the data. If the data is not indexed, then database search each document with the

specified query which takes lots of time and not so efficient.

4. Scalability

MongoDB provides horizontal scalability with the help of

sharding. Sharding means to distribute data on multiple servers, here a large amount of data

is partitioned into data chunks using the shard key, and these data chunks are evenly

distributed across shards that reside across many physical servers. It will also add new

machines to a running database.

5. Replication

MongoDB provides high availability and redundancy with the help of replication, it

creates multiple copies of the data and sends these copies to a different server so that if one

server fails, then the data is retrieved from another server.

6. Aggregation

It allows to perform operations on the grouped data and get a single result or

computed result. It is similar to the SQL GROUPBY clause.

7. High Performance

The performance of MongoDB is very high and data persistence as compared to

another database due to its features like scalability, indexing, replication, etc.

Uses of MongoDB
MongoDB is a popular NoSQL database known for its flexibility, scalability, and

performance. It is widely used in various applications across different industries. Here are

some common uses of MongoDB:

https://www.geeksforgeeks.org/dbms/rdbms-full-form/
https://www.geeksforgeeks.org/dbms/what-is-sharding/

1. Content Management Systems (CMS):

MongoDB's flexible schema and powerful query capabilities make it an ideal choice

for content management systems. It can efficiently handle diverse content types and

structures, enabling dynamic and scalable content management solutions.

2. E-commerce Platforms

E-commerce platforms benefit from MongoDB's ability to store and retrieve large

amounts of product data quickly. Its flexible schema supports dynamic product catalos, user

profiles, shopping carts, and transaction histories.

3. Real-Time Analytics

MongoDB is well-suited for real-time analytics applications due to its high-

performance data ingestion and querying capabilities. It can handle large volumes of data in

real-time, making it ideal for monitoring, fraud detection, and personalized

recommendations.

4. Internet of Things (IoT)

IoT applications generate vast amounts of data from sensors and devices. MongoDB's

scalability and flexible data model allow it to efficiently store and process this data, enabling

real-time analysis and decision-making for IoT systems.

5. Gaming Applications

Gaming applications generate complex data structures, such as player profiles, scores,

achievements, and game states. MongoDB's document-based model allows for efficient

storage and retrieval of this data, supporting high-performance gaming experiences.

6. Customer Relationship Management (CRM)

CRM systems use MongoDB to manage customer data, interactions, and sales

pipelines. Its ability to handle complex relationships and unstructured data enables more

personalized and effective customer engagement strategies.

7. Social Networks

Social networking applications require a database that can handle complex

relationships, user-generated content, and real-time interactions. MongoDB's flexibility and

scalability make it an excellent choice for building social networks and community platforms.

8. Big Data Applications

MongoDB is used in big data applications for its ability to store and process large

volumes of diverse data types. It integrates well with big data technologies like Hadoop and

Spark, enabling advanced data analytics and processing

.

9. Healthcare Systems

Healthcare applications use MongoDB to manage patient records, clinical data, and

medical images. Its flexible schema allows for the efficient storage of complex healthcare

data, supporting better patient care and data analysis.

Advantages of MongoDB
 It is a schema-less NoSQL database. We need not to design the schema of the database

when we are working with MongoDB.

 It does not support join operation.

 It provides great flexibility to the fields in the documents.

 It contains heterogeneous (Diffrent) data.

 It provides high performance, availability, scalability.

 It is a document oriented database and the data is stored in BSON documents.

 It also supports multiple document ACID transition.

 It does not require any SQL injection.

 It is easily integrated with Big Data Hadoop

Disadvantages of MongoDB

 High Memory Usage - Requires additional storage

 No Complex Joins - Relies on embedding or referencing instead

 Limited Document Size - Maximum 16MB per document

 Nesting Limits - Supports up to 100 levels of nested documents

 Document Data Model

Data in MongoDB has a flexible schema. Documents in the same collection. They do not

need to have the same set of fields or structure Common fields in a collections documents

may hold different types of data.

Data Model Design

MongoDB provides two types of data models:

1. Embedded data model

2. Normalized data model.

Based on the requirement, you can use either of the models while preparing your

document.

Embedded Data Model

In this model, you can have (embed) all the related data in a single document, it is also

known as de-normalized data model.

For example, assume we are getting the details of employees in three different documents

namely, Personal_details, Contact and, Address, you can embed all the three documents in a

single one as shown below −

{

 _id: ,

 Emp_ID: "10025AE336"

 Personal_details:{

 First_Name: "Radhika",

 Last_Name: "Sharma",

 Date_Of_Birth: "1995-09-26"

 },

 Contact: {

 e-mail: "radhika_sharma.123@gmail.com",

 phone: "9848022338"

 },

 Address: {

 city: "Hyderabad",

 Area: "Madapur",

 State: "Telangana"

 }

}

Normalized Data Model
In this model, you can refer the sub documents in the original document, using references.

For example, you can re-write the above document in the normalized model as:

Employee:

{

 _id: <ObjectId101>,

 Emp_ID: "10025AE336"

}

Personal_details:

{

 _id: <ObjectId102>,

 empDocID: " ObjectId101",

 First_Name: "Radhika",

 Last_Name: "Sharma",

 Date_Of_Birth: "1995-09-26"

}

Contact:

{

 _id: <ObjectId103>,

 empDocID: " ObjectId101",

 e-mail: "radhika_sharma.123@gmail.com",

 phone: "9848022338"

}

Address:

{

 _id: <ObjectId104>,

 empDocID: " ObjectId101",

 city: "Hyderabad",

 Area: "Madapur",

 State: "Telangana"

}

What is a Database in MongoDB?
A Database in MongoDB is a container for data that holds multiple collections.

MongoDB allows the creation of multiple databases on a single server, enabling efficient

data organization and management for various applications. It’s the highest level of structure

within the MongoDB system.

1. Multiple Databases: MongoDB allows you to create multiple databases on a single server.

Each database is logically isolated(different) from others.

https://www.geeksforgeeks.org/mongodb/mongodb-an-introduction/

2. Default Databases: When you start MongoDB, three default databases are

created: admin, config, and local. These are used for internal purposes.

3. Database Creation: Databases are created when you insert data into them. You can create

or switch to a database using the following command:

use <database_name>

This command actually switches you to the new database if the given name does not

exist and if the given name exists, then it will switch you to the existing database. Now at

this stage, if you use the show command to see the database list where you will find that

your new database is not present in that database list because, in MongoDB, the database is

actually created when we start entering data in that database.

4. View Database: To see how many databases are present in your MongoDB server, write

the following statement in the mongo shell:

show dbs

Here, we freshly started MongoDB so we do not have a database except these three

default databases, i.e, admin, config, and local.

