501 Linux Operating System Unit—1

Unit 1 : Introduction to Linux Operating System
What is Linux?
Linux is based on the UNIX operating system.UNIXis a powerful, multi-user, multitasking
operating system originally developed in the 1970s at AT&T Bell Labs. It laid the foundation for
many modern operating systems, including Linux.
While UNIX is alicensed operating system (meaning you need to purchase a license to use
it), Linux is free and open-source, making it accessible to everyone. Anyone can inspect and
modify the source code, which enables global collaboration and innovation. Its efficient
performance and strong security model make it suitable for a wide variety of devices and
industries.

1.1  Features of Linux OS
Linux, a popular open-source operating system, is known for its features like being free and open-
source, supporting multiple users and tasks simultaneously, offering strong security, being highly
customizable, and providing excellent performance and stability. It also boasts a hierarchical file
system, a command-line interface through the shell, and supports various hardware architectures.

LINUXSIMPLY

Linux

Features

Free
Software

Key Features of Linux:
Open Source:

The source code is publicly available, allowing for community-driven development, modification, and
distribution.

Multiuser:

Multiple users can access the system's resources concurrently, such as RAM and storage.

MS. Shafika Kolia Page 1




501 Linux Operating System Unit—1

Multitasking/Multiprogramming:
The system can run multiple applications concurrently, improving efficiency.
Security:

Linux is known for its strong security features, including user permissions, encryption, and a
proactive community focused on addressing vulnerabilities.

Portability:
The OS can be adapted to run on various hardware platforms.
Hierarchical File System:

Organizes files and directories in a structured tree-like manner for efficient access and
management.

Shell/Command Line Interface:

Provides a powerful command-line interface (CLI) for executing commands and managing the
system.

Graphical User Interface (GUI):

While it has a strong CLI, Linux also supports various GUI environments.

Stability:

Linux is known for its stability and reliability, rarely crashing or freezing.
Customization:

Users can customize the system to their specific needs and preferences.
Performance:

Linux can be optimized for performance, making it suitable for resource-intensive tasks.
Package Management:

Built-in package managers simplify the installation, update, and removal of software.
Community Support:

A large and active community provides support, documentation, and resources.
Interoperability:

Linux works well with other systems and platforms.

Live CD/USB:

Many Linux distributions can be run from a USB drive or CD without installation.

Energy Efficiency:
Linux can be configured to be energy efficient, making it suitable for various devices.

MS. Shafika Kolia Page 2




501 Linux Operating System Unit—1

Architecture of Linux :
Linux architecture has the following components:

Architecture of OS Linux

LINUXSIMPLY

Application

Agp R atinn Congpders

Sheltl

Kernel

Kemed

Hardware

| Harchware

Utilities
Linux Architecture

Kernel: Kernel is the core of the Linux based operating system. It virtualizes the common
hardware resources of the computer to provide each process with its virtual resources. This
makes the process seem as if it is the sole process running on the machine. The kernel is also
responsible for preventing and mitigating conflicts between different processes. Different types
of the kernel are:

Monolithic Kernel

Hybrid kernels

Micro kernels

System Library: Linux uses system libraries, also known as shared libraries, to implement various
functionalities of the operating system. These libraries contain pre-written code that
applications can use to perform specific tasks. By using these libraries, developers can save time
and effort, as they don't need to write the same code repeatedly. System libraries act as an
interface between applications and the kernel, providing a standardized and efficient way for
applications to interact with the underlying system.

Shell: The shell is the user interface of the Linux Operating System. It allows users to interact
with the system by entering commands, which the shell interprets and executes. The shell
serves as a bridge between the user and the kernel, forwarding the user's requests to the kernel
for processing. It provides a convenient way for users to perform various tasks, such as running
programs, managing files, and configuring the system.

Hardware Layer: The hardware layer encompasses all the physical components of the computer,
such as RAM (Random Access Memory), HDD (Hard Disk Drive), CPU (Central Processing Unit),
and input/output devices. This layer is responsible for interacting with the Linux Operating
System and providing the necessary resources for the system and applications to function
properly. The Linux kernel and system libraries enable communication and control over these
hardware components, ensuring that they work harmoniously together.

MS. Shafika Kolia Page 3



https://www.geeksforgeeks.org/videos/linux-architecture/
https://www.geeksforgeeks.org/operating-systems/kernel-in-operating-system/
https://www.geeksforgeeks.org/computer-science-fundamentals/random-access-memory-ram/
https://www.geeksforgeeks.org/difference-between-hard-disk-drive-hdd-and-solid-state-drive-ssd/
https://www.geeksforgeeks.org/linux-unix/the-linux-kernel/

501 Linux Operating System Unit—1

5. System Utility: System utilities are essential tools and programs provided by the Linux Operating
System to manage and configure various aspects of the system. These utilities perform tasks
such as installing software, configuring network settings, monitoring system performance,
managing users and permissions, and much more. System utilities simplify system
administration tasks, making it easier for users to maintain their Linux systems efficiently.

How is the Linux Operating System Used
The Linux operating system is widely used across various domains due to its flexibility, security,
and open-source nature:

o Servers and Hosting: Powers web servers, cloud infrastructure, and database management
systems.

o Development: Used by developers for coding, debugging, and running applications.

o Desktop and Personal Use: Provides secure and customizable desktop environments.

e Cyber security: Essential for ethical hacking, penetration testing, and security research.

o Embedded Systems: Runs lightweight devices like routers, 0T gadgets, and smart appliances.

e Supercomputers: Dominates high-performance computing for scientific research and
simulations.

e Education: A cost-effective tool for teaching programming and system administration.

KERNEL and IT’s Architecture :

The kernel is the core of the operating system. Kernel is mostly written in C. It is loaded into
memory when the system is booted and communicates directly with the hardware. User programs
that need to access the hardware use the services of the kernel, which performs the job on the
user’s behalf. The programs access kernel through set of functions called system calls. The kernel
program is usually stored in a file called “Unix”.

Shells [¢ Utilities Applications Libraries
User Level T 7
Kernel Level
!
System Call Interface
File Subsystem l—'l Process Control
I Inter Process
Buffer Communication
Caihe Scheduler
Character | Block Memory
Management
Device Driver
Hardware Control
Hardware Level ‘1 """"""""" B
Hardware

MS. Shafika Kolia Page 4




501 Linux Operating System Unit—1

Architecture of UNIX (Kernel Architecture) :

The UNIX architecture can be divided into three levels: User level, Kernel level, Hardware level.

The system call and library Interface represent the border between user programs and the kernel
as shown in the figure. System calls are ordinary function calls in C programs and libraries map
these functions calls to primitive needed to enter the operating system. Programs frequently use
other libraries such as standard I/O library to provide more sophisticated use of the system calls.
The libraries are linked with the programs at compile time.

The system calls are partitioned to the system calls that interact with the file sub system and the
system calls that interact with the process control subsystem.

The file subsystem manages the files, allocates files space, administrating the free space,
controlling access to files, and retrieving data for users. Processes interact with the file system
through system calls. E.g. Open, close, read, write, etc. The files subsystem accesses the data using
buffering mechanism that regulates dataflow between the kernel and secondary storage devices.
The buffering mechanism interacts with block 1/O devices drivers to initiate data transfer to and
from the kernel.

Device drivers are the kernel modules that control the operation of peripheral devices. Block 1/0
devices are random access storage device to the rest of the system.

The file subsystem also interacts directly with the raw (Character devices) I/O device drivers
without the intervention of a buffering mechanism.

The process control subsystem is responsible for process synchronization, inter-process
communication, memory management, process scheduling. The system calls used with process
control systems are fork (creating a new process), exec (overlay the image of a program onto the
running process), Exit (finish executing a process), wait (Synchronize process execution with the
exit of a previously forked process), and signal(control process response to extraordinary events).

The memory management module controls the allocation of memory. If at any time the system
doesn’t have enough physical memory for all processes, the kernel moves between main memory
and secondary memory so that the all processes get a fair chance to execute.

The scheduler module allocates the CPU to processes. It schedules them to run in turn until they
voluntarily relinquish the CPU while awaiting a resource or until the kernel preempts them when
their recent run time exceeds a time quantum. The scheduler then chooses the highest priority
eligible process to run; the original process will run when it is the highest priority eligible process
available.

The inter-process communication provides message passing between processes. i.e.: it facilitates
the communication between processes.

The hardware control is responsible for handling interrupts and for communicating with the
machine. Devices such as disks or terminals may interrupt the CPU while a process is executing.

The kernel executes the interrupt and then resumes the previously executing process. This way it
provides access of hardware devices.

MS. Shafika Kolia Page 5




501 Linux Operating System Unit—1

1.2Components of Linux OS (Hardware, Kernel, Shell, GNU Utilities & Applications)

‘ Linux Kernel ‘

GNU utilities

‘ Graphical Desktop Environment ‘

Linux Operating System

Application Software

The Linux operating system is composed of several key elements: the hardware, kernel, shell, GNU
utilities, and applications. The hardware provides the physical components like CPU, RAM, and
storage. The kernel acts as the core, managing resources and interacting with the hardware. The
shell is the user interface, allowing commands to be executed. GNU utilities are a collection of tools
for system management and user interaction. Finally, applications are the software programs that
users utilize for various tasks.

o Hardware:

This encompasses the physical components of the computer system, including the CPU, memory
(RAM), storage (hard drives, SSDs), input/output devices (keyboard, mouse, display), and
network interfaces.

. Kernel:

The kernel is the heart of the Linux operating system. It manages the system's resources,
including the CPU, memory, and input/output devices. It acts as a bridge between the hardware
and the rest of the operating system, providing a layer of abstraction for applications.

. Shell:

The shell is a command-line interpreter that acts as an intermediary between the user and the
kernel. It accepts commands from the user and translates them into actions that the kernel can
understand and execute. Common shells include Bash, Zsh, and Fish.

. GNU Utilities:

GNU utilities are a collection of free software tools that provide a wide range of functionalities
for system administration, file manipulation, text processing, and more. Examples
include Is, grep, sed, awk, and bash (which is also a shell).

. Applications:
Applications are the software programs that users interact with to perform specific
tasks. Examples include web browsers, word processors, media players, and games.

MS. Shafika Kolia Page 6




501 Linux Operating System Unit—1

1.3Shell in Linux (Bash, Zsh, Dash — Features and Differences)
Linux distributions utilize various shells, with Bash, Zsh, and Dash being prominent examples, each
offering distinct features and use cases.
Bash (Bourne-Again Shell):
Features: Default shell for most Linux distributions, widely compatible with Bourne Shell scripts,
supports command history, aliases, job control, loops, conditionals, variables, arrays, and
input/output redirection.

amruth@pop-os: ~

Role:

Primarily used for interactive command-line sessions and general-purpose shell scripting due to its
robust features and widespread adoption.

Zsh (Z Shell):

Features:

Builds upon and extends Bash, offering enhanced features like improved command completion, built-
in spelling correction, shared history, smart path expansion, and a highly customizable framework
with themes and plugins (e.g., Oh My Zsh).

j+1 amruth@pop-os:~
pop-0s% |

Role:

Favored by users seeking advanced customization, improved interactivity, and more powerful
scripting capabilities than Bash.

MS. Shafika Kolia Page 7




501 Linux Operating System

Dash (Debian Almquist Shell):
Features:

Unit—1

A lightweight, POSIX-compliant shell optimized for speed and minimal resource consumption, often
serving as /bin/sh in Debian-based systems (like Ubuntu) for executing system scripts. Lacks many

interactive features found in Bash or Zsh.

Role:

Primarily used for system scripts and situations where performance and a small footprint are critical,

rather than interactive user sessions.

Dash is significantly smaller and faster than Bash and Zsh, making it ideal for system scripts, whereas
Bash and Zsh are larger and more feature-rich for interactive use.

Default Usage:

Bash is typically the default interactive shell, while Dash often serves as the default shell for executing
system scripts. Zsh is an optional upgrade for users desiring more advanced features.

Table of Difference between Bash and Zsh

Bash

Bash is the default shell for Linux and it is
released in the replacement of Bourne
Shell.

Bash reads the .bashrc file in non-login
interactive shell and .bash_profile in
login shells.

Bash uses backslash escapes.

Bash doesn't have an inline wildcard
expansion.

Doesn't have customization options.

It doesn't have many themes and plug-in
support.

Zsh

Z shell is built on top of the bash shell and is an
extended version of the bash with plenty of new
features.

Zsh reads .zshrc in an interactive shell and
.zprofile in a login shell.

Zsh uses percentage escapes.

Zsh has a built-in wildcard expansion.

Zsh has many frameworks that

customization.

provide

Has plenty of plug-in's and themes.

MS. Shafika Kolia

Page 8




501 Linux Operating System Unit—1

Bash Zsh

Bash lacks syntax highlighting and auto- Zsh has syntax highlighting and auto-correction
correction features. features.

In bash keybinding is done using ".inputrc'

and 'bind builtin'. In zsh binding is done using 'bindkey builtin'.

1.4 Introduction to Files and File Types in Linux (text, binary, special files)

In Linux, most of the operations are performed on files. And to handle these files Linux has
directories also known as folders which are maintained in a tree-like structure. Though, these
directories are also a type of file themselves. Linux has 3 types of files:

1. Regular Files: It is the common file type in Linux. it includes files like - text files, images, binary
files, etc. Such files can be created using the touch command. They consist of the majority of
files in the Linux/UNIX system. The regular file contains ASCIl or Human Readable text,
executable program binaries, program data and much more.

2. Directories: Windows call these directories as folders. These are the files that store the list of
file names and the related information. The root directory(/) is the base of the system, /home/
is the default location for user's home directories, /bin for Essential User Binaries, /boot —
Static Boot Files, etc. We could create new directories with mkdir command.

3. Special Files: Represents a real physical device such as a printer which is used for IO operations.
Device or special files are used for device Input/Output(l/O) on UNIX and Linux systems. You
can see them in a file system like an ordinary directory or file.

4. Files Listing
To perform Files listings or to list files and directories Is command is used

Sls

All your files and directories in the current directory would be listed and each type of file would
be displayed with a different color. Like in the output directories are displayed with dark blue
color.

MS. Shafika Kolia Page 9



https://www.geeksforgeeks.org/mkdir-command-in-linux-with-examples/
https://www.geeksforgeeks.org/practical-applications-ls-command-linux/

501 Linux Operating System Unit—1

total 2097272
L rwx rwx rwx
WX =X =X

root root

root root

root root

root root

root root

root root

root root

root root

root root

root root

root root

root root

root root 16384
root root 4096
root root 4096
root root 4096
root root 0
root root 4096
root root 1080 J:
root root 8
root root 4096
2 root root 4096
root root 2147483648
root root 0
root root 40960
root root 4096 A
root root 4096
root root 29
root root 29
: $

L rwx rwx rwx
Lrwx rwxrwx
Lrwx rwx rwx

1
4
2
7
4
1
1
1
1
1
1
P
3
2

Creating Files touch command can be used to create a new file. It will create and open a new
blank file if the file with a filename does not exist. And in case the file already exists then the
file will not be affected.

Stouch filename

MARIEmARa-MEE -RPg
, touch filename
$ 1s

filename

Displaying File Contents

cat command can be used to display the contents of a file. This command will display the
contents of the 'filename’ file. And if the output is very large then we could use more or less to
fit the output on the terminal screen otherwise the content of the whole file is displayed at
once.

Scat filename

M- manswBmanav-Mic -jghy
: % cat filename
This is the content of file.

-

MS. Shafika Kolia Page 10



https://www.geeksforgeeks.org/touch-command-in-linux-with-examples/
https://www.geeksforgeeks.org/cat-command-in-linux-with-examples/

N

501 Linux Operating System Unit—1

Copying a File

cp command could be used to create the copy of a file. It will create the new file in destination
with the same name and content as that of the file 'filename'.
Scp source/filename destination/

Moving a File

mv _command could be used to move a file from source to destination. It will remove the file
filename from the source folder and would be creating a file with the same name and content
in the destination folder.

Smv source/filename destination/

Renaming a File

mv command could be used to rename a file. It will rename the filename to new_filename or in
other words, it will remove the filename file and would be creating a new file with the
new_filename with the same content and name as that of the filename file.

Smyv filename new_filename

Deleting a File

rm command could be used to delete a file. It will remove the filename file from the directory.
Srm filename

Categories of Files in Linux/UNIX :

In Linux/UNIX, Files are mainly categorized into 3 parts:

Regular Files: Standard files like text, executable, or binary files.

Directory Files: Files that represent directories containing other files and folders.

Special Files: This category includes block device files, character device files, symbolic links,
pipes, and socket files.

The easiest way to find out file type in any operating system is by looking at its extension such
as .txt, .sh, .py, etc. If the file doesn't have an extension then in Linux we can use file utility.

The file type

Command to using "Is -I" is
File Type create the File Located in denoted using FILE command output
touch Any i PNG Image data, ASCII
Regular Flle directory/Folder Text, RAR archive

MS. Shafika Kolia Page 11



https://www.geeksforgeeks.org/cp-command-linux-examples/
https://www.geeksforgeeks.org/mv-command-linux-examples/
https://www.geeksforgeeks.org/mv-command-linux-examples/
https://www.geeksforgeeks.org/rm-command-linux-examples/

501 Linux Operating System Unit—1

The file type

Command to using "Is -I" is
File Type create the File Located in denoted using FILE command output
data, etc
Di
Fillreectory mkdir It is a directory d Directory
Block Files fdisk /dev b Block special
h
C. aracter mknod /dev C Character special
Files
Pipe Files mkfifo /dev p FIFO
Symbol Symbol link to
Link Files In /dev <linkname>
socket()

Socket Files  system call /dev S Socket

Types of File and Explanation

1. Regular Files

Regular files are ordinary files on a system that contains programs, texts, or data. It is used to
store information such as text, or images. These files are located in a directory/folder. Regular
files contain all readable files such as text files, Docx files, programming files, etc, Binary files,
image files such as JPG, PNG, SVG, etc, compressed files such as ZIP, RAR, etc.

Example:

Or we can use the "file *" command to find out the file type

2. Directory Files

The sole job of directory files is to store the other regular files, directory files, and special files
and their related information. This type of file will be denoted in blue color with links greater
than or equal to 2. A directory file contains an entry for every file and sub-directory that it
houses. If we have 10 files in a directory, we will have 10 entries in the directory file. We can
navigate between directories using the cd command

We can find out directory file by using the following command:

Is-I | grep Ad

MS. Shafika Kolia Page 12




501 Linux Operating System Unit—1

We can also use the file * command

Special Files

1. Block Files:

Block files act as a direct interface to block devices hence they are also called block devices. A
block device is any device that performs data Input and Output operations in units of blocks.
These files are hardware files and most of them are present in '/dev'.

We can find out block file by using the following command:

Is-I | grep *b

We can use the file command also:

2. Character device files:

A character file is a hardware file that reads/writes data in character by character in a file.
These files provide a serial stream of input or output and provide direct access to hardware
devices. The terminal, serial ports, etc are examples of this type of file.

We can find out character device files by:

Is -1 | grep ~c

We can use the file command to find out the type of file:

3. Pipe Files:

The other name of pipe is a “named” pipe, which is sometimes called a FIFO. FIFO stands for
“First In, First Out” and refers to the property that the order of bytes going in is the same
coming out. The “name” of a named pipe is actually a file name within the file system. This file
sends data from one process to another so that the receiving process reads the data first-in-
first-out manner.

We can find out pipe file by using the following command:

Is -l | grep *p

We can use the file command to find out file type:

4. Symbol link files:

A symbol link file is a type of file in Linux which points to another file or a folder on your device.
Symbol link files are also called Symlink and are similar to shortcuts in Windows.

We can find out Symbol link file by using the following command:

Is-I | grep 7l

We can use the file command to find out file type:

5. Socket Files:

A socket is a special file that is used to pass information between applications and enables the
communication between two processes. We can create a socket file using the socket() system
call. A socket file is located in /dev of the root folder or you can use the find / -type
s command to find socket files.

find / -type s

MS. Shafika Kolia Page 13




501 Linux Operating System Unit—1

We can find out Symbol link file by using the following command:
Is -l | grep s

1.5 Linux Directory Structure and File System Hierarchy Standard (FHS)

The Linux Directory Structure, as defined by the File system Hierarchy Standard (FHS), isa
hierarchical system where all files and directories branch off from the root directory, denoted by a
forward slash "/". The FHS standardizes this structure, ensuring consistency across different Linux
distributions and other Unix-like systems.

Here's a breakdown of some key directories:
/ (Root): The top-level directory, the base of the entire file system hierarchy.

/bin: Contains essential user command binaries (executable files).

/boot: Contains files needed for booting the system, such as the kernel and boot loader.
/dev: Contains device files, which provide access to hardware devices.

/etc: Contains system-wide configuration files.

/home: Contains user home directories, where users store their personal files and settings.
/lib: Contains shared library files needed by programs.

/media: For mounting removable media like USB drives and CDs.

/mnt: Temporary mount points for file systems.

/opt: For optional, add-on software packages.

/proc: A virtual file system that provides information about running processes.

/root: The home directory for the root user.

/sbin: Contains essential system binaries, often used by the root user.

/tmp: A directory for temporary files, which may be deleted on reboot.

/usr: Contains user-related programs, libraries, documentation, and other read-only data.

/var: Contains variable data, such as log files, that may change frequently.
The FHS ensures a consistent and organized file system structure, making it easier for users and
administrators to navigate, manage, and back up a Linux system

MS. Shafika Kolia Page 14




501 Linux Operating System Unit—1

o
B3 &3 B3B3 B3 B3 Ea

2 3 IS
£3 3 3 B2

BB B3 B2
£ B B B

File System Hierarchy(FHS) of Linux

Difference between Windows and Linux File System
Windows and Linux differ significantly in how they organize, access, and manage files within

their operating systems.

Feature Windows

Drives (C:, D:, etc.) and

Structure folders
Case Sensitivity Not case-sensitive
File .
.. Simpler (user accounts)
Permissions
. Primarily NTFS
File System y
Overall User-friendly, familiar
Remarks interface

Linux

Single, unified tree structure starting from
root (/)

Case-sensitive

More granular control (user, group, others)

Ext4 (most common)
FAT32, NTFS (sometimes)

Flexible, powerful for advanced users

MS. Shafika Kolia

Page 15




501 Linux Operating System

Unit 2 : Basic Linux Commands

Unit-2

2.1 Directory Navigation Commands (pwd, cd, mkdir, rmdir, Is, tree)

These commands help you navigate, organize, and manage files and directories within the

Linux file system.
1. pwd : print/present Working directory

Syntax:
pwd

Example:
$ pwd
/c/Users/Admin/Desktop

2. cd: change directory

Syntax:
cd [path-name/directory-name]

Example:
(a) cd : It change home directory
$ cd "C:\Users\Admin\Desktop\BCA\Fybca"

(b) cd .. : It goes up to one directory level
$cd..

(c) cd .. .. : It goes up to two directory level
$cd. /.

(d) e¢d / : It change directory to the system’s root
$cd/

RASHMI PATEL




501 Linux Operating System Unit-2

(e) cd ~ : It switches to home directory of user which is similar to cd without any
argument.

$cd~

3. mkdir: make a directory. It is used to create one or more new directories.

Syntax:
mkdir [option] path-name/directory-name[path-name/directory-namel]....

Example:
$ mkdir sem1

It has following option are use

(a)—p :This option create subdirectory tree under current directory.
$ mkdir -p sem1/dbms

(b)-v :If a directory created successfully then this option shows the name of the
directory.

$ mkdir -v sem1/math

mkdir: created directory 'sem1/math'

(c)-m mode: This option sets the permission mode of new directory.

$ mkdir -m444 myprg
mkdir: cannot change permissions of ‘myprg’: Permission denied

4. rmdir: Remove a directory. It removes one or more empty directories.

Syntax:
rmdir [option] path-name/directory-name[path-name/directory-name]....

Example:
$ rmdir myprg

RASHMI PATEL




501 Linux Operating System Unit-2

It has following option are use

(a)-p: It is useful for removing subdirectory trees.
$ rmdir -p sem1/math

(b)-v:
$ rmdir -v sem1/dbms
rmdir: removing directory, 'sem1/dbms'

5. Is: Tt stand for list. It display list of file and directories in current working
directory.

Syntax:
Is [option] [argument-list]

Example:
$1s

It has following option are use

(a)-x: It displays files listing in multi-column on line by line.
(b)-C: It displays files listing in multi-column on column by
(c)-a: It display all file present in the current directory with
(d)-F: It is useful to identifying directories which is executable
(e)-I: It displays long listing or detailed information about file or
(g)-n: It list numeric user-id and group id instead of name.
(h)-R: It lists subdirectories recursively.

(i)-L: It list all symbolic files pointed by symbolic links.

(j)-d: It is used to verify the directory name exists or not.

(k)-t: It sort by last modification time .Latest modified file should be display first.
()-u: It sorts by last access time, latest access file display first.
(m)-i: It shows i-node number of specific file.

(n)-S: It sort by file size, the largest file display first.

(0)-r: It sort files list in reverse order.

(p)-U: It does not sort. It display files in the order in which they

(q)-1: It lists one file per line.
RASHMI PATEL




501 Linux Operating System Unit-2

5. Tree: The tree command displays the contents of a directory in a hierarchical
(tree-like) format, showing the structure of files and subdirectories.

Syntax:
tree [options] [directory]

Example:
1. Basic usage

tree

— Displays the tree structure of the current directory.
2. Display tree of a specific directory

tree /home/user/Documents

— Shows tree structure starting from /home/user/Documents.
3. Limit the depth of the tree

tree -L 2

— Shows the directory structure up to 2 levels deep.
4. Display only directories

tree -d

— Shows only directories, not files.
5. Print file sizes

tree -s

— Shows file sizes in bytes next to each file.
6. Include hidden files

tree -a

— Includes files/directories starting with . (hidden files).
7. Save the output to a file

tree > tree.txt

— Saves the directory structure to tree.txt.

2.2 File Management Commands (cat, rm, cp, mv, touch)
1. cat: cat stands for concatenate. It is display the contents of one or more files.

Syntax:

RASHMI PATEL




501 Linux Operating System Unit-2
cat [option][filel][file2].....

Example 1: see output of file
$ cat f1.txt

Example 2: See output of subdirectory
$ cat sem5/unix/unitl/unitl.txt

Example 3: It will take input from standards input devices and display them on
standard output device.
$ cat

Example 4: User can create file using cat command.
$ cat > filel.txt

Example 5: It can display contents of one or more files.
$ cat filel.txt f1.txt

Example 6: This command appends more lines into exists file.
$ cat >> filel.txt

Example 7: This command read the standard input and a file input during the
execution of command..
$ cat - filel.txt

It has following option are use

(a)-v: It display control characters and other non-printing characters.
$ cat -v fl.txt

(b)-e or -E: It print a $ to mark the end of file.
$ cat -e filel.txt

(c)-t: It prints tab character as I and form feed character as "L.
$ cat -t fl.txt

RASHMI PATEL




501 Linux Operating System Unit-2

(d)-n: It displays the number of line.
$ cat -n f1.txt

2. rm: rm stands for remove. It deletes one or more files/directories.
Syntax: rm [option]file(s)/directory-name(s)

Example 1: To remove a single file from current directory
$ rm filel.txt

Example 2: To remove more than one file from current directory
$ rm filel.txt file2.txt

It has following option are use
(a) - i (interactive): This option remove files interactively and display prompt for
remove file?
$ rm -1 fl1.txt
rm: remove regular file 'f1.txt'? y
(b) - r (recursive) : It is used to remove non-empty directory, together with all the
files and subdirectories.
$ rm -r sem5
$ rm -r sem5 sem6
(c) — f (force) :1t is used to remove the file forcefully which have set permission.
$ rm -f myprg

3. cp: cp stands for copy. It create duplicate files having access and modification
date-time similar to current system date-time.

Syntax:
cp [option] filename/directory-name filename/directory-name

Example 1: It create duplicate file of filel with different name at current directory.

$cp fl1 2
RASHMI PATEL n




501 Linux Operating System Unit-2

Example 2: File can be copied to and from another sub-directory with different
name.

$ cp "sem1\math\f1" "sem2\crdbms\f2"

Example 3: File can be copied to and from another sub-directory with same name.
$ cp "sem1\math\f1" "sem2\crdbms"

Example 4: It also copy one or more files with the same name to another directory.
$ cp f1 £2 f3 myprg

It has following option are use
(a) - i (interactive): This option copy files interactively and display prompt for
copy file?

$cp-ifl f3

cp: overwrite 'f3'7 y

(b) - r (recursive) : It is used copy an entire directory structure to onther directory.
$ cp -r seml sem5

(c) — p (preserve) :It is used copy file with access and modification date-time.
$1s -1 11

(d) — I(link) : This option create a link instead of copying a file.
$ cp -1l fl.In

4. mv: mv stand for move. It is used to move an individual file, a list of file or a
directory from one directory to another .It is also used to rename a file/directory.

Syntax:
mv [option] filename(s)/directory-name filename/directory-name

Example 1: File can be moved from one directory to another directory.
$ mv "sem2\crdbms\f1" "sem3\f2"
RASHMI PATEL




501 Linux Operating System Unit-2

Example 2: Move more than one file in directory at the same destination directory.
$ mv f1 £2 sem5

Example 3: To rename the file in the current directory.
$ mv f1 2

Example 4: It move one directory to another location. If new directory on same
destination then it rename old directory with new name
$ mv myprg progl

It has following option are use

(a) - i (interactive): It warm you before overwrite an existing file.
$ mv -1 fl £3
mv: overwrite 'f3'7 y

5. Touch: The touch command in Linux is used to create empty files or update
the timestamp (access and modification time) of existing files.

Syntax:
touch [options] filename

1. Create a New Empty File
touch filel.txt

This creates a new file named filel.txt in the current directory if it doesn’t already
exist.

2. Create Multiple Files at Once
touch filel.txt file2.txt file3.txt

Creates three files at once.

3. Update the Timestamp of an Existing File
touch existingfile.txt

RASHMI PATEL n




501 Linux Operating System Unit-2

If existingfile.txt already exists, touch updates its modification and access time to
the current time.

4. Create a File in Another Directory
touch /home/user/newfile.txt

Creates newfile.txt in the /home/user/ directory.

5. Set a Specific Timestamp
touch -t 202507140930 filel.txt

Sets the file's time to 14th July 2025, 09:30 AM (format:
[[CC]YY]MMDDhhmm].ss]).

2.3 File Permissions and Ownership (chmod, chgrp, chown, umask)

Each file or directory has three types of permission for three types of users:

Type Description

permission

(modify) permission

1te (run) permission

For:

Owner (u) — user who owns the file
Group (g) — group the file belongs to
Others (0) — everyone else

Example:
-rwxr-xr-- 1 user group file.txt

Owner: rwx (read/write/execute)

RASHMI PATEL n




501 Linux Operating System

Group: r-x (read/execute)
Others: r-- (read only)

1. chmod — Change File Permissions
Syntax:
chmod [options] mode file
Example 1: Symbolic mode
chmod u+x script.sh
— Adds execute (x) permission for the owner.
Example 2: Remove write permission from group

chmod g-w file.txt

Example 3: Numeric (Octal) mode
I

chmod 755 script.sh

— IWXI-XT-X

2. chown — Change File Ownership
Syntax:

chown [owner][:group] file

Unit-2

RASHMI PATEL




501 Linux Operating System Unit-2

Example 1: Change owner

sudo chown alice file.txt
Example 2: Change owner and group

sudo chown bob:developers file.txt
4. chgrp — Change Group Ownership
Syntax:

chgrp groupname file
Example:

sudo chgrp staff report.pdf
5. umask — Set Default Permissions for New Files
The umask command sets default permissions by subtracting from full access.
Default permissions:
Files: 666 (rw-rw-rw-)
Directories: 777 (rwXrwXrwx)
Example: View current umask
umask
Example: Set umask

umask 022

This removes write (w) permission for group and others.
New files will have 644 (rw-r--r--) and directories will have 755.