Here, we create a new database named tybca using the use command. After creating

a database when we check the database list we do not find our database on that list because

we do not enter any data in the tybca database.

https://www.geeksforgeeks.org/dbms/what-is-database/

Naming Restriction for Database:

Before creating a database we should first learn about the naming restrictions for

databases:

 Database names must be case-insensitive.

 The names cannot contain special characters such as /, ., $, *, |, etc.

 MongoDB database names cannot contain null characters (in windows, Unix, and Linux

systems).

 MongoDB database names cannot be empty and must contain less than 64 characters.

What is a Collection in MongoDB?

A Collection in MongoDB is similar to a table in relational databases. It holds a

group of documents and is a part of a database. Collections provide structure to data, but like

the rest of MongoDB, they are schema-less.

Schemaless

As we know that MongoDB databases are schema less. So, it is not necessary in a

collection that the schema of one document is similar to another document. Or in other words,

a single collection contains different types of documents like as shown in the below example

where mystudentData collection contain two different types of documents:

Multiple Collections per Database

A single database can contain multiple collections, each storing different types of

documents.

Naming Restrictions for Collection:

Before creating a collection we should first learn about the naming restrictions for

collections:

 Collection name must starts with an underscore (`_`) or a letter (a-z or A-Z)

 Collection name should not start with a number, and does not contain $, empty string,

null character and does not begin with prefix `system.` as this is reserved for MongoDB

system collections.

 The maximum length of the collection name is 120 bytes(including the database name,

dot separator, and the collection name).

Example:

db.books.insertOne({ title: "Learn MongoDB", author: "Jane Doe", year: 2023 })

Creating collection
After creating database now we create a collection to store documents. The

collection is created using the following syntax:

db.collection_name.insertOne({..})

Here, insertOne() function is used to store single data in the specified collection. And in

the curly braces {} we store our data or in other words, it is a document.

For Example:

 In this example, we create a collection named as the Author and we insert data in it with

the help of insertOne() function. Or in other words, {name: "Ankita"} is a document in

the Author collection, and in this document, the name is the key or field and "Ankita"

is the value of this key or field.

 After pressing enter we got a message (as shown in the above image) and this message

tells us that the data enters successfully (i.e., "acknowledge": true) and also assigns us an

automatically created id.

 It is the special feature provided by MongoDB that every document provided a unique

id and generally, this id is created automatically, but you are allowed to create your own

id (must be unique).

What is a Document in MongoDB?
In MongoDB, the data records are stored as BSON documents. Here, BSON stands

for binary representation of JSON documents, although BSON contains more data types as

compared to JSON. The document is created using field-value pairs or key-value

pairs and the value of the field can be of any BSON type.

Syntax:

{

field1: value1

field2: value2

....

fieldN: valueN

}

Document Structure:

A document in MongoDB is a flexible data structure made up of field-value pairs.

For instance:

{

 title: "MongoDB Basics",

 author: "John Doe",

 year: 2025

}

Naming restriction for Document Fields:

Before moving further first you should learn about the naming restrictions for fields:

 Fields in documents must be named with strings

 The _id field name is reserved to use as a primary key. And the value of this field must

be unique, immutable, and can be of any type other than an array.

 The field name cannot contain null characters.

 The top-level field names should not start with a dollar sign ($).

Document Size:

The maximum size of the BSON document is 16MB. It ensures that the single

document does not use too much amount of RAM or bandwidth(during transmission). If a

document contains more data than the specified size, then MongoDB provides a GridFS

API to store such type of documents. A single document may contain duplicate fields.

MongoDB always saves the order of the fields in the documents except for the _id

field (which always comes in the first place) and the renaming of fields may change the order

of the fields in the documents.

What is the _id Field in MongoDB?

In MongoDB, every document store in the collection must contain a unique _id field it

is just like a primary key in a relational database. The value of the _id field can be set by the

user or by the system (if the user does not create an _id field, then the system will

automatically generate an ObjectId for _id field).

 Automatic ObjectId Generation: When you don't define the _id field, MongoDB

generates a unique ObjectId by default.

 Custom _id: You can set the _id field to a custom value, provided it is unique within

the collection.

Example with ObjectId:

Here, name, branch, course, and paid field contain values of string type. amount field

contains the value of integer type and _id field is generated by the system.

Example with Custom _id:

Here, the _id field is created by the user. When you paste data in the functions always

use close parenthesis after pasting the data into the function. If you use close parenthesis

before pasting data in the function, then you will get an error.

Key Differences Between Databases, Collections, and Documents

 Database: A container for collections, providing structure and logical isolation for data.

 Collection: A group of documents within a database, similar to a table in relational

databases.

 Document: A single data record within a collection, stored as a BSON object.

Practical Example: Creating a Database, Collection, and Document

Here’s how you can create a database, collection, and document in MongoDB step by step:

1. Create or Switch to a Database

use LibraryDB

2. Create a Collection and Insert a Document

db.books.insertOne({

 title: "MongoDB for Beginners",

 author: "Alice Johnson",

 year: 2023

})

3. Verify the Insertion

db.books.find()

This will display the document stored in the books collection within

the LibraryDB database.

MongoDB Indexes and the _id Field

Automatic Index on _id: MongoDB automatically creates a unique index on the _id field

for every collection. This index helps MongoDB quickly find documents based on their

unique identifier.

Best Practices for MongoDB Databases, Collections, and Documents

 Descriptive Names: Name databases and collections based on their content for better

organization. For example, use user_data or transaction_records for database and

collection names.

 Avoid Special Characters: Ensure that database and collection names do not contain

special characters like $ or spaces.

 Design Efficient Documents: While MongoDB is schema-less, it's important to design

documents that make sense for your application's data structure. Use nested documents

and arrays when appropriate to model complex data.

MongoDB Shell

The MongoDB Shell, also known as mongosh is a powerful command-line

interface that allows users to interact with MongoDB databases.

The MongoDB Shell (mongosh) is a JavaScript interface for interacting with

MongoDB databases. It provides a command-line environment where you can

execute MongoDB commands to manage your database, perform administrative tasks,

and manipulate data. In short, the MongoDB Shell allows you to manage and work with

your MongoDB databases directly through a flexible and powerful command-

line interface.

Key features of the MongoDB Shell include:

 Interacting with MongoDB databases: Connect to and manage MongoDB instances.

 Running administrative commands: Perform tasks like managing users, roles, and

collections.

 Querying and manipulating data: Use MongoDB’s powerful querying capabilities to

read, write, and update data.

 Automating tasks: Execute JavaScript code within the shell to automate repetitive tasks

or run scripts for bulk operations.

How to Start MongoDB Using the Shell?
Starting MongoDB using the Shell is straightforward. Below are the steps to start the

MongoDB using Shell are as follows:

Step 1: Connecting to MongoDB Server

 Open your terminal (Command Prompt on Windows, or terminal on macOS/Linux).