RASHMI PATEL




501 Linux Operating System Unit-2

2.4 Common System Commands (who, whoami, man, echo, date,
clear)

1. who: Shows who is currently logged into the system.
Syntax: who
Example:
who
Output Example:

userl tty7 2025-07-16 09:12

2. whoami: Displays the username of the current user.

Syntax:
whoami
Example:

whoami
3. man: Displays the manual (help page) for a command.
Syntax:

man <command>
Example:

man Is

4. echo: Prints text or variables to the terminal.

RASHMI PATEL




501 Linux Operating System Unit-2

Syntax:
echo [text or $variable]
Example:
echo "Hello, world!"
5. date: Displays the current system date and time.
Syntax:
Date
Example:
Date
6. clear: Clears the terminal screen.

Syntax:

Clear

2.5 Text Processing Commands (head, tail, cut, sort, cmp, tr, uniq,
wc, tee)

1. head: Displays the first N lines of a file.
Syntax:
head [options] filename

Example:

RASHMI PATEL




501 Linux Operating System Unit-2

head -n 5 file.txt
— Displays the first S lines of file.txt.
2. tail: Displays the last N lines of a file
Displays the last n lines of file.
Syntax:
tail [options] filename
Example:
tail -n 3 log.txt
— Displays the last 3 lines of log.txt.
3. cut: Extracts columns or fields from lines.
Syntax:
cut [options] filename
Examples:
cut -c1-5 file.txt
— Extracts characters 1 to 5 from each line.
cut -d',' -f2 data.csv

— Extracts the second field using comma , as delimiter.
4. sort: Sorts lines alphabetically or numerically.

Syntax:

sort [options] filename

RASHMI PATEL




501 Linux Operating System Unit-2

Examples:
sort names.txt

— Sorts lines in alphabetical order.
sort -n numbers.txt

— Sorts numbers in ascending numerical order.

5. cmp: Compares two files byte by byte.
Syntax:

cmp filel file2
Example:

cmp filel.txt file2.txt
— Compares files byte by byte. If they differ, it shows the first difference.
6. tr: Translate or delete characters.
Syntax:

tr [options] SET1 [SET2]
Examples:

tr 'a-z' 'A-Z' <input.txt

— Converts lowercase to uppercase.

tr -d '0-9' < data.txt

— Deletes all digits from the input.

7. unig: Removes duplicate lines (requires sorted input).

RASHMI PATEL




501 Linux Operating System

Syntax:

uniq [options] filename

Examples:

sort data.txt | uniq

— Removes duplicate lines from a sorted file.

uniq -c sorted.txt

— Shows duplicate count for each line.

8. wc: Counts lines, words, or characters.
Syntax:
wc [options] filename
Examples:
wec file.txt
— Displays line, word, and byte count.
wec -l file.txt
— Displays only line count.
9. tee: Reads input and writes to file and screen.
Syntax:
command | tee filename

Example:

Unit-2

RASHMI PATEL




501 Linux Operating System Unit-2

Is -1 | tee output.txt

— Displays the output of Is -1 on the screen and writes it to output.txt.

2.6 Introduction to Process

A program/command when executed, a special instance is provided by
the system to the process. This instance consists of all the services/resources
that may be utilized by the process under execution.

Whenever a command is issued in Unix/Linux, it creates/starts a new
process. For example, pwd when issued which is used to list the current
directory location the user is in, a process starts.

Through a 5 digit ID number Unix/Linux keeps an account of the
processes, this number is called process ID or PID. Each process in the system
has a unique PID.

Used up pid’s can be used in again for a newer process since all the
possible combinations are used.

At any point of time, no two processes with the same pid exist in the
system because it is the pid that Unix uses to track each process.

Initializing a process

A process can be run in two ways:

Method 1: Foreground Process : Every process when started runs in
foreground by default, receives input from the keyboard, and sends output to
the screen. When issuing pwd command

$Is pwd

Output:

RASHMI PATEL




501 Linux Operating System Unit-2

$ /home/geeksforgeeks/root

When a command/process is running in the foreground and is taking a
lot of time, no other processes can be run or started because the prompt would
not be available until the program finishes processing and comes out.

Method 2: Background Process: It runs in the background without keyboard
input and waits till keyboard input is required. Thus, other processes can be
done in parallel with the process running in the background since they do not
have to wait for the previous process to be completed.

Adding & along with the command starts it as a background process

$ pwd &

Since pwd does not want any input from the keyboard, it goes to the stop
state until moved to the foreground and given any data input. Thus, on
pressing Enter:

Output:

[1] + Done pwd

$
2.7 Process Control commands: ps, fg, bg, Kill, sleep
1. ps — Show Running Processes
Syntax:

ps [options]

Examples:
ps # Show your current shell's processes
ps -e # Show all system processes

RASHMI PATEL




501 Linux Operating System Unit-2

ps -ef # Full-format listing of all processes

ps aux # Detailed info including CPU/memory usage

2. fg — Bring Job to Foreground

Syntax:
fg [Y%job _id]

Examples:
fg # Resume most recent background job
fg %1 # Resume job number 1

Use jobs to list background/suspended jobs with their job IDs.

3. bg — Resume Job in Background
Syntax:
bg [%job id]
Examples:
bg # Resume most recently stopped job in background

bg %2 # Resume job number 2 in background

4. kill — Terminate Process

Syntax:

RASHMI PATEL




501 Linux Operating System Unit-2

kill [signal] PID
Examples:
kill 1234 # Send SIGTERM (graceful termination) to process 1234
kill -9 1234 # Send SIGKILL (force Kill) to process 1234

kill -1 # List all available signals

5. sleep — Pause Execution
Syntax:

sleep duration

Examples:
sleep 5 # Pause for 5 seconds
sleep 2m # Pause for 2 minutes
sleep 1h # Pause for 1 hour

2.8 Job Scheduling commands : at, batch, crontab

1. at — Schedule One-Time Tasks

The at command runs a job once at a specified time.
Syntax:

at [TIME]

RASHMI PATEL




501 Linux Operating System Unit-2

Examples:
at 10:00 # Run job at 10:00 AM today

at now + 1 hour # Run job 1 hour from now

# After typing the command:

echo "echo 'Hello'" | at now + 1 minute

# Or interactive:

$ at 17:30

at> echo "Backup started' >> backup.log

at> <Ctrl+D>  # Press Ctrl+D to save and exit
2. batch — Schedule Tasks When Load is Low
The batch command schedules jobs to run when system load is low.
Syntax:

batch
Example:

echo '"tar -czf backup.tar.gz /home/user" | batch

Like at, use atq to view and atrm to remove batch jobs.

3. crontab — Repeated Scheduled Tasks (Cron Jobs)

The crontab command schedules recurring tasks (daily, weekly, etc.).
Syntax:

crontab -e # Edit user's crontab

RASHMI PATEL




501 Linux Operating System Unit-2

crontab -1 # List current crontab entries
crontab -r # Remove current crontab
Example:

# Open the crontab editor
crontab -e
# Add a job (runs every day at 7 AM):

07 * * * /home/user/backup.sh

# Cron Format:

| minute (0 - 59)

| hour (0 - 23)

| day of the month (1 - 31)

month (1 - 12)

| | day of the week (0 - 7) (Sunday = 0 or 7)

*F O F= O HF= O HF= OH= O H O H

* % % % % command to execute

RASHMI PATEL




Process Management In Unix

When you execute a program on your Unix system, the system creates a special
environment for that program. This environment contains everything needed
for the system to run the program as if no other program were running on the
system.

Whenever you issue a command in Unix, it creates, or starts, a new process.
When you tried out the Is command to list the directory contents, you started a
process. A process, in simple terms, is an instance of a running program.

The operating system tracks processes through a five-digit ID number known as
the pid or the process ID. Each process in the system has a unique pid.

Pids eventually repeat because all the possible numbers are used up and the
next pid rolls or starts over. At any point of time, no two processes with the same
pid exist in the system because it is the pid that Unix uses to track each process.

Starting a Process

When you start a process (run a command), there are two ways you can run it -

o Foreground Processes
« Background Processes

Foreground Processes

By default, every process that you start runs in the foreground. It gets its input
from the keyboard and sends its output to the screen.

You can see this happen with the Is command. If you wish to list all the files in
your current directory, you can use the following command -

Sls ch*.doc

This would display all the files, the names of which start with chand end
with .doc -

ch01-1.doc ch010.doc ch02.doc ch03-2.doc
ch04-1.doc ch040.doc ch05.doc ch06-2.doc
ch01-2.doc ch02-1.doc

The process runs in the foreground, the output is directed to my screen, and if
the Is command wants any input (which it does not), it waits for it from the
keyboard.

While a program is running in the foreground and is time-consuming, no other
commands can be run (start any other processes) because the prompt would
not be available until the program finishes processing and comes out.

Background Processes

A background process runs without being connected to your keyboard. If the
background process requires any keyboard input, it waits.



The advantage of running a process in the background is that you can run other
commands; you do not have to wait until it completes to start another!

The simplest way to start a background process is to add an ampersand (&) at
the end of the command.

Sls ch*.doc &
This displays all those files the names of which start with ch and end with .doc -

ch01-1.doc ch010.doc ch02.doc ch03-2.doc
ch04-1.doc ch040.doc ch05.doc ch06-2.doc
ch01-2.doc ch02-1.doc

Here, if the Is command wants any input (which it does not), it goes into a stop
state until we move it into the foreground and give it the data from the
keyboard.

That first line contains information about the background process - the job
number and the process ID. You need to know the job number to manipulate it
between the background and the foreground.

Press the Enter key and you will see the following -

[1] + Done Is ch*.doc &
S

The first line tells you that thels command background process finishes
successfully. The second is a prompt for another command.

Listing Running Processes

It is easy to see your own processes by running the ps (process status) command
as follows -

Sps

PID TTY TIME CMD

18358 ttyp3 00:00:00 sh
18361 ttyp3 00:01:31 abiword
18789 ttyp3 00:00:00 ps

One of the most commonly used flags for ps is the -f ( f for full) option, which
provides more information as shown in the following example -

Sps -f

UID PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one
amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one
amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh
amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

Here is the description of all the fields displayed by ps -f command —



Sr.No. Column & Description

1 uID
User ID that this process belongs to (the person running it)
2 PID
Process ID
3 PPID
Parent process ID (the ID of the process that started it)
4 c
CPU utilization of process
> STIME
Process start time
6 TTY
Terminal type associated with the process
/ TIME
CPU time taken by the process
8 CMD

The command that started this process

There are other options which can be used along with ps command —

Sr.No. Option & Description

-d

Shows information about all users

-X

Shows information about processes without terminals



-u

Shows additional information like -f option

-e

Displays extended information

Stopping Processes

Ending a process can be done in several different ways. Often, from a console-
based command, sending a CTRL + C keystroke (the default interrupt character)
will exit the command. This works when the process is running in the foreground
mode.

If a process is running in the background, you should get its Job ID using
the ps command. After that, you can use the kill command to kill the process as
follows -

Sps -f

UID PID PPID CSTIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one
amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one
amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh
amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

Skill 6738

Terminated

Here, the kill command terminates the first_one process. If a process ignores a
regular kill command, you can use kill -9 followed by the process ID as follows -

Skill -9 6738
Terminated

Parent and Child Processes

Each unix process has two ID numbers assigned to it: The Process ID (pid) and
the Parent process ID (ppid). Each user process in the system has a parent
process.

Most of the commands that you run have the shell as their parent. Check the ps
-f example where this command listed both the process ID and the parent
process ID.

Zombie and Orphan Processes

Normally, when a child process is killed, the parent process is updated via
a SIGCHLD signal. Then the parent can do some other task or restart a new child
as needed. However, sometimes the parent process is killed before its child is
killed. In this case, the "parent of all processes," the init process, becomes the



new PPID (parent process ID). In some cases, these processes are called orphan
processes.

When a process is killed, a ps listing may still show the process with a Z state.
This is a zombie or defunct process. The process is dead and not being used.
These processes are different from the orphan processes. They have completed
execution but still find an entry in the process table.

Daemon Processes
Daemons are system-related background processes that often run with the

permissions of root and services requests from other processes.

A daemon has no controlling terminal. It cannot open /dev/tty. If you do a "ps -
ef" and look at the tty field, all daemons will have a ? for the tty.

o be precise, a daemon is a process that runs in the background, usually waiting
for something to happen that it is capable of working with. For example, a
printer daemon waiting for print commands.

If you have a program that calls for lengthy processing, then it's worth to make
it a daemon and run it in the background.

Job ID Versus Process ID

Background and suspended processes are usually manipulated via job number
(job ID). This number is different from the process ID and is used because it is
shorter.

In addition, a job can consist of multiple processes running in a series or at the
same time, in parallel. Using the job ID is easier than tracking individual
processes.

bg command in Linux with Examples

In Linux, the bg command is a useful tool that allows you to manage and move
processes between the foreground and background. It's especially helpful when
you want to multitask in the terminal by placing a process in the background,
enabling you to continue using the terminal for other commands while the
process runs quietly in the background.

Syntax
bg [job_spec ...]
where,

« job_spec: This is used to identify the job you want to move to the
background. It can be specified in several formats:

o %n: Refers to job number n.

o %str: Refers to a job that was started by a command beginning with
str.



o %?str: Refers to a job that was started by a command containing
str.

o %% or %+: Refers to the current job. Both fg and bg commands will
operate on this job if no job_spec is provided.

o %-: Refers to the previous job.
If no job_spec is provided, the most recent job is resumed in the background.
Useful Options for bg command
1. bg [JOB_SPEC]:

This command is used to put the mentioned job in background. In the below
screenshot, we do following

File Edit View Search Terminal Help

naman@root:~5 jobs

naman@root:~5 sleep 500

.P.z

[1]+ Stopped sleep 500

naman@root:~5 jobs

[1]+ Stopped sleep 500
naman@root:~S$ bg %1

[1]+ sleep 500 &

naman@root:~5 jobs

[1]+ Running sleep 500 &
naman@root:~5S

'sleep 500' is used to create
dummy foreground job.

o We use jobs command to list all jobs

o We create a process using sleep command, we get its ID as 1.
o We putitin background by providing its ID to bg.
2. bg --help:

Displays the help information for the bg command. This is useful if you need
more information on how to use the command or if you're unsure of the

available options.
File Edit View Search Terminal Help
naman@root:~$ bg --help
bg: bg [job_spec ...]
Move jobs to the background.

Place the jobs identified by each JOB _SPEC in the background, as if they
had been started with '&'. If JOB SPEC is not present, the shell's notion
of the current job is used.

Exit Status:
Returns success unless job control is not enabled or an error occurs.
naman@root:~$ I

fg command in Linux with examples

The fg command in Linux is used to bring a background job into the foreground.
It allows you to resume a suspended job or a background process directly in the
terminal window, so you can interact with it.


https://www.geeksforgeeks.org/linux-unix/process-control-commands-unixlinux/

Syntax

fg [job_spec]

The job_spec is a way to refer to the background jobs that are currently running
or suspended. Here are some common ways to specify a job:

%n: Refers to job number n.
%str: Refers to a job that was started by a command beginning with str.
%?str: Refers to a job that was started by a command containing str.

%% or %+: Refers to the current job (this is the default job operated on by
fg if no job_spec is provided).

%-: Refers to the previous job.

Key Options for the fg command

1. fg [JOB_SPEC]:

This is the primary use of the fg command, bringing a specified job running in
the background back to the foreground. For example, if you create a dummy job
using sleep 500, you can bring it back to the foreground by referencing its job

number:

File Edit View Search Terminal Help
naman@root:~$ jobs

naman@root:~S$ sleep 500

A.z

[1]+ Stopped sleep 500
naman@root:~$ jobs

[1]+ Stopped sleep 500
naman@root:~$ bg %1

[1]+ sleep 500 &

naman@root:~$ jobs

[1]+ Running sleep 500 &
naman@root:~% fg %1

sleep 500

"sleep 500" is a

command which is used to create a dummy job which runs for 500 seconds.