 Run the following command to start the MongoDB shell:

mongosh

Output after 'mongosh' command

Step 2: Executing MongoDB Commands

Like any other command-line interface, we can enter MongoDB commands directly

in the shell. Here are some essential ones:

1. Listing Databases

To list all databases on your MongoDB instance, use:

show dbs

displays all databases present locally

2. Switching Databases

To switch to a specific database, use the use command followed by the database name:

use <database_name>

Example:

use admin

3. Creating Collections

To create a collection within the selected database, you can simply insert a document

into a collection, and MongoDB will create it automatically. Here's an example:

db.createCollection("myCollection")

Alternatively, you can insert data directly into a non-existing collection, and it will be

created:

db.myCollection.insert({ name: "MongoDB", type: "Database" })

https://www.geeksforgeeks.org/dbms/what-is-database/

4. Querying Data

To query data from a collection, use the find method:

db.myCollection.find({ name: "MongoDB" })

This will return all documents where the name is "MongoDB".

Installation and Configuration of MongoDB

Step 1: Download MongoDB Community Server

Go to the MongoDB Download Center to download the MongoDB Community

Server.

Here, You can select any version, Windows, and package according to your

requirement. For Windows, we need to choose:

Version: 7.0.4

OS: Windows x64

Package: msi

Step 2: Install MongoDB

When the download is complete open the msi file and click the next button in the

startup screen:

Now accept the End-User License Agreement and click the next button:

Now select the complete option to install all the program features. Here, if you can want to

install only selected program features and want to select the location of the installation,

then use the Custom option:

Step 3: Configure MongoDB Service

Select “Run service as Network Service user” and copy the path of the data directory. Click

Next:

Click the Install button to start the MongoDB installation process:

After clicking on the install button installation of MongoDB begins:

Step 4: Complete Installation

Now click the Finish button to complete the MongoDB installation process:

Step 5: Set Environment Variables

Now we go to the location where MongoDB installed in step 5 in your system and

copy the bin path:

Now, to create an environment variable open system properties >> Environment

Variable >> System variable >> path >> Edit Environment variable paste the copied

link to your environment system and click Ok:

Run MongoDB Server (mongod)

Step 1. Start MongoDB Service

After setting the environment variable, we will run the MongoDB server,

i.e. mongod. So, open the command prompt and run the following command:

mongod
When you run this command you will get an error i.e. C:/data/db/ not found.

Step 2. Create Required Folders

Now, Open C drive and create a folder named "data"Inside the data folder create another

folder named "db".

Step 3. Restart MongoDB

After creating these folders. Again open the command prompt and run the following

command:

 mongod

Now, this time the MongoDB server(i.e., mongod) will run successfully.

Run the MongoDB Shell (mongosh)

Starting from MongoDB version 5.0, the traditional MongoDB shell (mongo) has

been deprecated. The recommended shell for interacting with MongoDB databases is

now mongosh, which provides improved functionality, better syntax, and full compatibility

with the latest MongoDB features.

Step 1. Connect to MongoDB Server with mongosh

Now we are going to connect our server (mongod) with the mongo shell. So, keep that

mongod window

open a new command prompt window and type:

mongosh

You are now connected to the MongoDB shell.

Please do not close the mongod window if you close this window your server will stop

working and it will not able to connect with the mongo shell.

What is a Database in MongoDB?

A Database in MongoDB is a container for data that holds multiple collections.

MongoDB allows the creation of multiple databases on a single server, enabling efficient

data organization and management for various applications. It’s the highest level of structure

within the MongoDB system.

1. Multiple Databases: MongoDB allows you to create multiple databases on a single server.

Each database is logically isolated(different) from others.

2. Default Databases: When you start MongoDB, three default databases are

created: admin, config, and local. These are used for internal purposes.

3. Database Creation: Databases are created when you insert data into them. You can create

or switch to a database using the following command:

use <database_name>

This command actually switches you to the new database if the given name does not

exist and if the given name exists, then it will switch you to the existing database. Now at

this stage, if you use the show command to see the database list where you will find that

your new database is not present in that database list because, in MongoDB, the database is

actually created when we start entering data in that database.

4. View Database: To see how many databases are present in your MongoDB server, write

the following statement in the mongo shell:

show dbs

Here, we freshly started MongoDB so we do not have a database except these three

default databases, i.e, admin, config, and local.

Here, we create a new database named tybca using the use command. After creating

a database when we check the database list we do not find our database on that list because

we do not enter any data in the tybca database.

https://www.geeksforgeeks.org/mongodb/mongodb-an-introduction/
https://www.geeksforgeeks.org/dbms/what-is-database/

Naming Restriction for Database:

Before creating a database we should first learn about the naming restrictions for

databases:

 Database names must be case-insensitive.

 The names cannot contain special characters such as /, ., $, *, |, etc.

 MongoDB database names cannot contain null characters(in windows, Unix, and Linux

systems).

 MongoDB database names cannot be empty and must contain less than 64 characters.

Drop a Database in MongoDB?

Dropping a database in MongoDB is a permanent action that deletes all collections

and documents within it. This operation is performed using the db.dropDatabase() method.

Let's assume we have a database called sampleDB and we want to delete it. Follow the steps

below to safely drop a database while ensuring proper execution.

Step 1: List Available Databases

Before dropping a database, it's essential to check which databases exist in MongoDB.

To list all available databases, run the following command in the MongoDB shell:

show dbs

https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/mongodb-shell/

Example Output:

admin 0.000GB

local 0.781GB

sampleDB 0.230GB

myDatabase 0.150GB

This output displays all the databases on the MongoDB server along with their sizes.

Step 2: Select the Database to Drop

Now, we need to switch to the database that we want to drop.

Use the use command followed by the database name:

use sampleDB

Example Output:

switched to db sampleDB

After executing this command, MongoDB sets sampleDB as the active database.

Step 3: Drop the Selected Database

Once the database is selected, we can execute the db.dropDatabase() command to delete it.

db.dropDatabase()

Example Output:

{ "dropped" : "sampleDB", "ok" : 1 }

 This command will permanently delete the current database sampleDB and return a

confirmation message.

 The "dropped" field confirms that sampleDB has been deleted.

 The "ok": 1 indicates that the operation was successful.

Important: This action is permanent. All collections and documents inside the database

will be removed.

Step 4: Verify That the Database Has Been Dropped

To ensure the database has been dropped successfully, we can list the databases again:

show dbs

Example Output After Dropping testDB:

admin 0.000GB

local 0.781GB

myDatabase 0.150GB

Notice that sampleDB is no longer listed, meaning it has been successfully deleted.

Precautions Before Dropping a Database

 Backup Your Data: If you might need the data in the future, create a backup using

MongoDB’s mongodump command.