2. fg --help:



This option displays help information for the fg command, explaining usage and
available options.
File Edit View Search Terminal Help

naman@root:~S fg --help
fg: fg [job spec]
Move job to the foreground.

Place the job identified by JOB SPEC in the foreground, making it the
current job. If JOB_SPEC is not present, the shell's notion of the
current job is used.

Exit Status:
Status of command placed in foreground, or failure if an error occurs.
naman@root:~$

Top

This utility tells the user about all the running processes on the Linux machine.

home@vfrtualsox:~$ top

top - 23:57:43 up 2:54, 1 user, load average: 0.080, 0.81, 0.05
189 total, 2 running, 187 sleeping, ® stopped, 6 zombie

0.7%us, 3.0%sy, 0.0%ni, 96.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
1026080k total, 924508k used, 101572k free, 37000k buffers
1046524k total, 21472k used, 1025052k free, 367996k cached

PID USER PR NI VIRT RES SHR 5 %CPU %MEM TIME+ COMMAND
] home 6 1775m 108m S 1.7 16.8 53 Photoshop.exe
root @ 75972 51m R 1.0 5.1 2: Xorg
@ 76044 40 5 1.8 B.5 214 > Wineserver
6 75144 S 8.3 3.8 6: ubuntuone-syncd
6 127m S 0.3 1.4 6: gnome-terminal
0 2820 R 0.3 0.1 0: top
0 3200 S 0.0 0.2 0: init
G| G| S 0.0 0.0 O kthreadd
] ] S 0.0 0.0 0: ksoftirqd/e

Press ‘q" on the keyboard to move out of the process display.

The terminology follows:

Field Description Example 1

PID The process ID of each task 1525

User The username of task owner Home
Priorit

PR Can bey20(highest) or -20(lowest) 20

NI The nice value of a task 0

VIRT Virtual memory used (kb) 1775

RES Physical memory used (kb) 100

SHR Shared memory used (kb) 28
Status

S S

There are five types:



Field Description Example 1
{DI

uninterruptible sleep
‘R" = running

‘S’ = sleeping

‘T” = traced or stopped

‘' =zombie
%CPU % of CPU time 1.7
%MEM Physical memory used 10
TIME+ Total CPU time 5:05.34
Command Command name Photoshop.exe

Priority of process in Linux | nice value

The running instance of program is process, and each process needs space in
RAM and CPU time to be executed, each process has its priority in which it is
executed.

Now observe the below image and see column NI
top

Output:

v O @ s4a1am @
top - 09:41:39 up 23 min, 1 user, load average: 0.44, 0.67, 0.87
Tasks: 261 total, 1 running, 260 sleeping, 0 stopped, 0 zombie
Cpu(s): ©.4 us, 0.1 sy, 6.6 ni, 98.5 id, 1.0 wa, 0.0 hi, 0.6 si, 0.0 st
KiB Mem : 8046272 total, 3543988 free, 1684652 used, 2897632 buff/cache
iB Swap: 3999740 total, 3999740 free, 0 used. 5778928 avail Menm

PID USER PR NI VIRT RES SHR S5 %CPU %MEM TIME+ COMMAND
2371 mandeep 20 730000 38000 28896 S 0. 9.5 0:02.10 gnome-terminal-
9216 mandeep 20 El 128432 70040 3.89 chrome
9316 mandeep 20 1695960 95068 60060 3.15 totem
9416 mandeep 20 41540 3688 ELEES 13 top
root 20 185376 5968 3940 84 systemd
root 20 (] [} [} .00 kthreadd
4 root 0 .00 kworker/0:0H
root 20 .53 kworker/u16:0
6 root (] .00 mm_percpu_wq
root 20 .04 ksoftirqd/e
root 20 .04 rcu_sched
root 20 .80 rcu_bh
root rt .02 migration/o@
root rt .00 watchdog/@
root 20 cpuhp/@
root 20 cpuhp/1
4 root rt watchdog/1
root rt migration/1
6 root 20 ksoftirqd/1
root 0 kworker /1:0H
root 20 cpuhp/2
root rt watchdog/2
root rt migration/2
root 20 ksoftirqd/2
4 root 0 kworker /2:0H
root 20 cpuhp/3
6 root rt watchdog/3
root rt migration/3
root 20 ksoftirqd/3
root 0 kworker /3:0H
root 20 kdevtmpfs
netns
4 kworker/2:1
khungtaskd
oom_reaper
writeback

NP

PP RROND

~

(8]
9
e
=
-"
L
[ |

~

~

root
4 root
root
6 root
root

™

RN RR-N R NN - NN -R-F-N-N-R-N-N-N-NoN-N-N-FoR-N-NoN-RoN-N-)
P00 RoRO0R0R0000R00R0C00C0RC00R000
CPO0POOOOPOOORPORORPORDRRORRRRRIWWWW

PP ECERRPRRORRRIORO R D
RN RN N NN N R R N RN RN NoR-NoN-N-NoR-N-NoNCN-)
RN N NN N N NN NN NN N-N-N-N- RN

~

top command output



The column NI represents nice value of a process. It’s value ranges from -20 to
20(on most unix like operating systems).

-20 20
most priority least priority
process process

One important thing to note is nice value only controls CPU time assigned to
process and not utilisation of memory and I/O devices.

nice and renice command

nice command is used to start a process with specified nice value, which renice
command is used to alter priority of running process.

Usage of nice command :

Now let’s assume the case that system has only 1GB of RAM and it’s working
really slow, i.e. programs running on it(processes) are not responding quickly,
in that case if you want to kill some of the processes, you need to start a
terminal, if you start your bash shell normally, it will also produce lag but you
can avoid this by starting the bash shell with high priority.

For example:

nice -n -5 bash

First observe output of top without setting nice value of any process in below
image

mandeep@msdeepld: ~ v Oesw @ 9ssam ©

()

%Cpu(s): ©.1us, 0.1 sy, 6.6 ni, 99.3 id, 0.5 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 8046272 total, 3487888 free, 1639820 used, 2518564 buff/cache
KiB Swap: 3999746 total, 399974@ free, © used. 5737448 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1130 root 6] 19600 260 0:80.13 irqgbalance
0: 07 chrome

@
w
@
@

kthreadd
kworker/o:0H
kworker fu16:0
mm_percpu_wq
ksoftirqdje
rcu_sched
rcu_bh
migration/@
watchdog/@
cpuhp/@
cpuhp/1
watchdog/1
migration/1
ksoftirqd/1
kworker/1:0H
cpuhp/2
watchdog/2
migration/2
ksoftirqd/2
kworker/2:0H
0:00.00 cpuhp/3
0:00.00 watchdog/3
0:00.02 migration/3
0:00.05 ksoftirqd/3
<]
]
(i}
]

2 root
4 root

5 root
6 root
7 root
8 root
9 root
10 root
11 root
12 root
13 root
14 root
15 root
16 root
18 root
19 root
20 root
21 root
22 root
24 root
25 root
26 root
27 root
28 root
30 root
31 root
32 root
35 root
36 root

37 root
QEﬂ

N

™

™

:00.00 kworker/3:0H
:00.00 kdevtmpfs
:00.00 netns

™

:00.00 khungtaskd

0:00.00 oom_reaper
6:80.00 writeback

P PP RRRRRRD
PO RO0ROROOROR00R0RDRDT DD D

RN N NN NN N R N N NN NN RN NN NN
VOV VLLVLLVVULLLVNULNNNNL NN
[ER-FCNCR-RC R R N R R R RN RN oR-N-NoR-N-NoN-RoNoN-No) L (9
[ER-FCNCR-RC NP R R R XN RN RN R-RoR-N-NoR-RoNoN-NH o [

9
COC0REO0RORO0RORR0R0RRERDAD

™

[

nice value of top is 0

Now start a bash shell with nice value -5, if you see the highlighted line, the top
command which is running on bash shell has nice value set to -5



mandeep@msdeepld: ~ v OQem @ 9s7am @

top - ©9:52:55 up 34 min, 1 user, load average: 0.17, ©.36, 0.59

Tasks: 265 total, 1 running, 264 sleeping, 0 stopped, 0 zombie

%Cpu(s): ©.4 us, 0.2 sy, 0.6 ni, 98.5 id, 0.9 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 8046272 total, 3487964 free, 1638640 used, 2919668 buff/cache
KiB Swap: 3999746 total, 399974@ free, 0 used. 5737208 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2101 mandeep 20 0 1229928 102460 60296 S . .56 compiz
1951 mandeep 20 0 641820 36520 25988 . . 101, unity-panel-ser
1158 s 0 1240736 134880 16040 . . :01.64 mysqld
2069 570576 24508 11308 . . :13.66 tracker-miner-f

systemd
kthreadd
kworker/0:0H
kworker fu16:0

mMm_percpu_wq
4 ksoftirqd/e
reu_sched
rcu_bh
migration/e
watchdog/0
. . H cpuhp/o
root . . :00. cpuhp/1
4 root . . :00. watchdog/1
root . . 100. migration/1
6 root . . :00. ksoftirgd/1
root . . :00. kworker/1:0H
root . . :00. cpuhp/2
root . . :00. watchdog/2
root . . 100. migration/2
root . . :00. ksoftirqd/2
4 root . . :00. kworker/2:0H
root . . :00. cpuhp/3
6 root . . :00. watchdog/3
root . . 100. migration/3
root . . :00. ksoftirqd/3
root . . :00. kworker/3:0H
root . . 100. kdevtmpfs
root - - :00. netns
root N N :00.80 khunataskd

nice value of bash shell is -5

Usage of renice command :
To alter priority of running process, we use renice command.
renice value PID

value is new priority to be assigned
PID is PID of process whose priority is to be changed

One thing to note is you can’t set high priority to any process without having
root permissions though any normal user can set high priority to low priority of
a process.

We will see one example of how you alter priority of process.

mandeep@msdeepld: ~ o Quon @ 004aM @

mandeep@msdeepl4: ~ x mandeep@msdeepls: ~ x [+Uhg

%Cpu(s): 0.5 us, 0.2 sy, 0.0 ni, 98.3 id, 1.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 8046272 total, 3482836 free, 1646332 used, 2917104 buff/cache
KiB Swap: 3999740 total, 3999740 free, 0 used. 5738432 avail Menm

PID USER PR NI VIRT RES SHR S %CPU %ME! TIME+ COMMAND
1589 402548 64640 39800 1.0 0.8 :55.21 Xor
729896 gnome-terminal-
10135 mandeep 41936 top
1039 root 462904 NetworkManager
1158 mysql 1240736 mysqld
root 185376 systemd
root a kthreadd
4 root kworker /@:0H
6 root mm_percpu_wq
root 4 ksoftirqd/e
root reu_sched
root rcu_bh
root migration/e
root watchdog/0
root cpuhp/o
root cpuhp/1
4 root watchdog/1
root migration/1
6 root ksoftirgd/1
root kworker/1:0H
root cpuhp/2
root watchdog/2
root migration/2
root ksoftirqd/2
4 root kworker/2:0H
root cpuhp/3
6 root watchdog/3
root migration/3
root ksoftirqd/3
root kworker/3:0H
root kdevtmpfs
root netns
root khungtaskd
6 root oom_reaper

™ ™

N
CRCR-F-R-N-R-N R -N-N-N-N-R-E-N-N-N-N-R-NoN-N-)

VULV NKVN®K KN K ;oG
[N NN RN RN N N N RN NN NoN-R-NoR-NoNoN-NoNoNCNoNON-] -~
[RCR-R-R NN R NN NN RN RoR-RoNoR-RoN-NoRoNCR-NoNC RRRIET o
[RCR-R-R N R N RN RN N RN RoRoR-RoN-N-RoNCR-RoWENENEC ] o

P PR RRRRRR O @
RN RN R R R N N RN NN NN R-NoN-N-NoN-N-)
AN R NN N N RN NN N-N-N-N-N-X-

nice value of gnome terminal is O



You can observe that nice value of process(PID = 2371) is 0, now let’s try to set
the new priority of 5 to this process.

renice 5 2371
Output:
2371 (process ID) old priority O, new priority 5

You can also see this priority using top command(see highlighted line in
image).

mandeep@msdeepld: ~ ) @ 1008AM (D)

mandeep@msdeepl4: ~ mandeep@msdeepls: ~ x [+Uhg

44 ﬁCpu(<) 0.2 us, 0.1 sy, ©.0ni, 98.9 id, ©.8 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 2046272 total, 3472088 free, 1646472 u<ed 2927712 huff/cache
KiB Swap: 39959740 t)tal, 3999740 free, (] used. 5729628 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1589 mandeep 20 402900 64848 40008 S 0.7 0. E- 0:59.31 Xorg
2278 mandeep 20 505516 13312 11576 S . 0:00.36 mission-control
952 root 20 166432 8656 7948 S thermald
1010 message+ 20 45328 6200 3492 S dbus-daemon
1039 root 462904 16844 14032 S NetworkManager
1158 mysql 1240736 134880 16040 S mysqld
2084 mandeep 588476 32052 26396 S nm-applet
2101 mandeep 1230776 103300 60328 S compiz
2343 mandeep 1444132 309848 133424 S
729896 38960 28548 S
10275 mandeep 41936
1 root 185376
2 root
4 root
6 root
7 root
8 root
9 root
10 root
11 root
12 root
13 root
14 root
15 root
16 root
18 root
19 root
20 root
21 root
22 root
24 root

chrome
gnome-terminal-
top

systemd
kthreadd
kworker/0:0H

w
o
B
=]
w

mm_percpu_wq
ksoftirqd/o
rcu_sched
rcu_bh
:00.02 migration/@
:00.00 watchdog/e
.00 cpuhp/e
:00.00 cpuhp/1
.00 watchdog/1
migration/1
ksoftirqd/1
kworker /1:0H
.00 cpuhp/2
:00.01 watchdog/2
.02 migration/2
.08 ksoftirqd/2
.00 kworker/2:0H
25 root :00.00 cpuhp/3
26 root :00.00 watchdog/3

27 root . . :00.02 migration/3
@ -

process 2371 has nice value 5

o
O
®
™=
hl_J
L=
|

PP UWMLL WL WWWN

PP OR
PO OOOCOOOOCOOCDERRC
VLVLLEVLLVLLVULLVLLNV NNV NN

Command Description

bg To send a process to the background

fg To run a stopped process in the foreground
top Details on all Active Processes

ps Give the status of processes running for a user
ps PID Gives the status of a particular process

pidof Gives the Process ID (PID) of a process
kill PID Kills a process

nice Starts a process with a given priority
renice Changes priority of an already running process
df Gives free hard disk space on your system

free Gives free RAM on your system



nohup Command in Linux with Examples

Every command in Linux starts a process at the time of its execution, which
automatically gets terminated upon exiting the terminal. Suppose, you are
executing programs over SSH and if the connection drops, the session will be
terminated, all the executed processes will stop, and you may face a huge
accidental crisis. In such cases, running commands in the background can be
very helpful to the user and this is where nohup command comes into the
picture. nohup (No Hang Up) is a command in Linux systems that runs the

process even after logging out from the shell/terminal.

Nohup Command

Usually, every process in Linux systems is sent a SIGHUP (Signal Hang

UP) which is responsible for terminating the process after closing/exiting the
terminal. Nohup command prevents the process from receiving this signal
upon closing or exiting the terminal/shell. Once a job is started or executed
using the nohup command, stdin will not be available to the user

and nohup.out file is used as the default file for stdout and stderr. If the
output of the nohup command is redirected to some other file, nohup.out file

is not generated.

Nohup Command Syntax

The syntax for using the Nohup command is straightforward:



nohup command [options] &

o command’: Specifies the command or script that you want to execute.

« [options]: Optional arguments or flags that modify the behavior of the

command.

o &': Placing an ampersand (&) at the end of the command instructs the

shell to run the command in the background.