 Verify the Database Name: Ensure you are working with the correct database before

executing db.dropDatabase().

 Check User Permissions: Make sure your MongoDB user has admin privileges to

drop databases.

Create a Collection in MongoDB
In MongoDB, a collection is a group of documents. Collections are similar to tables

in relational databases. However, collections do not enforce schema, allowing allowing you

to store documents with varying structures in the same collection. This flexibility is one of

the key features of MongoDB.

To explicitly create a collection in MongoDB, you can use

the createCollection() method. However, it's important to note that collections are also

automatically created when you insert the first document into them.

Syntax:

db.createCollection(' collection_name');

Example:

To create a collection called Student, you would use the following command:

db.createCollection('Student');

Explanation:

 The createCollection() method is used to explicitly create a collection in MongoDB.

 If you attempt to insert a document into a collection that doesn’t exist, MongoDB will

automatically create it for you without needing the createCollection() method.

For example, running the following command will automatically create

the Student collection if it doesn't exist:

db.Student.insertOne({Name: "Om", age: 19})

Output

createCollection() in MongoDB

Note:

 Collections are created automatically when the first document is inserted, so

using createCollection() is optional.

 MongoDB allows for collections to contain documents with different fields and data

types, which provides flexibility when structuring your data.

 Insert Documents into a Collection in MongoDB

Once you have a collection, you can start adding documents to it. MongoDB stores

data in the form of documents, which are essentially JSON-like objects. There are two

primary methods for inserting documents:

1. insertOne() Method

The insertOne() method in MongoDB is used to insert a single document into a

collection. This is the simplest way to add a new record into a collection when you need to

insert just one document at a time.

Syntax:

db.collection_name.insertOne({ field1: value1, field2: value2, ... });

Example:
db.myNewCollection1.insertOne({ name:"geeksforgeeks" })

Output:

Explanation:

 The insertOne () method adds a single document to the collection.

 In this example, we create a collection named as "myNewCollection1" by inserting a

document that contains a "name" field with its value in it using insertOne() method.

https://www.geeksforgeeks.org/json-full-form/

2. insertMany() method

The insertMany() method in MongoDB allows you to insert multiple

documents into a collection at once. This method is ideal when you need to add multiple

records in one operation, improving performance compared to inserting documents one by

one.

Syntax:
db.collection_name.insertMany([{ field1: value1, field2: value2, ... }, { field1:

value1, field2: value2, ... }, ...]);

Example:
Let’s say we want to create a collection named myNewCollection2 and insert two

documents. The first document will have a name field with the value "gfg" and country field

with "India". The second document will have name as "rahul" and age as 20.

db.myNewCollection2.insertMany([{name:"gfg", country:"India"},

 {name:"rahul", age:20}])

Output:

View Existing Collections
After creating collections and inserting data, it’s important to check the contents of

your current database by listing all the collections. In MongoDB, you can view all the

collections in your current database by using the show collections command.

Syntax:

show collections
Example:

If you're working in the gfgDBdatabase and you want to see all the collections, simply run:

show collections

Output:

https://www.geeksforgeeks.org/mongodb-insert-multiple-document-using-mongoshell/

This shows that the Student collection exists within the gfgDB database.

MongoDB Drop Collection

 In MongoDB, the drop method is used to remove a collection from a database. When we

drop a collection, it deletes the entire collection along with all the documents it contains.

 The drop command is used to permanently delete a collection from a MongoDB

database.

Syntax:
db.Collection_name.drop({writeConcern: <document>})

Examples of MongoDB Drop Collection
Let's look at some of the examples of db.collection.drop() method in MongoDB.

These examples explain how to delete a collection in MongoDB.

Suppose we have callection called students in gfg database and we will perfrom all

the operation on that collection for better understanding.

Example 1

We will drop the student collection in the gfg database.

db.student.drop()

Output:

The output confirms that the student collection has been dropped successfully:

{ "ok" : 1 }

It drops the student collection and all the indexes associated with the collection.

Example 2

In the following example, we are working with:

 Database: gfg

 Collections: student_gfg, teacher, semester

Suppose we want to drop the teacher collection from the gfg database. So, we use the

drop method:

db.teacher.drop()

Output:

The output confirms that the teacher collection has been dropped successfully:

{ "ok" : 1 }

This method drops the teacher collection along with its documents.

https://www.geeksforgeeks.org/mongodb-tutorial/
https://www.geeksforgeeks.org/what-is-database/

Working with document
In MongoDB, the data records are stored as BSON documents. Here, BSON stands

for binary representation of JSON documents, although BSON contains more data types as

compared to JSON. The document is created using field-value pairs or key-value pairs and

the value of the field can be of any BSON type.

Syntax:

{

field1: value1

field2: value2

....

fieldN: valueN

}

Document Structure:

A document in MongoDB is a flexible data structure made up of field-value pairs.

For instance:

{

 title: "MongoDB Basics",

 author: "John Doe",

 year: 2025

}

Insert documents

The MongoDB shell provides the following methods to insert documents into a

collection:

 To insert a single document, use db.collection.insertOne().

 To insert multiple documents, use db.collection.insertMany().

 MongoDB insertOne() Method

The MongoDB insertOne() method is used to add a single document to a collection. It

adds the document to the specified collection and assigns it a unique _id if one is not

provided. This insertOne() method is part of the MongoDB driver for various programming

languages and can be used in MongoDB Shell, Node.js, Python and other environments.

 We can insert documents with or without the _id field. If we insert a document in the

collection without the _id field, MongoDB will automatically add an _id field and

assign it with a unique ObjectId.

 if we insert a document with the _id field, then the value of the _id field must be unique

to avoid the duplicate key error.

 This method can also throw either writeError or writeConcernError exception.

 This method can also be used inside multi-document transactions.

https://www.geeksforgeeks.org/mongodb/what-is-bson/
https://www.mongodb.com/docs/manual/reference/method/db.collection.insertOne/#mongodb-method-db.collection.insertOne
https://www.mongodb.com/docs/manual/reference/method/db.collection.insertMany/#mongodb-method-db.collection.insertMany
https://www.geeksforgeeks.org/mongodb-tutorial/
https://www.geeksforgeeks.org/mongodb-tutorial/
https://www.geeksforgeeks.org/nodejs/
https://www.geeksforgeeks.org/python-programming-language-tutorial/
https://www.geeksforgeeks.org/what-is-objectid-in-mongodb/
https://www.geeksforgeeks.org/transaction-in-dbms/

Syntax:

db.Collection_name.insertOne(

<document>,

{

 writeConcern: <document>

}

)

Key Terms

 <document>: The document we want to insert. A document is a set of key-value pairs

similar to a JSON object.

 writeConcern (optional): If we need to specify a custom write concern (e.g., to ensure

the data is written to multiple nodes), you can include this option.

Examples of MongoDB insertOne()

Let’s go over a few examples to understand how insertOne() works in MongoDB. In the

following examples, we are working with:

 Database: gfg

 Collection: student

 Document: No document but, we want to insert in the form of the student name and

student marks.

Example 1: Insert a Document without Specifying an _id Field

 Here, we are inserting the document whose name is Akshay and marks is 500 in the student

collection. MongoDB will automatically assign a unique _id field to this document.

Query:

db.student.insertOne({Name: "Akshay", Marks: 500})

Output:

Explanation: As shown above, MongoDB has inserted the document with a new ObjectId

automatically generated for the _id field.

Example 2: Insert a Document Specifying an _id Field

Here, we are inserting a document whose unique id is Stu102, name is Vishal, and

marks is 230 in the student collection

Query:
db.student.insertOne({_id: "Stu102", Name: "Vishal", Marks: 230})

Output:

Explanation: Here, we specified the _id as "Stu102", and MongoDB inserts the document

successfully.

find() document

find() method in MongoDB is a tool for retrieving documents from a collection. It

supports various query operators and enabling complex queries. The find() method is the

primary way to retrieve documents from a collection in MongoDB.

findOne() Method

The findOne() in MongoDB is a method used to retrieve a single document from a

collection that matches a specified criteria. It returns only one document, even if multiple

documents match the criteria. If no matching document is found, it returns null.

Examples of Find() Method

To understand find() method in MongoDB we need a collection and some documents on

which we will perform various operations and queries. Here we will consider a collection

called student of gfg database which contains the following documents:

 Database: gfg

 Collections: student

 Document: Three documents contains the details of the students

Example 1: Find All Documents in a Collection

db.student.find()

Output:

Explanation: In the above query, we have found all the documents in

the students collections in MongoDB.

Example 2: Find Documents with a Specific Condition

Find all the students whose age is exactly 18:

db.student.find({age:18})

Output:

Explanation: In the above query, we have find those students whose age is 18.

Example 3: Using Nested Documents in Queries

Let's Find student records from the "student" collection where the student's math score

is 230 and science score is 234.

db.student.find({score:{math: 230, science: 234}})

Output:

Modify documents

Update operations allow us to modify documents in a collection. These operations

can update a single document or multiple documents based on specified criteria. MongoDB

offers various update operators to perform specific actions like setting a value,

incrementing a value or updating elements within arrays.

 update() Method

The MongoDB update() method is a method that is used to update a

single document or multiple documents in the collection. When the document is updated

the _id field remains unchanged. The db.collection.update() method updates a single

document by default. To update all documents that match the given query, use the multi:

true option. Include the option "multi: true".

Syntax
db.COLLECTION_NAME.update({SELECTION_CRITERIA}, {$set:{UPDATED_DATA}},

Examples of MongoDB update
To understand MongoDB update we need a collection called students on which we

will perform various operations and queries.

[

 { _id: 1, name: "Alice", age: 25, grades: [

 { grade: "Maths", score: 80 },

 { grade: "Science", score: 85 }

]

 },

 { _id: 2, name: "Bob", age: 30, grades: [

 { grade: "Maths", score: 75 },

 { grade: "Science", score: 90 }

]

 },

 { _id: 3, name: "Charlie", age: 35, grades: [

 { grade: "Maths", score: 95 },

 { grade: "Science", score: 88 }

]

 }

]

Example 1: Update a Single Document
Write a query to update the age of a student named Alice to 26 in the "students" collection.

https://www.geeksforgeeks.org/mongodb-database-collection-and-document/

Query:
db.students.updateOne(

 { name: "Alice" },

 { $set: { age: 26 } }

)

Output:

[

 {

 _id: 1,

 name: 'Alice',

 age: 26,

 grades: [{ grade: 'Maths', score: 80 }, { grade: 'Science', score: 85 }]

 },

 {

 _id: 2,

 name: 'Bob',

 age: 30,

 grades: [{ grade: 'Maths', score: 75 }, { grade: 'Science', score: 90 }]

 },

 {

 _id: 3,

 name: 'Charlie',

 age: 35,

 grades: [{ grade: 'Maths', score: 95 }, { grade: 'Science', score: 88 }]

 }

]

Example 2: Use Update Operator Expressions ($inc and $set)
Write a query to increment the age of a student named Alice by 1 in the "students" collection.

Query:

db.students.updateOne(

 { name: "Alice" },

 { $inc: { age: 1 } }

)

Output:

[

 {

 _id: 1,

 name: 'Alice',

 age: 27,

 grades: [{ grade: 'Maths', score: 80 }, { grade: 'Science', score: 85 }]

 },

 {

 _id: 2,

 name: 'Bob',

 age: 30,

 grades: [{ grade: 'Maths', score: 75 }, { grade: 'Science', score: 90 }]

 },

 {

 _id: 3,

 name: 'Charlie',

 age: 35,

 grades: [{ grade: 'Maths', score: 95 }, { grade: 'Science', score: 88 }]

 }

]

Example 3: Insert a New Document if No Match Exists (Upsert)

Write a query to update the age of a student named Charlie to 30 in the "students" collection.

If Charlie does not exist, a new document should be inserted with the specified age.

Query:
db.students.updateOne(

 { name: "Charlie" },

 { $set: { age: 30 } },

 { upsert: true }

)

Output:

[

 {

 _id: 1,

 name: 'Alice',

 age: 26,

 grades: [{ grade: 'Maths', score: 80 }, { grade: 'Science', score: 85 }]

 },

 {

 _id: 2,

 name: 'Bob',

 age: 31,

 grades: [{ grade: 'Maths', score: 75 }, { grade: 'Science', score: 90 }]

 },

 {

 _id: 3,

 name: 'Charlie',

 age: 30,

 grades: [{ grade: 'Maths', score: 95 }, { grade: 'Science', score: 88 }]

 }

]

Removing Document

The MongoDB remove() method allows users to remove documents from a collection

based on specific criteria. It is a powerful tool in MongoDB that enables both single and bulk

document deletion, offering flexibility in managing your database. It supports various options

like removing only one document and specifying a write concern.

The remove() method in MongoDB is used to delete documents from a collection. It

can remove a single document or multiple documents that match the given query condition.

By passing an empty query document ({}), we can remove all documents from the

collection. However, it's important to note that MongoDB’s remove() method has been

deprecated in newer versions, and you should prefer using

the deleteOne() or deleteMany() methods for future-proof applications.

Syntax:

db.Collection_name.remove(

<matching_criteria>,

{

 justOne: <boolean>,

 writeConcern: <document>,

 collation: <document>

})

Parameters

 query: The condition or criteria to match the documents for deletion. If an empty

document {} is provided, all documents in the collection are removed.

 justOne: (Optional) If set to true, only the first matching document is removed. The

default is false, which removes all matching documents.

 writeConcern: (Optional) Specifies the level of acknowledgment requested from

MongoDB for write operations. This can be used to adjust the write concern if you want

more control over the operation's durability and safety.

 collation: (Optional) Allows the specification of language-specific rules for string

comparison, such as case sensitivity and accent marks.