Vi Editor

The vi Editor is a text based editor used in Linux and Unix for editing configuration
files and creating text documents.

Vi- editor is one of the most versatile editors of linux. The vi-editor was created by Bill
Joy for BSD versions for unix.Bram Moolenaar improved the editor and called it “vim” (vi-
improved) editor. Vi uses number of internal commands to navigate to any point in a text file
and edit the text there. It allows to copy and move text within a file and also from one file to
another. Vi offers cryptic and sometimes mnemonic, internal commands for editing work.

Syntax (for invoking vi editor)
$ vi (enter) [will open vi editor with a temporary file name]

$ vi filename (enter) [will open vi editor with the given file name in the current
directory]

Command-mode
& Input mode
~ work in this area

Ex-mode works

ZA

at this line

e.g. vi test (enter) ~ j

After applying above command the vi editor gets open as shown in the figure
above.

Vi editor operates in two mode.

1. Command mode: This mode enables you to perform administrative tasks such as
saving files, executing commands, moving the cursor, cutting (yanking) and pasting
lines or words, and finding and replacing. In this mode, whatever you type is interpreted
as a command.

2. Insert mode: This mode enables you to insert text into the file. Everything that's typed
in this mode is interpreted as input and finally it is put in the file .

Khyati Patel



Hint: If you are not sure which mode you are in, press the Esc key twice, and then you'll be in
command mode.

Open or Create the Script File.
Step-1:

Open your terminal and type vi script name.sh, replacing script name.sh with your
desired script filename. The .sh extension is conventional for shell scripts. If the file doesn't
exist, vi will create a new one; otherwise, it will open the existing file.

Step-2: Enter insert mode.

Upon opening vi, you are in command mode. To begin typing your script, you must
switch to insert mode. Press the 1 key to enter insert mode. Write Your Script.

In insert mode, you can type the commands and logic for your script.

echo "hello from my first vi script!”

Step-2: Exit Insert Mode.

Once you have finished writing your script, press the Esc key to return to command mode. Save
and Exit.

In command mode, type :wq and press Enter. : initiates a command line within vi, w saves the
changes to the file, and q quits the vi editor.

If you want to exit without saving changes, use :q!.

Khyati Patel



:w(q|
Step-3: Execute script from the terminal:

You can now execute your script from the terminal:

Code
sh script_name.sh

Ex: sh printhello.sh

sh printhello.sh
ello from my first vi script!

Insert Command:

you can enter Insert mode using various keys, each with a slightly different effect:
i: Inserts text before the current cursor position.
I: Inserts text at the beginning of the current line.
a: Appends text after the current cursor position.
A: Appends text at the end of the current line.
o: Insert a new line below the current line.
O: Insert a new line above the current line.

Navigation Commands:

h, j, k, I: Move cursor left, down, up, right respectively.

w, b, e: Move to beginning of next word, beginning of previous word, end of current word.
0, $: Move to beginning of line, end of line.

gg, G: Move to first line, last line of file.

nG: Move to line number n'.

Khyati Patel



Editing Commands:

x: Delete character under cursor.

dd: Delete the current line.

ndd: Delete 'n' lines.

yy: Yank (copy) the current line.

nyy: Yank (copy) n' lines.

p: Paste yanked or deleted text below the current line.
P: Paste yanked or deleted text above the current line.
u: Undo the last change.

Saving and Exiting:

:w: Save the file.

:wq or ZZ: Save and quit.

:q!: Quit without saving changes.
:x: Save and quit (similar to :wq).

Shell Metacharacters and operator.

Metacharacters in Linux are special symbols that have specific meanings to the shell,
allowing for pattern matching, redirection, and other powerful command-line operations. They
are used to manipulate files, directories, and command output.

Filename Expansion(wildcard:*,?,[])

There are mainly three metacharacters for filename substitution:
. Asterisk (%)
. Question mark (?)
3. Character class [].

DN

They are used for matching filenames in a directory.

1. asterisk (*)

It matches zero or one more occurrences of any characters in a filename. When the
Asterisk(*) is appended to the sring file, the pattern file* matches all filenames in the
directory with the string file and also include the file fileitself. You can also use * as an
argument to ls as follow:

$ls *  #display all files of current directory

When shell encounters this command line, it immediately identifies the * as a
metacharacter. It then generates a list of files from the current directory that match this pattern
and passes it on to the kernel for execution. So, this command display name of all files in the
directory.

2. Question-mark (?)
It is another metacharacter used for filename substitution. It matches any single
character. If we use it with file string then it matches filename of current directory that start

Khyati Patel



with string file followed by any single character. For example, you can write a command as
follow:

$ls file? #display filename begins with string file followed by any character

Then it display all files begins with 'file' and the last character is any.

Character class ([])

The character class uses two metacharacter represented by a pair of square brackets i.e.
[].You can write as many characters inside the square brackets, but matching takes place for
only a single character in the class i.e. it matches any single character from character set. For
example, a single character expression taking the value either 1 or 2 or 3 or 4 can be represented
by character class as [1234]. This can be combined with any string or another wild-card
expression.

Character class uses two another metacharacter : !(bang or exclamation) and
(hyphen). Hyphen (i.e. -) is used to specify range inside the class eg. [1-4]. A valid range
specification requires that the character on the left have a lower ASCII value than the one on
the right.

Exclamation (i.e. !) reverses the matching criteria i.e., it matches all other characters
except the ones in the class. It is placed at the beginning of character or character set within the
class. For example, consider command as follow:

$1s [10-9]*
It displays all the files whose filename begins with other than digit.
Eliminate the meaning of wild-card character:

The metacharacters asterisk (i.e. *) and question mark (i.e. ?) lose their meaning when
used inside the character class, and are matched literally. Similarly, '-' and '!" also lose their
significance when placed outside the class. Additionally "' loses its meaning when placed
anywhere but at the beginning within the class. The '-' loses its meaning if it is not bounded
properly on either side by a single character. e.g. [a-] or [-a].

Matching a Dot
The * does not match all files beginning with a . (dot) or the /of a pathname. If you want
to list all the hidden files in your directory, then the dot must be matched explicitly as follow:

$ls .*
It displays all files begins with . and also display. and .. contents.

$ls .[1.]*
It displays only those files in your directory begins with. (dot).

Linux - Shell Input/Output Redirections

Khyati Patel



In linux, commands take input from your terminal and send the resulting output back
to your terminal. A command normally reads its input from the standard input, which happens
to be your terminal by default. Similarly, a command normally writes its output to standard
output, which is again your terminal by default.

Redirection allows users to change the default behaviour of standared streams.
Redirection is the process through which is a user can use file instead of the standard 1/O
devices. There are three types of redirection:

1. Output Redirection
2. Input Redirection
3. Error Redirection

1. Output Redirection

In output redirection, the output of command sends to file instead of standard output
devices (i.e Monitor) this capability is known as output redirection. When shell encountered >
in the command line then it understand that standard output is to be sent to the file instead of
monitor. The shell first opens the file, writes output of command into it and then close the file.

Check the following who command which redirects the complete output of the command in
the users file.
$ who > users

Notice that no output appears at the terminal. This is because the output has been
redirected from the default standard output device (the terminal) into the specified file. You
can check the users file for the complete content —

$ cat users

Userl tty0l Sep 12 07:30
User2 ttyl5 Sep 12 13:32
User3  tty21 Sep 12 10:10

User4 tty24 Sep 12 13:07
User5 tty25 Sep 12 13:03

$

The above command is also written using file discripter as follow:
$ who 1 > users
If a command has its output redirected to a file and the file already contains some data,
that data will be lost. Consider the following example —
$ echo line 1 > users
$ cat users

line 1
$

Khyati Patel



You can use >> operator to append the output in an existing file as follows —

$ echo line 2 >> users
$ cat users

line 1

line 2

$

2. Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a
command be redirected from a file. As the greater-than character >is used for output
redirection, the less-than character < is used to redirect the input of a command. The commands
that normally take their input from the standard input can have their input redirected from a file
in this manner. For example, to count the number of lines in the file users generated above, you
can execute the command as follows —

$ we -1 users
2 users
$
Upon execution, you will receive the following output. You can count the number of
lines in the file by redirecting the standard input of the wc command from the file users —

$ we -1 < users
2
$

Note that there is a difference in the output produced by the two forms of the wc
command. In the first case, the name of the file users is listed with the line count; in the second
case, it is not. In the first case, wc knows that it is reading its input from the file users. In the
second case, it only knows that it is reading its input from standard input so it does not display
file name.

The above command is also written using file discripter as follow:
$ we -1 0<users

3. Error Redirection

In Linux, it 1s possible to redirect the error messages of an invalid command to a file
oth

er than the standard error file so that error messages do not appear on the terminal. This
is done using a file descriptor for the standard error file. To redirect the error message of a
command to a file other than the terminal, we use error redirection as 2>

Assume that the file filel does not exist in the current working directory and you apply a
command like this:

$cat filel 2 > err_ msg <enter>

Khyati Patel



So, linux will generate an error message because the execution is unsuccessful. This
error message will be written into the file err_ msg.

Piping mechanism

A user can combine more than commands using a metacharacter known as pipe. It is
denoted by vertical bar (i.e. |)) symbol. This allows for sequential processing of data, where the
output of the first command becomes the input for the second, and so on. The general form of
piping mechanism is as follow:

command1\command?\....\commandN

There is no restriction on number of commands used in pipeline. Here, output of
commandl send as standard input to command?2, the output of command2 sends as standard
input to command3 and so forth. In this way, the standard output of one filter command can be
sent as standard input to another filter command.

Let us consider a command as follow:
$ cat fl | we-c

123

$

Here, the output of cat command can be use as standard input for wc command. So, the result
shows number of characters in file fl.

Consider the command sequences as follow:

$sort f1 > fl.sort

Suniq —u fl.sort >fl.uniq
$wc -1 <fl.uniq

5

$

The purpose of these command sequences is that to count number of unique lines in file
f1. Through the pipe feature, these three steps can be done in one command without creating a
temporary files as shown below:

$sort fl | unig-u | we-1
5
$

The vertical bar (i.e.|) indicates to the Linux to send the output of the command before
| (i.e. sort fl) as input to the command after | (i.e. unig-u).Again sends the output of the
command before | (i.e. unig-u) as input to the command after | (i.e.wc —1).Thus, the commands
sort, uniq and wc create a pipeline through which data to flow without creating temporary files.

Therefore, the advantages of the pipe feature is that
e There is no need to create intermediate temporary files to perform complex tasks.
e As compare to redirection, it is faster.

Khyati Patel



Command Substitution
Command substitution is the mechanism by which the shell performs a given set of
commands and then substitutes their output in the place of the commands.

Command substitution in Linux allows the output of a command to be used as an
argument or value within another command or statement. This mechanism enables dynamic
scripting and the creation of more complex and flexible shell commands.

Syntax

The command substitution is performed when a command is given as —
‘command’

When performing the command substitution make sure that you use the back quote,
not the single quote character.

Example
Command substitution is generally used to assign the output of a command to a
variable. Each of the following examples demonstrates the command substitution —

DATE="date’
echo "Date is SDATE"

USERS="who | we -I'
echo "Logged in user are SUSERS"

Upon execution, you will receive the following result —

Date is Thu Jul 2 03:59:57 MST 2009
Logged in user are 1

Khyati Patel



LINUX OPERATING SYSTEM-UNIT-3

Unit 3 : Shell Scripting in Linux

3.3 Control Flow Structures (if-else, case, for, while, until)

3.4 Logical Operators (&&, ||, !)

3.5 test and [ ] command for Condition Testing (file, numeric, string)
3.6 Arithmetic Operations (expr, S(()))

4+ Read statement

The read statement is used to make the shell interactive.

It is the input taking tool of the shell script.

Syntax: read varl var2 var3 ....

We can read values for multiple variables using a single read statement.

If the number of input values given is more than the number of variables then the
last values are assigned to the last variable.

e [fthe number of input values given is less than the number of variables then the
last variable is left unassigned.

Example: read nl n2 n3

i/p 12 3 (n1=1,n2=2,n3=3)

1 2 (n1=1,n2=2 & n3 is left unassigned)
12345 (nl=1,n2=2,n3=34Y5)

3.3 Control Flow Structures (if-else, case, for, while, until)

Control flow structures allow you to control the execution sequence of commands based
on conditions or repetitive patterns. Here are the commonly used control structures in
Linux shell scripting:

1. if-else Statement
Used to execute commands conditionally.
Syntax:
if [ condition ]; then
commands
elif [ another condition |; then
other commands
else

fallback commands

fi

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

Example:

num=10
if [ $num -gt 0 |; then
echo "Positive number"
else
echo "Non-positive number"
fi
2. case Statement
Used for multiple choice decision making, like a switch-case in other languages.
Syntax:
case $variable in
patternl)
commands ;;
pattern2)
commands ;;
*)
default commands ;;
esac
Example:
day="Mon"
case $day in
"Mon") echo "Start of the week" ;;
"Fri") echo "End of the week" ;;
*) echo "Midweek day" ;;

csac

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

3. for Loop
Used to iterate over a list or range.
Syntax:
for var in list; do
commands
done
Example:
foriin12345;do
echo "Number: $i"

done

4. while Loop

Executes commands as long as a condition is true.

Syntax:

while [ condition ]; do
commands

done

Example:

count=1

while [ $count -le 5 ]; do
echo "Count is $count”
count=$((count + 1))

done

5. until Loop
Opposite of while: Executes commands until a condition becomes true.
Syntax:
until [ condition ]; do
commands

done

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

Example:

count=1
until [ $count -gt 5 ]; do
echo "Count is $count"

count=$((count + 1))

done

Summary Table

Structure Purpose

if-else  Conditional branching
case Multi-branch decision

for Iteration over list or range
while  Loop while condition is true
until

4+ Break and continue in Linux.

Common Use Case

Check file existence, number test
Menu selection, option handling
Loop through numbers, files

Read file line-by-line

Loop until condition becomes true Retry logic until success

foriin ‘seq 15’

do
if(( $i==2))
then
break
fi

echo "value of iis $i"
done

foriin 'seq15’

do
if(( $i==2))
then
continue
fi
echo "value of i is $1"
done

o/p :valueofiis 1

o/p : value of i is 1
value of 11s 3
value of 11s 4
value of 118 5

KHYATI SOLANKI




LINUX OPERATING SYSTEM-UNIT-3

4+ Select loop in linux

clear
select DRINK in tea cofee water juice appey all none
do
case $DRINK in
tea|cofee|water|all)

echo "Go to canteen";;
juicelappey)

echo "Available at home";;
none)

break ;;
*)

echo "ERROR: Invalid selection";;
esac
done

output :

1) tea

2) cofee

3) water

4) juice

5) appey

6) all

7) none

#73

Go to canteen
#7 8

ERROR: Invalid selection
#?2

Go to canteen
#?

3.4 Logical Operators (&&, ||, !) in Linux

In Linux shell scripting (especially bash), logical operators are used to control the flow
of execution based on the success or failure of commands. These are particularly useful
in conditional statements and command chaining.

1. && — Logical AND

« Executes the second command only if the first command succeeds (i.e., returns
exit status 0).

o Commonly used for chaining commands.

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

Syntax:

command] && command?2
¢ Example:

mkdir newdir && cd newdir

Here, cd newdir will execute only if mkdir newdir succeeds.

2.||— Logical OR

« Executes the second command only if the first command fails (i.e., returns a non-
Zero exit status).

¢ Syntax:
command] || command?2
¢ Example:
cd unknown_dir || echo "Directory not found!"

X If cd unknown_dir fails, then echo will be executed.

3.1 —Logical NOT
« Negates the exit status of a command.

« If the command succeeds, ! makes it fail and vice versa.
¢ Syntax:
! command
¢ Example:

! Is somefile && echo "File does not exist"

If Is somefile fails (file doesn't exist), the ! makes it "succeed", and the message is
printed.

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

Combined Example:

file="myfile.txt"

[ -f"$file" | && echo "$file exists" || echo "$file does not exist”
o This checks if a file exists.
« Ifit exists, it prints the first message.