Examples of MongoDB remove()

In these examples, we demonstrate how to use the remove() method on a MongoDB

collection. The student collection in the gfg database contains student records, each with

fields like name and age. We'll show different scenarios, including removing documents

based on specific conditions or clearing all documents from the collection.

In the following examples, we are working with:

 Database: gfg

 Collections: student

 Document: Three documents contains name and the age of the students

Example 1: Remove All Documents that Match a Condition
To remove all documents that match a specific condition, pass a query to

the remove() method. Here, we remove all the documents from the student collection where

the name is "Akshay".

Query:

db.student.remove({name: "Akshay"})

Output:

Example 2: Remove All Documents from a Collection

To delete all documents from a collection, we can pass an empty document ({}) as

the query. Here, we remove all the documents from the student collection by passing empty

document(i.e., {}) in the remove() method.

Query:

db.student.remove({})

Output:

Example 3: Remove a Single Document that Matches a Condition

If we want to remove only one document that matches the query criteria, set

the justOne option to true. Here, two documents matched the specified condition, but we only

want to remove one document, so we set the value of justOne option to true.

Query:
db.student.remove({age:{$eq:18}}, true)

Output:

Indexing
Indexing in MongoDB is a crucial feature that enhances query processing efficiency.

Without indexing, MongoDB must scan every document in a collection to retrieve

the matching documents and leading to slower query performance.

Indexes are special data structures that store information about the documents in a

way that makes it easier for MongoDB to quickly locate the right data.

What is Indexing in MongoDB?

Indexing in MongoDB is a technique that improves the speed and efficiency of

queries. An index is a special data structure that stores a subset of data in a way that allows

MongoDB to quickly locate documents in a collection. When an index is applied, MongoDB

doesn't have to scan the entire collection for the query results but instead uses the index to

directly find the relevant data.

Indexes in MongoDB are ordered by the value of the field that the index is created on. This

ordered structure enables faster searching, sorting, and filtering operations. Indexes also help

to improve query performance when using conditions, sorting, and aggregation

Why is Indexing Important in MongoDB?

MongoDB provides a method called createIndex() that allows users to create an

index. The key determines the field on the basis of which we want to create an index and 1

(or -1) determines the order in which these indexes will be arranged(ascending or

descending).

Indexing improves the performance of:

 Find queries (db.collection.find()).

 Range queries (e.g., queries with <, >, <=, >= operators).

 Sorting (e.g., db.collection.find().sort()).

 Aggregation operations involving filtering, grouping, and sorting.

How to Create an Index in MongoDB

To create an index, MongoDB provides the createIndex() method. The method

requires us to specify the field(s) to index and the order (ascending or descending). We can

also specify optional parameters to customize the index creation.

Syntax

db.collection.createIndex({ <field>: <1 or -1> });

Example

db.users.createIndex({ username: 1 });

Parameters:
 unique: Ensures the indexed field contains unique values.

 background: Creates the index in the background to avoid blocking other database

operations.

 sparse: Only indexes documents that contain the indexed field.

 expireAfterSeconds: Used for time-to-live (TTL) indexes to automatically remove

documents after a certain time.

 hidden: Marks the index as hidden, meaning it will not be used for queries but still

exists in the system.

How to Drop an Index in MongoDB
We can drop an index using the dropIndex() method. To drop multiple indexes,

use dropIndexes(). The dropIndex() methods can only delete one index at a time. In order to

delete (or drop) multiple indexes from the collection, MongoDB provides the dropIndexes()

method that takes multiple indexes as its parameters.

Syntax (drop a single index):

db.NAME_OF_COLLECTION.dropIndex({KEY:1})

https://www.geeksforgeeks.org/mongodb/mongodb-db-collection-createindex-method/

Syntax (drop multiple indexes):

db.NAME_OF_COLLECTION.dropIndexes({KEY1:1, KEY2: 1})

How to View all Indexes in MongoDB

The getIndexes() method in MongoDB gives a description of all the indexes that

exists in the given collection.

Syntax

db.NAME_OF_COLLECTION.getIndexes()
It will retrieve all the description of the indexes created within the collection.

Sharding

Sharding is the process of storing data records across multiple machines and it is

MongoDB's approach to meeting the demands of data growth. As the size of the data increases,

a single machine may not be sufficient to store the data nor provide an acceptable read and

write throughput. Sharding solves the problem with horizontal scaling. With sharding, you add

more machines to support data growth and the demands of read and write operations.

The following diagram shows the Sharding in MongoDB using sharded cluster.

In the following diagram, there are three main components −

Shards − Shards are used to store data. They provide high availability and data consistency. In

production environment, each shard is a separate replica set.

https://www.geeksforgeeks.org/mongodb/mongodb-getindexes-method/

Config Servers − Config servers store the cluster's metadata. This data contains a mapping of

the cluster's data set to the shards. The query router uses this metadata to target operations to

specific shards. In production environment, sharded clusters have exactly 3 config servers.

Query Routers − Query routers are basically mongo instances, interface with client

applications and direct operations to the appropriate shard. The query router processes and

targets the operations to shards and then returns results to the clients. A sharded cluster can

contain more than one query router to divide the client request load. A client sends requests to

one query router. Generally, a sharded cluster have many query routers.

Writing to a shard in MongoDB

Writing to a shard in MongoDB. In MongoDB, sharding is a method for

distributing data across multiple servers (shards) to handle large datasets and high-throughput

operations.

How Writing to Shards Works

When you insert or update documents in a sharded collection:

1. MongoDB uses the shard key to determine the target shard.

2. The mongos router routes the write request to the correct shard(s):

o Targeted write: If the operation specifies a shard key, it goes directly to the

relevant shard.

o Broadcast write: If the shard key is not included, the operation might be sent

to all shards.

3. The primary of that shard handles the write operation (MongoDB still uses replica

sets under the hood for each shard).

2. Steps to Write to a Sharded Cluster

1. Enable Sharding on the Database

sh.enableSharding("myDatabase")

2. Shard the Collection

Define a shard key (a field that decides the document distribution across shards):

sh.shardCollection("myDatabase.myCollection", { userId: 1 })

o userId is the shard key.

o The shard key must be present in every write operation for targeted writes.

3. Insert Data

use myDatabase

// Example write with shard key

db.myCollection.insertOne({ userId: 101, name: "Alice", age: 25 })

This write will be routed to the correct shard based on userId.

Using MongoDB as a file system is possible through a feature called GridFS. MongoDB is

not designed as a traditional file system like NTFS or ext4, but GridFS allows you to store

and retrieve files (images, videos, PDFs, etc.) that are larger than the BSON document size

limit of 16MB.

Here’s a complete explanation:

1. What is GridFS in MongoDB?

 GridFS is a specification for storing and retrieving large files in MongoDB.

 Instead of storing a single file as a document, GridFS splits the file into smaller

chunks (default 255 KB each) and stores them across two collections:

1. fs.files – Metadata for each file (filename, upload date, length, etc.)

2. fs.chunks – Binary chunks of the file

When to Use GridFS

Use GridFS if:

 Your file size is greater than 16MB.

 You want to store files in MongoDB instead of the OS file system.

 You need file replication and high availability using MongoDB’s replica sets.

 You want to stream files to/from MongoDB in applications.

 Following is a sample document of fs.files collection −

{

 "filename": "test.txt",

 "chunkSize": NumberInt(261120),

 "uploadDate": ISODate("2014-04-13T11:32:33.557Z"),

 "md5": "7b762939321e146569b07f72c62cca4f",

 "length": NumberInt(646)

}

The document specifies the file name, chunk size, uploaded date, and length.

Following is a sample document of fs.chunks document –

{

 "files_id": ObjectId("534a75d19f54bfec8a2fe44b"),

 "n": NumberInt(0),

 "data": "Mongo Binary Data"

}

Adding Files to GridFS

Now, we will store an mp3 file using GridFS using the put command. For this, we

will use the mongofiles.exe utility present in the bin folder of the MongoDB installation

folder.

Open your command prompt, navigate to the mongofiles.exe in the bin folder of

MongoDB installation folder and type the following code –

>mongofiles.exe -d gridfs put song.mp3

Here, gridfs is the name of the database in which the file will be stored. If the database

is not present, MongoDB will automatically create a new document on the fly. Song.mp3 is the

name of the file uploaded. To see the file's document in database, you can use find query −

>db.fs.files.find()

The above command returned the following document −

{

 _id: ObjectId('534a811bf8b4aa4d33fdf94d'),

 filename: "song.mp3",

 chunkSize: 261120,

 uploadDate: new Date(1397391643474), md5: "e4f53379c909f7bed2e9d631e15c1c41",

 length: 10401959

}

We can also see all the chunks present in fs.chunks collection related to the stored file

with the following code, using the document id returned in the previous query −

>db.fs.chunks.find({files_id:ObjectId('534a811bf8b4aa4d33fdf94d')})

In my case, the query returned 40 documents meaning that the whole mp3 document

was divided in 40 chunks of data.

Unit 4: Cassandra

4.1 The Column-Family Data Model

Apache Cassandra employs a column-family data model, which differs significantly from
the table-based structure of traditional relational databases. Instead of organizing data
strictly into rows and columns, Cassandra uses a more flexible, schema-optional
structure based on key-value pairs grouped into column families.

 Column Family: A column family is conceptually similar to a relational table but
allows for a much more flexible design. Each row in a column family is identified
by a unique key (row key), and the columns in each row can vary in number and
name.

 Rows and Columns:

o Each row is a collection of columns.

o Each column is a triplet composed of a name, value, and a timestamp.

o Columns within the same row are sorted by their names.

This model enables Cassandra to store sparse data efficiently and allows for rapid
growth in data volume without requiring rigid schema modifications.

For example, a user profile table in Cassandra might look like this:

Row Key: user123
 Name: "Alice"
 Email: "alice@example.com"
 Age: 30

Row Key: user456
 Name: "Bob"
 Phone: "123-456-7890"

Note that each user (row) can have different columns, and Cassandra handles this
gracefully.

4.2 Databases and Tables

In Cassandra, a keyspace is analogous to a database in relational systems. It is the
outermost container for data and is used to define data replication strategies for the
data stored within it.

 Keyspace:

o Defines the replication strategy (SimpleStrategy,
NetworkTopologyStrategy).

o Sets the replication factor, which is the number of nodes that will receive
copies of the same data.

 Tables (Column Families):

o Tables reside within a keyspace.

o Tables consist of rows and columns but allow variable column structures
per row.

o Each table has a defined schema that includes data types for defined
columns and a primary key.

Primary Key Design:

 A primary key is composed of:

o Partition Key: Determines how data is distributed across nodes.

o Clustering Columns: Determine the order of data storage within a
partition.

Example:

CREATE TABLE users (
 user_id UUID,
 name TEXT,
 email TEXT,
 PRIMARY KEY (user_id)
);

Here, user_id is the partition key, and the table defines a fixed schema, although
additional columns can be added.

4.3 Columns, Types, and Keys

Columns: Each column in Cassandra includes:

 Column Name: The identifier for the column.

 Value: The actual data stored.

 Timestamp: Used for resolving write conflicts (last-write-wins).

Data Types: Cassandra supports various built-in data types, such as:

 Primitive types: int, text, boolean, float, double, timestamp, uuid

 Collections: list<type>, set<type>, map<key_type, value_type>

 User-defined types (UDTs) allow for complex custom structures.

Keys:

 Primary Key = Partition Key [+ Clustering Columns]

 Partition Key determines which node will store the data.

 Clustering Columns define how data is ordered within a partition.

Designing primary keys wisely is crucial for performance and scalability in Cassandra. A
poorly chosen key can result in uneven data distribution and hotspots.

Example with Clustering:

CREATE TABLE sensor_data (
 device_id UUID,
 timestamp TIMESTAMP,
 reading FLOAT,
 PRIMARY KEY (device_id, timestamp)
);

Here, device_id is the partition key, and timestamp is the clustering column that sorts
the data within each device’s partition.

4.4 Cassandra’s Architecture

Cassandra’s architecture is designed for high availability, fault tolerance, and horizontal
scalability. It follows a peer-to-peer distributed model where all nodes are equal.

Key Architectural Features:

 Decentralized Design:

o No single point of failure.

o Each node in the cluster has the same role.

 Partitioning and Distribution:

o Data is partitioned using consistent hashing.

o The partitioner decides how data is distributed based on partition keys.

 Replication:

o Data is replicated to multiple nodes.

o The replication factor determines how many copies are maintained.

o Replica placement is determined by the keyspace’s replication strategy.

 Tunable Consistency:

o Cassandra allows clients to choose consistency levels (e.g., ONE,
QUORUM, ALL) based on application needs.

Core Components:

 Gossip Protocol:

o Used for communication between nodes.

o Exchanges metadata like state and health information.

 Snitch:

o Helps Cassandra understand the network topology (datacenters and
racks).

o Optimizes replica placement and query routing.

 Commit Log, Memtable, SSTable:

o Commit Log: Records all writes for durability.

o Memtable: In-memory data structure storing recent writes.

o SSTable: On-disk immutable files created from memtables.