« If not, the second message is printed.

Example

# Logical Operators with Mathematical Operations

a=10

b=5

c=0

echo "a=%a,b=3$b, c = $c"

echo

# 1. && (Logical AND) - Perform multiplication only ifa > b

[ $a -gt $b ] && echo "$a is greater than $b, so a * b = $((a * b))"

# 2. || (Logical OR) - If b is not greater than a, then show subtraction
[ $b -gt $a ] || echo "$b is not greater than $a, so a - b= $((a - b))"

# 3. ! (Logical NOT) - Check if ¢ is NOT greater than 0, then do addition
if I [ $c -gt 0 ]; then
echo "$c¢ is not greater than 0, so a + b = $((a + b))"

fi

4+ The exit status of a command

Each Linux command returns a status when it terminates normally or abnormally. You
can use value of exit status in the shell script to display an error message or take some
sort of action. For example, if tar command is unsuccessful, it returns a code which tells
the shell script to send an e-mail to sysadmin.

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

Exit Status

« Every Linux command executed by the shell script or user, has an exit status.

« The exit status is an integer number.

« The Linux man pages stats the exit statuses of each command.

« 0 exit status means the command was successful without any errors.

e A non-zero (1-255 values) exit status means command was failure.

« You can use special shell variable called $? to get the exit status of the
previously executed command. To print $? variable use the echo command:

echo $?

date # run date command

echo $? # print exit status
foobarl23 # not a valid command
echo $? # print exit status

How Do I See Exit Status Of The Command?

Type the following command:

date

To view exist status of date command, enter:
echo $?

Sample Output:

0

Try non-existence command

datel

echo $?
Is /eeteec
echo $?

Sample Output:

2

According to Is man page - exit status is 0 if OK, 1 if minor problems, 2 if serious
trouble

KHYATI SOLANKI


https://bash.cyberciti.biz/guide/Echo_command

LINUX OPERATING SYSTEM-UNIT-3

3.5 test and [] Commands for Condition Testing

In Linux shell scripting, condition testing is essential for decision-making. The test
command and the [] (square brackets) are used to evaluate conditions such as
comparisons on files, numbers, and strings. Both are functionally equivalent, but the
square brackets are more commonly used in scripts for readability.

Test uses certain operators to evaluate the condition on its right and returns either a true
or false exit status, which is then used by if statement for decision making

Test works in three ways:

Compare two numbers
Compare two strings
Checks file’s attributes

General Syntax

« Using test:
test condition
test -f "$file"
o Using][ ]:
[ condition ]
[ -f /etc/passwd ]

Note: In [ ], spaces are required after the opening [ and before the closing ].

1. File Condition Tests
These check the attributes of files or directories.

Expression Meaning

-¢ file File exists

-f file File exists and is a regular file
-d file File exists and is a directory
-1 file File is readable

-w file File is writable

-x file File is executable

-file File exits and is a directory

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

Expression Meaning

-u file File exits and has SUID bit set

-k file File exits and has sticky bit set

-L file File exits and has symbolic link (Korn and Bash only)
F1 -ntf2 FI is newer than f2(Korn and Bash only)

F1 —otf2 FI is older than f2(Korn and Bash only)

F1 —eff2 FI is linked to f2(Korn and Bash only)

Example:

if [ -f /etc/passwd ]; then
echo "File exists"

fi

File Condition Testing with test

file="/etc/passwd"
if test -f "$file"; then
echo "The file exists and is a regular file."
else
echo "File does not exist or is not a regular file."
fi

2. Numeric Condition Tests

Used to compare integer values.
Expression Meaning

nl -eqn2 nl is equal to n2

nl -nen2 nl is not equal to n2
nl -gtn2 nl is greater than n2
nl -ltn2 nl is less than n2

nl -gen2 nl is greater than or equal to n2

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

Expression Meaning
nl -len2 nl is less than or equal to n2

Example:

a=10

b=20

if [ "$a" -1t "$b" ]; then
echo "a is less than b"

fi

Numeric Condition Testing with test
a=10

b=20

if test "$a" -1t "$b"; then

echo "a is less than b"
else

echo "a is not less than b"
fi

3. String Condition Tests

Used to compare strings or check their properties.
Expression Meaning
strl = str2 Strings are equal

strl != str2 Strings are not equal

-7 str String is empty
-n str String is not empty
Example:

name="admin"
if [ "$name" = "admin" ]; then
echo "Welcome, admin"

fi

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

String Condition Testing with test

username="admin"

if test "$username" = "admin"; then
echo "Welcome, admin"

else
echo "Access denied"

fi

4. Using [] ... 1] (Advanced Bash)

[[ ... ]] is a more modern and safer alternative to [ ... ], with features like:
+ Pattern matching using == with wildcards
« No need to quote variables (avoids word splitting issues)
« Supports logical operators like && and ||
Example:
if [[ $user == a* ]]; then
echo "Username starts with 'a"

fi

Summary

« test,[ ], and [[ ]] are tools for conditional checks in shell scripts.
o Use -f, -d, etc., for file tests.

« Use -eq, -It, etc., for numeric comparisons.

o Use =, !=, -z, -n for string evaluations.

o Prefer [[ ... ]] for safer and more advanced scripting when using Bash.

3.6 Arithmetic Operations : expr and $(())

In Linux shell scripting, arithmetic operations are commonly performed using the expr
command or the $(()) syntax. These tools allow you to perform basic integer arithmetic
like addition, subtraction, multiplication, etc.

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

The expr statement

The expr 1s an external command which is used for computations in Linux. It performs
following features.

e Perform arithmetic operations on integers
e Manipulates strings.

Arithmetic Computations

expr can perform 4 basic arithmetic operations and the modulus function.

1.e for two variables x any y the arithmetic operations can be:

Indicates the shell prompt.

$expr $x + $y

$expr $x - Sy

Is required as * is considered as meta-character and \ will hide its special meaning
$expr $x \* Sy

$expr $x / Sy

$expr $x % Sy

The above example shows the working of expr command on the command line. If the
user wants to use the expr in shell scripts the user has to use it with command
substitution.

e.g. to store the value of the summation of two values in a variable.
c="expr $x + Sy’
the value of sum is stored in variable c.

1. Using expr

expr is a command-line utility used to evaluate expressions.
Syntax:
expr <operand 1> <operator> <operand2>
¢ Example:
a=10
b=5
result=$(expr $a + $b)

echo "Sum is: $result"

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

1. Notes:
« Spaces between operands and operator are mandatory.

« You need to escape special characters like *:

result=$(expr $a \* $b)

2. Using Arithmetic Expansion $(( ))

This is the preferred and modern method for arithmetic operations in bash. It's more
concise and readable.

Syntax:

$(( expression ))

Example:

a=10

b=5

sum=$((a + b))

echo "Sum is: $sum"

product=§((a * b))

echo "Product is: $product”

4 Advantages:

« No need to escape operators.
o Works directly within scripts and command substitution.

« Faster and more readable than expr.
Supported Operators

Operation Symbol

Addition +
Subtraction -
Multiplication *
Division /
Modulo %

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

“+ String Handling

The expr command is also used for handling strings. Using expr we can perform basic
string functions like,

1. Finding length of string
echo "enter string"
read s
len="expr length $s’
echo $len

2. Substring of string

st="good-morning"
t="expr substr $st 4 4°
echo $t

3. Concat string

echo "enter string"

read s1

echo "enter string"

read s2

echo "concate is" $s1 Ss2

4+ Logical operator -a(and) -o(or) and !(not)

What they mean:

« -a=AND (both conditions must be true)
o -0 =O0OR (either condition can be true)

o ! =NOT (negates the condition)

# Example files for testing
file1="/etc/passwd"
file2="/tmp/nonexistentfile"

# Using -a (AND)
if [ -e "$filel" -a ! -¢ "$file2" ]; then

echo "Filel exists AND File2 does NOT exist."
else

echo "Either Filel does not exist OR File2 exists."
fi

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-3

# Using -0 (OR)
if [ -e "$filel" -0 -e "$file2" ]; then

echo "Either Filel exists OR File2 exists (or both)."
else

echo "Neither Filel nor File2 exists."
fi

Explanation:
o [-c"S$filel" -a! -e "$file2" ]

Checks if filel exists AND file2 does NOT exist
o [-e"S$filel" -0 -¢ "$file2" ]

Checks if either filel exists OR file2 exists

Important notes:

o The -a and -o operators are sometimes considered deprecated because they can
cause ambiguous parsing in complex expressions.

o It’s better to use [[ ... ]] with && (AND) and || (OR) operators instead:

if [[ -e "$filel" && ! -e "$file2" ]]; then
echo "Filel exists AND File2 does NOT exist."
fi

if [[ -e "$filel" || -e "$file2" ]]; then

echo "Either Filel exists OR File2 exists."
fi

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-4

Unit 4 : Advanced Text Processing Tools
4.1 Introduction to Regular Expressions (Basic and Extended)

4.2 Pattern Matching using grep, egrep, and fgrep
4.3 Stream Editing with sed (search, replace, line deletion, insertion)

4.1 Introduction to Regular Expressions (Basic and Extended)

Regular expressions (regex) are powerful tools for pattern matching and text
processing. In Linux, they are widely used with command-line tools such as grep, sed
and awk. There are two main types of regular expressions in Linux:

« Basic Regular Expressions (BRE)

« Extended Regular Expressions (ERE)

1. Basic Regular Expressions (BRE)
BRE is the default mode used by many commands such as grep.

Key Features and Symbols:

Symbol Description
Matches any single character

A Matches the beginning of a line
Matches the end of a line

* Matches zero or more of the preceding char

(] Matches any one character in the set

"] Matches any one character not in the set
\{n,m\} Matches between n and m occurrences
\? Matches zero or one occurrence

\+ Matches one or more occurrences

| Alternation (OR)

\(and) Group expressions

In BRE, special characters like {}, ?, +, |, (), must be escaped with a backslash (\).

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-4

Example Commands (BRE):

grep 'Ma' file.txt  # Lines starting with 'a’

grep 'ingS' file.txt  # Lines ending with 'ing'

grep '[0-9]' file.txt # Lines containing a digit

grep 'M\(ab\)*S' file.txt # Lines with zero or more repetitions of 'ab'

2. Extended Regular Expressions (ERE)

Used by tools like egrep or grep -E, ERE supports more features without needing to
escape characters.

Key Features and Symbols (additional from BRE):

Symbol Description

? Matches zero or one of the preceding element
+ Matches one or more of the preceding element
() Group expressions

I
n ERE, you do not need to escape +, ?, |, ().

Example Commands (ERE):

grep -E 'a|b' file.txt # Lines containing 'a' or 'b’

grep -E 'ab+' file.txt #'a' followed by one or more 'b'

grep -E '(foo|bar)' file.txt # Lines with 'foo' or 'bar’

grep -E 'Ma(bc)*S' file.txt # Lines starting with 'a' followed by zero or more 'bc'

Common Tools Using Regex in Linux

Tool Regex Type Used Notes

grep BRE by default  Use -E for ERE

sed BRE by default  Can use ERE with -r

awk Uses ERE Powerful for structured text

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-4

4.2 Pattern Matching using grep, egrep, and fgrep

grep [OPTIONS] PATTERN [FILE...]

1. grep (Basic Regular Expressions - BRE)
« Uses Basic Regular Expressions by default.

« You must escape special characters like ?, +, |, ().

grep 'Mhello' file.txt  # Lines starting with 'hello’
grep 'worldS' file.txt  # Lines ending with 'world'
grep '[0-9]' file.txt # Lines containing digits

grep 'ab\+c' file.txt # 'a' followed by one or more 'b' then 'c' (BRE requires \+)

¢ 2. egrep (Extended Regular Expressions - ERE)
o Equivalent to grep -E

« No need to escape special characters like +, ?, |, ().

egrep 'ab+c' file.txt # 'a' followed by one or more 'b' then 'c'
egrep '(foo|bar)' file.txt # Match 'foo' or 'bar’

egrep 'a[0-9]+z?' file.txt # 'a' followed by one or more digits and optional 'z'

Use egrep when you want more complex regex without escaping.

3. fgrep (Fixed grep / Literal Match)
« Searches for exact strings, no regex processing.
e Much faster when regex is not needed.

« Equivalent to grep -F

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-4

fgrep 'a.b' file.txt # Matches literal string 'a.b', not any character
fgrep 'hello?' file.txt  # Matches literal string 'hello?"

fgrep '[a-z]' file.txt  # Matches literal string '[a-z]', not a character class

Use fgrep when searching for plain text, especially with special characters.

Comparison Table

Feature grep (BRE) egrep (ERE) fgrep (Fixed)
Regex Type Basic Extended None (literal)
Special Chars Escaped Direct use Treated as plain
Grouping () \(\) () Literal
Alternation * ’ |

Use Case Simple patterns Complex patterns  Exact text search

4.3 Stream Editing with sed (search, replace, line deletion, insertion)

sed stands for Stream Editor — a powerful tool to search, replace, delete, and insert
text in a stream or file.

Basic Syntax

sed [options] 'command' file

You can also use sed with pipelines:

cat file | sed 'command'

1. Search and Replace (s)

sed 's/pattern/replacement/' file

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-4

Common Variants:

Command Description

s/foo/bar/ Replace first occurrence of foo with bar on each line
s/foo/bar/g Replace all occurrences on each line

s/foo/bar/2 Replace 2nd occurrence only

s/foo/bar/gl Replace all (case-insensitive)

Example:

sed 's/hello/hi/' file.txt
sed 's/ERROR/OK/g' log.txt
sed 's/[0-9]\+/#/' numbers.txt

2. Delete Lines (d)

sed 'Nd' file.txt # Delete line N

Examples:

sed '3d' file.txt # Delete line 3

sed '1,5d' file.txt # Delete lines1to 5
sed '/AS/d' file.txt  # Delete all blank lines

sed '/error/d' file.txt # Delete lines containing 'error’

3. Insert and Append Lines

Action Syntax Example
Insert sed 'Nd i\text' sed '2i\New line before 2'
Append sed 'Nd a\text' sed '2a\New line after 2'

¢ Use \ to continue text on a new line in shell.

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-4

sed 'li\Start of file' file.txt ~ # Insert at beginning

sed 'Sa\End of file' file.txt # Append at end

4. Change a Line (c)
sed '3c\This is new content' file.txt

Replaces line 3 completely.

5. Multiple Commands

You can run multiple sed commands using:
« Semicolon (;)
« Multiple -e options

sed -e '1d' -e 's/foo/bar/' file.txt

# OR

sed '1d; s/foo/bar/' file.txt

¢ In-place Editing (-i)
To edit a file directly (no output to stdout):
sed -i 's/foo/bar/g' file.txt
Optionally backup original:
sed -i.bak 's/foo/bar/g' file.txt # Backs up to file.txt.bak

Summary Table

Task Command Example
Replace sed 's/old/new/' file.txt
Replace globally sed 's/old/new/g' file.txt
Delete line sed '5d' file.txt

Delete range sed '10,20d' file.txt
Delete blank sed '/AS/d!' file.txt

KHYATI SOLANKI



LINUX OPERATING SYSTEM-UNIT-4

Task Command Example

Insert before sed '3i\Inserted line' file.txt
Append after sed '3a\Appended line' file.txt
Change line sed '2c\New content' file.txt

KHYATI SOLANKI



grep command in Unix/Linux

The grep filter searches a file for a particular pattern of characters, and displays
all lines that contain that pattern. The pattern that is searched in the file is
referred to as the regular expression (grep stands for global search for regular
expression and print out).

Syntax:

grep [options] pattern [files]

Options Description

-c : This prints only a count of the lines that match a pattern

-h : Display the matched lines, but do not display the filenames.
-1 : Ignores, case for matching

-1 : Displays list of a filenames only.

-n : Display the matched lines and their line numbers.

-v : This prints out all the lines that do not matches the pattern
-e exp : Specifies expression with this option. Can use multiple times.
-f file : Takes patterns from file, one per line.

-E : Treats pattern as an extended regular expression (ERE)

-w : Match whole word

-0 : Print only the matched parts of a matching line,

with each such part on a separate output line.

-A n : Prints searched line and nlines after the result.
-B n : Prints searched line and n line before the result.
-C n : Prints searched line and n lines after before the result.

Sample Commands
Consider the below file as an input.

$cat > geekfile.txt

unix is great 0s. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

1. Case insensitive search : The -i option enables to search for a string case
insensitively in the given file. It matches the words like “UNIX”, “Unix”,
“unix”.

$grep -i "UNix" geekfile.txt



Output:

unix is great 0s. unix is opensource. unix is free os.

Unix linux which one you choose.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

2. Displaying the count of number of matches : We can find the number of
lines that matches the given string/pattern

$grep -c "'unix'* geekfile.txt
Output:

2

3. Display the file names that matches the pattern : We can just display the
files that contains the given string/pattern.

$grep -l "unix" *
or

$grep -l "unix" fl.txt f2.txt f3.xt f4.txt
Output:

geekfile.txt

4. Checking for the whole words in a file : By default, grep matches the given
string/pattern even if it is found as a substring in a file. The -w option to grep
makes it match only the whole words.

$ grep -w ""unix'* geekfile.txt
Output:
unix is great 0s. unix is opensource. unix is free os.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

5. Displaying only the matched pattern : By default, grep displays the entire
line which has the matched string. We can make the grep to display only the
matched string by using the -o option.

$ grep -0 ""unix"" geekfile.txt
Output:

unix

unix

unix



unix
unix
unix

6. Show line number while displaying the output using grep -n : To show
the line number of file with the line matched.

$ grep -n "unix' geekfile.txt
Output:

1:unix is great 0s. unix is opensource. unix is free os.

4:uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

7. Inverting the pattern match : You can display the lines that are not
matched with the specified search string pattern using the -v option.

$ grep -v "unix"" geekfile.txt
-vn

Output:

learn operating system.

Unix linux which one you choose.

8. Matching the lines that start with a string : The " regular expression
pattern specifies the start of a line. This can be used in grep to match the lines
which start with the given string or pattern.

$ grep "unix' geekfile.txt
Output:

unix is great 0s. unix is opensource. unix is free os.

9. Matching the lines that end with a string : The $ regular expression pattern
specifies the end of a line. This can be used in grep to match the lines which end
with the given string or pattern.

$ grep "0s$" geekfile.txt

10.Specifies expression with -e option. Can use multiple times :

$grep —e ""Agarwal’ —e ""Aggarwal’* —e ""Agrawal'* geekfile.txt



11. -f file option Takes patterns from file, one per line.
$cat pattern.txt

Agarwal
Aggarwal
Agrawal

$grep —f pattern.txt geekfile.txt

12. Print n specific lines from a file: -A prints the searched line and n lines
after the result, -B prints the searched line and n lines before the result, and -C
prints the searched line and n lines after and before the result.

Syntax:
$grep -A[NumberOfLines(n)] [search] [file]

$grep -B[NumberOfLines(n)] [search] [file]
$grep -C[NumberOfLines(n)] [search] [file]

Example:
$grep -Al learn geekfile.txt

Output:
learn operating system.
Unix linux which one you choose.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

(Prints the searched line along with the next n lines (heren =1 (Al).)
(Will print each and every occurrence of the found line, separating each
output by --)

(Output pattern remains the same for -B and -C respectively)

Unix linux which one you choose.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

Unix linux which one you choose.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

13. Search recursively for a pattern in the directory: -R prints the searched
pattern in the given directory recursively in all the files.
Syntax

$grep -R [Search] [directory]

Example :
$grep -iR geeks /home/geeks



Output:

Jgeeks2.txt:Well Hello Geeks
Jgeeksl.txt:1 am a big time geek

-1 to search for a string case insensitively

-R to recursively check all the files in the directory.

Linux grep

The 'grep’ command stands for "'global regular expression print™. grep
command filters the content of a file which makes our search easy.

grep with pipe

The 'grep' command is generally used with pipe ().
Syntax:

command | grep <searchWord>

Example:

cat marks.txt | grep 9

F e MG

sssit@JavaTpoint: ~

sssit@lavaTpoint:~$ cat marks.txt

Look at the above snapshot, grep command filters all the data containing '9'.
grep without pipe
It can be used without pipe also.

Syntax:



grep <searchWord> <file name>

Example: grep 9 marks.txt

sssit@JavaTpoint: ~
sssit@JavaTpoint:~$ grep 9 marks.txt

sssit@JavaTpoint:~$ I

Look at the above snapshot, grep command do the same work as earlier example
but without pipe.

grep options
o grep -vM: The 'grep -v' command displays lines not matching to the
specified word.

Syntax: grep -v <searchWord> <fileName>

Example: grep -v 9 marks.txt

Yy v

sssit@JavaTpoink: ~

sssit@lavaTpoint:~$ grep -v 9 marks.txt

Soumya-72
sssit@JavaTpoint:~$ I

Look at the above snhapshot, command "‘grep -v 9 marks.txt" displays
lines hwich don't contain our search word '9'.

o grep -i: The 'grep -i' command filters output in a case-insensitive way.
Syntax: grep -i <searchWord> <fileName>

Example: grep -i red exm.txt

e

sssit@JavaTpoint: ~

sssit@lavaTpoint:~$ cat exm.txt
Apple is red.

Mango is yellow.

your dress colour is Red.

red colour suits on all.

sssit@lavaTpoint:-~-5%
sssit@lavaTpoint:~$ grep -i red exm.txt
Apple is
your dress colour is

colour suits on all.
sssit@lavaTpoint:-~$% I

Look at the above snapshot, command "‘grep -i red exm.txt" displays all
lines containing 'red’ whether in upper case or lower case.



o grep-A/grep -B/grep -C
grep -A command is used to display the line after the result.
grep -B command is used to display the line before the result.

grep -C command is used to display the line after and line before the
result.

You can use (A1, A2, A3.....)(B1, B2, B3....)(C1, C2, C3....) to display any
number of lines.

Syntax: grep -A<lineNumber> <searchWord> <fileName>
grep -B<lineNumber> <searchWord> <fileName>
grep -C<lineNumber> <searchWord> <fileName>

Example:

1. grep -Al yellow exm.txt
2. grep -Bl yellow exm.txt
3. grep -C1 yellow exm.txt

sssit@JavaTpoint: ~

sssit@JavaTpoint:~5 grep -Al yellow exm.txt
Mango is

your dress colour is Red.
sssit@lavaTpoint:~5%

sssit@JavaTpoint:~5 grep -B1l yellow exm.txt
Apple is red.

Mango is

5551t@]avano1nt ~5

sssit@lavaTpoint:~5 grep -C1 yellow exm.txt

your dress colour is Red.
sssit@lavaTpoint:~5% I

Look at the above snapshot, command ''grep -Al yellow
exm.txt" displays searched line with next succeeding line,
command "‘grep -B1 yellow exm.txt" displays searched line with one
preceding line and command “'grep -C1 yellow exm.txt™ displays
searched line with one preceding and succeeding line.

BRE:(BASIC REGULAR EXPRESSION)

Admin@DESKTOP-TRR2ACF

$ cat bre.txt
Khyati
rajesh
solanki



khushi

pinky
Kinjal

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep "k bre.txt
Khyati

khushi

Kinjal

Admin@DESKTOP-TRR2ACF ~/program/grep

$ cat bre.txt
1khyati
2rajesh
3solanki
4khushi
5pinky
6kinjal

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep ~[3-4] bre.txt

3solanki

4khushi

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep "\[3-5] bre.txt
3solanki

4khushi

5pinky

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep ["3-5] bre.txt
1khyati
2rajesh
6kinjal

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep -i "agg*[ar][ar][vw]al" p1.txt

Agarwal

Aggarwal

Agrawal

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep -i "sa[kx]s*ena” bre.txt



saksena
saxena

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep -i "qui[te][te]" bre.txt

quite

quiet

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep k. bre.txt

1khyati

3solanki

4khushi

5pinky

6kinjal

saksena

Basic Regular Expression
Regular Expression provides an ability to match a “string of text” in a very
flexible and concise manner. A “string of text” can be further defined as a
single character, word, sentence or particular pattern of characters.

Like the shell’s wild—cards which match similar filenames with a single
expression, grep uses an expression of a different sort to match a group of
similar patterns.

« [ ]: Matches any one of a set characters

« [ ] with hyphen: Matches any one of a range characters

« /. The pattern following it must occur at the beginning of each line

« M with []: The pattern must not contain any character in the set
specified

. 3. The pattern preceding it must occur at the end of each line

« . (dot): Matches any one character

« \ (backslash): Ignores the special meaning of the character following
it

« *:zero or more occurrences of the previous character

« (dot).*: Nothing or any numbers of characters.

Examples



(a) [ ]: Matches any one of a set characters

1. $grep “New[abc]” filename

It specifies the search patternas:

Newa , Newb or Newc

2. %grep “[aAlg[ar][ar]wal” filename

It specifies the search pattern as

Agarwal , Agaawal , Agrawal , Agrrwal

agarwal , agaawal , agrawal , agrrwal

(b) Use [ ] with hyphen: Matches any one of a range characters
1. $grep “New[a-e]” filename

It specifies the search pattern as

Newa , Newb or Newc , Newd, Newe

2. $grep “New[©-9][a-z]” filename
It specifies the search pattern as: New followed by a number and then an alphabet.

Newed, Newdf etc



(c) Use *: The pattern following it must occur at the beginning of each line

1. $grep “~san” filename

Search lines beginning with san. It specifies the search pattern as

sanjeev ,sanjay, sanrit , sanchit , sandeep etc.

2. $1s -1 |grep “~d”

Display list of directories only

3. $1s -1 |grep “~-"

Display list of regular files only

(d) Use * with [ ]: The pattern must not contain any character in the set specified
1. $grep “New["a-c]” filename

It specifies the pattern containing the word “New" followed by any character other than an
3’ or 'c’

2. $grep “~["a-z A-Z]” filename
Search lines beginning with an non-alphabetic character

(e) Use $: The pattern preceding it must occur at the end of each line
$ grep "vedik$" file.txt

(f) Use. (dot): Matches any one character

$ grep "..vik" file.txt
$ grep "7..9%" file.txt



(g) Use\ (backslash): Ignores the special meaning of the character following it
1. $ grep "New\.\[abc\]" file.txt
It specifies the search pattern as New.[abc]

2. % grep "S\.K\.Kumar" file.txt

It specifies the search pattern as

S.K.Kumar

(h) Use *: zero or more occurrences of the previous character

$ grep "[aA]lgg*[ar][ar]wal" file.txt

(i) Use (dot).*: Nothing or any numbers of characters.

$ grep "S.*Kumar" file.txt

ERE:(EXTENDED REGULAR EXPRESSION)

agarwal

aggarwal

agrawal

agarval

agraval

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep -i "ag+[ar][ar][vw]al" bre.txt

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep -i "agg?[ar][ar][vw]al" bre.txt

saksena
Saxena

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep -i "sa[kx]s*ena” bre.txt

saksena

saxena

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep -i "sa(ks/x)ena" bre.txt



sengupta

dasgupta

Admin@DESKTOP-TRR2ACF ~/program/grep
$ grep -i "(sen/das)gupta” bre.txt

Character Classes

Grep offers standard character classes as predefined functions to simplify bracket expressions. Below is
a table that outlines some classes and the bracket expression equivalent.

Syntax Description Equivalent
[[:alnum:]] All letters and numbers. "[©-9a-zA-Z]"
[[:alpha:]] All letters. "[a-zA-Z]1"
[[:blank:]] Spaces and tabs. [CTRL+V<TAB> ]
[[:digit:]] Digits 0to 9. [e-9]
[[:lower:]] Lowercase letters. [a-z]
[[:punct:]] Punctuation and other characters. "[~a-zA-Z©-9]1"
[[:upper:]] Uppercase letters. [A-Z]
[[:xdigit:]] Hexadecimal digits. "[@-9a-fA-F]"

Quantifiers

Quantifiers are metacharacters that specify the number of appearances. The following table shows each
grep quantifier syntax with a short description.

Syntax Description
= Zero or more matches.
? Zero or one match.
- One or more matches.
{n} n matches.
{n,} n or more matches.
{,m} Up to m matches.

{n,m} From n up to m matches.



Sed Command in Linux/Unix with examples

SED command in UNIX stands for stream editor and it can perform lots of
functions on file like searching, find and replace, insertion or deletion. Though
most common use of SED command in UNIX is for substitution or for find and
replace. By using SED you can edit files even without opening them, which is
much quicker way to find and replace something in file, than first opening that
file in VI Editor and then changing it.

« SED is a powerful text stream editor. Can do insertion, deletion,
search and replace(substitution).

« SED command in unix supports regular expression which allows it
perform complex pattern matching.

Syntax:
sed OPTIONS... [SCRIPT] [INPUTFILE...]

Example:
Consider the below text file as an input.

$cat > geekfile.txt

unix is great 0s. unix is opensource. unix is free os.
learn operating system.
unix linux which one you choose.

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

Sample Commands

1. Replacing or substituting string : Sed command is mostly used to
replace the text in a file. The below simple sed command replaces the
word “unix” with “linux” in the file.

$sed "s/unix/linux/* geekfile.txt

Output :

linux is great 0s. unix is opensource. unix is free os.
learn operating system.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

Here the “s” specifies the substitution operation. The “/”” are
delimiters. The “unix” is the search pattern and the “linux” is the
replacement string.



By default, the sed command replaces the first occurrence of the
pattern in each line and it won’t replace the second, third...occurrence
in the line.

2. Replacing the nth occurrence of a pattern in a line : Use the /1, /2 etc
flags to replace the first, second occurrence of a pattern in a line. The below
command replaces the second occurrence of the word “unix” with “linux” in
a line.

$sed 's/unix/linux/2" geekfile.txt

Output:

unix is great os. linux is opensource. unix is free os.
learn operating system.

unix linux which one you choose.

unix is easy to learn.linux is a multiuser os.Learn unix .unix is a
powerful.

3. Replacing all the occurrence of the pattern in a line : The substitute
flag /g (global replacement) specifies the sed command to replace all
the occurrences of the string in the line.

$sed "s/unix/linux/g" geekfile.txt

Output :

linux is great o0s. linux is opensource. linux is free os.
learn operating system.

linux linux which one you choose.

linux is easy to learn.linux is a multiuser os.Learn linux .linux is a
powerful.

4. Replacing from nth occurrence to all occurrences in a line : Use
the combination of /1, /2 etc and /g to replace all the patterns from the
nth occurrence of a pattern in a line. The following sed command
replaces the third, fourth, fifth... “unix” word with “linux” word in a
line.

$sed 's/unix/linux/3g" geekfile.txt

Output:
unix is great 0s. unix is opensource. linux is free os.
learn operating system.

unix linux which one you choose.



unix is easy to learn.unix is a multiuser os.Learn linux .linux is a
powerful.

. Parenthesize first character of each word : This sed example prints
the first character of every word in parenthesis.

$ echo ""Welcome To The Geek Stuff** | sed "sA(\b[A-Z]\)A(\1\)/g"

Output:
(W)elcome (T)o (T)he (G)eek (S)tuff

. Replacing string on a specific line number : You can restrict the sed
command to replace the string on a specific line number. An example

IS

$sed '3 s/unix/123/* geekfile.txt

Output:

unix is great 0s. unix is opensource. unix is free os.
learn operating system.

linux linux which one you choose.

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

The above sed command replaces the string only on the third line.

. Duplicating the replaced line with /p flag : The /p print flag prints
the replaced line twice on the terminal. If a line does not have the
search pattern and is not replaced, then the /p prints that line only
once.

$sed "s/unix/linux/p" geekfile.txt

Output:

linux is great 0s. unix is opensource. unix is free os.
linux is great 0s. unix is opensource. unix is free os.
learn operating system.

linux linux which one you choose.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.



linux is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

. Printing only the replaced lines : Use the -n option along with the /p
print flag to display only the replaced lines. Here the -n option
suppresses the duplicate rows generated by the /p flag and prints the
replaced lines only one time.