 Compaction:

o Merges SSTables to remove obsolete data and improve read efficiency.

Advantages of Cassandra’s Architecture:

 Linear scalability: Add more nodes to handle more data.

 High availability: No downtime for maintenance or node failures.

 Fault tolerance: Data is replicated across multiple nodes.

 Write-optimized: Extremely fast write performance.

Cassandra is ideal for:

 Real-time big data applications

 Internet of Things (IoT) platforms

 Time-series data

 Logging and monitoring systems

Would you like this content exported as a formatted Word document (.docx)?

Unit 5: MongoDB with Python

5.1 Basics of Python Module Python modules are files containing Python code. These

files can define functions, classes, and variables, and can also include runnable code. A
module allows code reusability and organization, making it easier to maintain and
manage.

 To create a module, save the code in a .py file.

 Use the import statement to include a module in another Python script.

 Python comes with many built-in modules like math, os, and datetime.

Example:

mymodule.py
def greet(name):
 return f"Hello, {name}!"

main.py
import mymodule
greeting = mymodule.greet("Alice")
print(greeting)

5.2 Introduction to PyMongo Module PyMongo is the official Python driver for
MongoDB. It allows Python applications to connect to MongoDB, perform database
operations, and manage data.

To install PyMongo:

pip install pymongo

PyMongo provides:

 Tools for connecting to MongoDB databases.

 Functions to perform CRUD (Create, Read, Update, Delete) operations.

 Integration with MongoDB queries and aggregation frameworks.

5.3 Working with Database with PyMongo To start working with MongoDB in Python:

1. Import pymongo and establish a connection.

2. Access the desired database and collection.

Example:

from pymongo import MongoClient

Connect to MongoDB server
client = MongoClient("mongodb://localhost:27017/")

Access database
db = client["mydatabase"]

Access collection
collection = db["customers"]

5.4 CRUD Operations in PyMongo CRUD stands for Create, Read, Update, and

Delete. These are the four basic functions of persistent storage.

 Create:

collection.insert_one({"name": "Alice", "age": 25})

 Read:

document = collection.find_one({"name": "Alice"})
print(document)

 Update:

collection.update_one({"name": "Alice"}, {"$set": {"age": 26}})

 Delete:

collection.delete_one({"name": "Alice"})

5.5 Flask API with MongoDB Database Flask is a lightweight web framework in

Python. It can be used to build RESTful APIs that interact with MongoDB using
PyMongo.

Steps:

1. Install Flask and PyMongo:

pip install flask pymongo

2. Create a Flask application that connects to MongoDB:

from flask import Flask, jsonify, request
from pymongo import MongoClient

app = Flask(__name__)
client = MongoClient("mongodb://localhost:27017/")
db = client["mydatabase"]
collection = db["customers"]

@app.route("/add", methods=["POST"])
def add_customer():
 data = request.json
 collection.insert_one(data)
 return jsonify({"message": "Customer added"}), 201

@app.route("/get", methods=["GET"])
def get_customers():
 customers = list(collection.find({}, {"_id": 0}))
 return jsonify(customers)

if __name__ == "__main__":
 app.run(debug=True)

This simple API lets you insert and retrieve customer data from a MongoDB database
using HTTP requests.

continue

	Types of NoSQL Database:
	Document-Based Database:
	Key-Value Stores:
	Column Oriented Databases:
	Graph-Based databases:
	Time Series Database
	Features of MongoDB
	1. Schema-less Database
	2. Document Oriented
	3. Indexing
	4. Scalability
	5. Replication
	6. Aggregation
	7. High Performance

	Uses of MongoDB
	1. Content Management Systems (CMS):
	2. E-commerce Platforms
	3. Real-Time Analytics
	4. Internet of Things (IoT)
	5. Gaming Applications
	6. Customer Relationship Management (CRM)
	7. Social Networks
	8. Big Data Applications
	9. Healthcare Systems

	Advantages of MongoDB
	Disadvantages of MongoDB
	What is a Database in MongoDB?
	Naming Restriction for Database:

	What is a Collection in MongoDB?
	Schemaless
	Multiple Collections per Database
	Naming Restrictions for Collection:
	Creating collection

	What is a Document in MongoDB?
	Document Structure:
	Naming restriction for Document Fields:
	Document Size:
	What is the _id Field in MongoDB?
	Example with ObjectId:
	Example with Custom _id:

	Key Differences Between Databases, Collections, and Documents
	Practical Example: Creating a Database, Collection, and Document
	1. Create or Switch to a Database
	2. Create a Collection and Insert a Document
	3. Verify the Insertion
	MongoDB Indexes and the _id Field

	Best Practices for MongoDB Databases, Collections, and Documents
	MongoDB Shell
	Key features of the MongoDB Shell include:
	How to Start MongoDB Using the Shell?
	Step 1: Connecting to MongoDB Server
	Step 2: Executing MongoDB Commands
	1. Listing Databases
	2. Switching Databases
	3. Creating Collections
	4. Querying Data

	What is a Database in MongoDB?
	Naming Restriction for Database:

	Drop a Database in MongoDB?
	Step 1: List Available Databases
	Example Output:

	Step 2: Select the Database to Drop
	Example Output:

	Step 3: Drop the Selected Database
	Example Output:

	Step 4: Verify That the Database Has Been Dropped
	Example Output After Dropping testDB:

	Precautions Before Dropping a Database
	Create a Collection in MongoDB
	Note:
	Insert Documents into a Collection in MongoDB
	1. insertOne() Method
	2. insertMany() method
	Example:

	View Existing Collections

	MongoDB Drop Collection
	Examples of MongoDB Drop Collection
	Example 1
	Example 2
	Document Structure:

	MongoDB insertOne() Method
	Examples of MongoDB insertOne()
	Example 1: Insert a Document without Specifying an _id Field
	Example 2: Insert a Document Specifying an _id Field

	findOne() Method
	Examples of Find() Method
	Example 1: Find All Documents in a Collection
	Example 2: Find Documents with a Specific Condition
	Example 3: Using Nested Documents in Queries

	update() Method
	Examples of MongoDB update
	Example 1: Update a Single Document
	Example 2: Use Update Operator Expressions ($inc and $set)
	Example 3: Insert a New Document if No Match Exists (Upsert)
	Parameters

	Examples of MongoDB remove()
	Example 1: Remove All Documents that Match a Condition
	Example 3: Remove a Single Document that Matches a Condition

	What is Indexing in MongoDB?
	Why is Indexing Important in MongoDB?
	How to Create an Index in MongoDB
	Syntax

	How to Drop an Index in MongoDB
	How to View all Indexes in MongoDB
	How Writing to Shards Works
	2. Steps to Write to a Sharded Cluster

	1. What is GridFS in MongoDB?
	When to Use GridFS