$sed -n 's/unix/linux/p" geekfile.txt
Output:
linux is great 0s. unix is opensource. unix is free os.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

If you use -n alone without /p, then the sed does not print anything.

. Replacing string on a range of lines : You can specify a range of
line numbers to the sed command for replacing a string.

$sed "1,3 s/unix/linux/* geekfile.txt

Output:

linux is great 0s. unix is opensource. unix is free os.
learn operating system.

linux linux which one you choose.

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

Here the sed command replaces the lines with range from 1 to 3.
Another example is

$sed '2,$ s/unix/linux/* geekfile.txt

Output:

unix is great 0s. unix is opensource. unix is free os.
learn operating system.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful

Here $ indicates the last line in the file. So the sed command replaces
the text from second line to last line in the file.



10.Deleting lines from a particular file : SED command can also be
used for deleting lines from a particular file. SED command is used
for performing deletion operation without even opening the file

Examples:

1. To Delete a particular line say n in this example

Syntax:

$ sed 'nd' filename.txt

Example:
$ sed '5d' filename.txt

2. To Delete a last line

Syntax:
$ sed '$d' filename.txt

3. To Delete line from range x to y

Syntax:
$ sed 'x,yd' filename.txt

Example:
$ sed '3,6d' filename.txt

4. To Delete from nth to last line

Syntax:
$ sed 'nth,$d' filename.txt

Example:
$ sed '12,$d' filename.txt



5. To Delete pattern matching line

Syntax:
$ sed '/pattern/d' filename.txt

Example:
$ sed '/abc/d' filename.txt

SED is used for finding, filtering, text substitution, replacement and text
manipulations like insertion, deletion search, etc. It’s a one of the powerful
utilities offered by Linux/Unix systems. We can use sed with regular
expressions. | hope atleast you have the basic knowledge about Linux regular
expressions.

It provides Non-interactive editing of text files that’s why it’s used to
automate editing and has two buffers — pattern buffer and hold

buffer. Sed use Pattern buffer when it read files, line by line and that currently
read line is inserted into pattern buffer whereas hold buffer is a long-term
storage, it catch the information, store it and reuse it when it is needed.
Initially, both are empty. SED command is used for performing different
operations without even opening the file.

sed general syntax —

sed OPTIONS... [SCRIPT] [INPUTFILE...]

# Let’s start with File Spacing

1 — Insert one blank line after each line —
Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed G fl.txt

unix is great 0s. unix is opensource. unix is free os.
learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

2 — To insert two blank lines —

$ sed 'G;G' fl.txt
unix is great 0s. unix is opensource. unix is free os.



learn operating system.

Unix linux which one you choose unix.

UNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

3 — Delete blank lines and insert one blank line after each line —

Admin@DESKTOP-TRR2ACF

$ cat fl.txt

unix is great 0s. unix is opensource. unix is free os.
learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

Admin@DESKTOP-TRR2ACF
$ sed '/"$/d;G' fl.txt
unix is great 0s. unix is opensource. unix is free os.

learn operating system.
Unix linux which one you choose unix.
uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

4 — Insert a black line above every line which matches “Unix” —

Admin@DESKTOP-TRR2ACF

$ cat f1.txt

unix is great 0s. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose unix.

UNix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

Admin@DESKTOP-TRR2ACF

$ sed /Unix/{x;p;x;} fl.txt

unix is great 0s. unix is opensource. unix is free os.
learn operating system.



Unix linux which one you choose unix.
uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

5 — Insert a blank line below every line which matches “Unix” —

Admin@DESKTOP-TRR2ACF

$ sed '/Unix/G' f1.txt

unix is great 0s. unix is opensource. unix is free os.
learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

6 — Insert 5 spaces to the left of every lines —

Admin@DESKTOP-TRR2ACF
$sed's/N [ flixt
unix is great 0s. unix is opensource. unix is free os.
learn operating system.
Unix linux which one you choose unix.
uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

# Numbering lines

1 — Number each line of a file (left alignment). **=** is used to number the
line. \t is used for tab between number and sentence —

Admin@DESKTOP-TRR2ACF

$ sed = fl.txt|sed 'N;s/\n/\t/'

1 unixis great 0s. unix is opensource. unix is free os.

2 learn operating system.

3 Unix linux which one you choose unix.

4 uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a
5  powerful.

2 — Number each line of a file (number on left, right-aligned). This command
is similar to “cat -n filename'.
cl

Admin@DESKTOP-TRR2ACF
$ sed = fl.txt | sed 'N; s/ [; s/ *\(\{4\})\n/\L /'
1 unix is great 0s. unix is opensource. unix is free os.
2 learn operating system.
3 Unix linux which one you choose unix.
4 uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a



5 powerful.

3 — Number each line of file, only if line is not blank —

Admin@DESKTOP-TRR2ACF

$sed '/./=" fl.txt | sed '/./N; s/\n/ I

1 unix is great 0s. unix is opensource. unix is free os.

2 learn operating system.

3 Unix linux which one you choose unix.

4 uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a
5 powerful.

Admin@DESKTOP-TRR2ACF

$ sed = fl.txt

1

unix is great 0s. unix is opensource. unix is free os.
2

learn operating system.

3

Unix linux which one you choose unix.

4

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a
5

powerful.

# Deleting lines

1 — Delete a particular line —
Syntax: sed ‘nd’ filename
Example :

sed '5d" a.txt

2 — Delete the last line
Syntax: sed ‘$d’ filename

3 — Delete line from range x to y
Syntax: sed x,yd’ filename

Example :
sed '3,5d" a.txt

4 — Delete from nth to last line
Syntax: sed ‘nth,$d’ filename
Example :

sed '2,$d" a.txt



5 — Delete the pattern matching line —
Syntax: sed “/pattern/d’ filename
Example :

sed '/life/d" a.txt

6 — Delete lines starting from nth line and every 2nd line from there —
Syntax: sed n~2d’ filename

Example :

sed '3~2d' a.txt

7 — Delete the lines which matches the pattern and 2 lines after to that —
Syntax: sed ‘pattern/,+2d’ filename

Example :

sed '/easy/,+2d" a.txt

8 — Delete blank Lines
sed '/"$/d" a.txt

9 — Delete empty lines or those begins with “#” —
sed -i '/ #/d;/"$/d" a.txt

# View/Print the files

If we want to view content of file, then we use cat command and if we want to
view the bottom and the top content of any file, we use tools such

as head and tail. But what if we need to view a particular section in the middle
of any file? Here we’ll discuss, how to use SED command to view a section of
any file.

1 — Viewing a file from x to y range —
Syntax: sed -n ‘x,yp’ filename
Example :

sed -n '2,5p" a.txt

2 — View the entire file except the given range —
Syntax: sed x,yd’ filename

Example :

sed '2,4d" a.txt

3 — Print nth line of the file —
Syntax: sed -n ‘address’p filename
Example :

sed -n '4'p a.txt



4 — Print lines from xth line to yth line.
Syntax: sed -n “x,y’p filename
Example :

sed -n '4,6'p a.txt

5 — Print only the last line —
Syntax: sed -n “$ ’p filename

6 — Print from nth line to end of file —
Syntax: sed -n ‘n,$p’ filename
Example :

sed -n '3,$'p a.txt

Pattern Printing

7 — Print the line only which matches the pattern —
Syntax: sed -n /pattern/p filename

Example :

sed -n /every/p a.txt

8 — Print lines which matches the pattern i.e from input to xth line.
Syntax: sed -n “pattern/,xp’ filename

Example :

sed -n '/everyone/,5p" a.txt

Following prints lines which matches the pattern, 3rd line matches the pattern
“everyone”, so it prints from 3rd line to 5th line. Use $ in place of 5, if want to
print the file till end.

9 — Prints lines from the xth line of the input, up-to the line which matches the
pattern. If the pattern doesn’t found then it prints up-to end of the file.

Syntax: sed -n ‘x,/pattern/p’ filename

Example :

sed -n '1,/everyone/p' a.txt

10 — Print the lines which matches the pattern up-to the next xth lines —
Syntax: sed -n “pattern/,+xp’ filename

Example :

sed -n ‘/learn/,+2p" a.txt

# Replacement with the sed command

1 — Change the first occurrence of the pattern —
sed 's/life/leaves/* a.txt



2 — Replacing the nth occurrence of a pattern in a line —

Syntax: sed ‘s/old pattern/new pattern/n’ filename

Example :

sed 's/to/two/2" a.txt

We wrote “2” because we replaces the second occurrence. Likewise you can
use 3, 4 etc according to need.

3 — Replacing all the occurrence of the pattern in a line.
sed 's/life/learn/g’ a.txt

4 — Replace pattern from nth occurrence to all occurrences in a line.
Syntax: sed ‘s/old pattern/new pattern/ng’ filename

Example :

sed 's/to/TWO/2g' a.txt

Note — This sed command replaces the second, third, etc occurrences of
pattern “to” with “TWO” in a line.

If you wish to print only the replaced lines, then use “-n” option along with
“/p” print flag to display only the replaced lines —

sed -n 's/to/TWO/p' a.txt

And if you wish to print the replaced lines twice, then only use “/p” print flag
without “-n” option-

sed 's/to/TWO/p' a.txt

5 — Replacing pattern on a specific line number. Here, “m” is the line number.
Syntax: sed ‘m s/old_pattern/new_pattern/’ filename

Example :

sed '3 s/every/each/" a.txt

If you wish to print only the replaced lines —
sed -n '3 s/every/each/p' a.txt

6 — Replace string on a defined range of lines —
Syntax: sed x,y s/old_pattern/new_pattern/’ filename
where,

X = starting line number

and y = ending line number

Example :

sed 2,5 s/to/TWO/" a.txt

Note — $ can be used in place of “y” if we wish to change the pattern up-to last
line in the file.

Example :

sed '2,$ s/to/TWO/" a.txt

7 — If you wish to replace pattern in order to ignore character case (beginning
with uppercase or lowercase), then there are two ways to replace such patterns



First, By using “/1” print flag —

Syntax: sed ‘s/old pattern/new pattern/i’ filename
Example :

sed 's/life/Love/i" a.txt

Second, By using regular expressions —
sed 's/[LI]ife/Love/g" a.txt

8 — To replace multiple spaces with a single space —
sed 's/ *//g' filename

9 — Replace one pattern followed by the another pattern —

Syntax: sed ‘/followed pattern/ slold_pattern/new pattern/’ filename
Example :

sed '/is/ s/live/love/' a.txt

10 — Replace a pattern with other except in the nth line.
Syntax: sed ‘n!s/old pattern/new pattern/’ filename
Example :

sed -i '5ls/life/love/" a.txt

Unix Sed Tutorial: Printing File Lines using
Address and Patterns

Let us review how to print file lines using address and patterns in this first part of sed
tutorial.

We’ll be posting several awesome sed tutorials with examples in the upcoming weeks.

Unix Sed Introduction

» sedis a “non-interactive” stream-oriented editor. Since its an “non-interactive” it
can be used to automate editing if desired.

* The name sed is an abbreviation for stream editor, and the utility derives many of
its commands from the ed line-editor (ed was the first UNIX text editor).

= This allows you to edit multiple files, or to perform common editing operations
without ever having to open vi or emacs.

* sed reads from a file or from its standard input, and outputs to its standard
output.

* sed has two buffers which are called pattern buffer and hold buffer. Both are
initially empty.



Unix Sed Working methodology

This is called as one execution cycle. Cycle continues till end of file/input is reached.

Read a entire line from stdin/file.

Removes any trailing newline.

Places the line, in its pattern buffer.

Modify the pattern buffer according to the supplied commands.
Print the pattern buffer to stdout.

bR @h

Printing Operation in Sed

Linux Sed command allows you to print only specific lines based on the line number
or pattern matches. “p” is a command for printing the data from the pattern buffer.
To suppress automatic printing of pattern space use -n command with sed. sed -n
option will not print anything, unless an explicit request to print is found.

Syntax:

# sed -n 'ADDRESS'p filename

# sed -n '/PATTERN/p' filename

Let us first create thegeekstuff.txt file that will be used in all the examples mentioned
below.

# cat thegeekstuff.txt

1. Linux - Sysadmin, Scripting etc.

2. Databases - Oracle, mySQL etc.

3. Hardware

4. Security (Firewall, Network, Online Security etc)

5. Storage

6. Cool gadgets and websites

7. Productivity (Too many technologies to explore, not much time available)
8. Website Design

9. Software Development



10.Windows- Sysadmin, reboot etc.

5 Sed ADDRESS Format Examples

Sed Address Format 1: NUMBER
This will match only Nth line in the input.

# sed -n ‘N’p filename
For example, 3p prints third line of input file thegeekstuff.txt as shown below.

# sed -n '3'p thegeekstuff.txt

3. Hardware

Sed Address Format 2: NUMBER1~NUMBER2

M~N with “p” command prints every Nth line starting from line M.

# sed -n ‘M~N’p filename
For example, 3~2p prints every 2nd line starting from 3rd line as shown below.

# sed -n '3~2'p thegeekstuff.txt

3. Hardware

5. Storage

7. Productivity (Too many technologies to explore, not much time available)

9. Software Development

Sed Address Format 3: START,END
M,N with “p” command prints Mth line to Nth line.

# sed -n ‘M,N’p filename
For example, 4,8p prints from 4th line to 8th line from input file thegeekstuff.txt

# sed -n '4,8'p thegeekstuff.txt
4. Security (Firewall, Network, Online Security etc)
5. Storage

6. Cool gadgets and websites



7. Productivity (Too many technologies to explore, not much time available)

8. Website Design

Sed Address Format 4: ‘$’ Last Line

$ with “p” command matches only the last line from the input.

# sed -n ‘$’p filename
For example, $p prints only the last line as shown below.

# sed -n '$'p thegeekstuff.txt

10.Windows- Sysadmin, reboot etc.

Sed Address Format 5: NUMBER,$

N,$ with “p” command prints from Nth line to end of file.

# sed -n ‘N, $p’ filename
For example 4,$p prints from 4th line to end of file.

# sed -n '4,$p"' thegeekstuff.txt

I

. Security (Firewall, Network, Online Security etc)

5. Storage

6. Cool gadgets and websites

7. Productivity (Too many technologies to explore, not much time available)
8. Website Design

9. Software Development

10.Windows- Sysadmin, reboot etc.

6 Sed PATTERN Format Examples

Sed Pattern Format 1: PATTERN

PATTERN could be unix regular expression. The below command prints only the line
which matches the given pattern.

# sed -n /PATTERN/p filename
For example, following prints the line only which matches the pattern “Sysadmin”.



# sed -n /Sysadmin/p thegeekstuff.txt
1. Linux - Sysadmin, Scripting etc.

10.Windows- Sysadmin, reboot etc.

Sed Pattern Format 2: /PATTERN/, ADDRESS

# sed -n ‘/PATTERN/,Np’ filename
For example, following prints lines which matches the pattern to Nth line, from
input. 3rd line matches the pattern “Hardware”, so it prints from 3rd line to 6th line.

# sed -n '/Hardware/,6p' thegeekstuff.txt

3. Hardware

4. Security (Firewall, Network, Online Security etc)
5. Storage

6. Cool gadgets and websites

Sed Pattern Format 3: ADDRESS,/PATTERN/

It prints from the Nth line of the input, to the line which matches the pattern. If the
pattern doesnt match, it prints upto end of the input.

# sed -n ‘N,/PATTERN/p’ filename
For example, 4th line matches the pattern “Security”, so it prints from 3rd line to 4th
line.

# sed -n '3,/Security/p' thegeekstuff.txt
3. Hardware

4. Security (Firewall, Network, Online Security etc)

Sed Pattern Format 4: /PATTERN/,$

It prints from the line matches the given pattern to end of file.

# sed -n ‘/PATTERN/,$p’ filename

# sed -n '/Website/,$p' thegeekstuff.txt
8. Website Design

9. Software Development



10.Windows- Sysadmin, reboot etc.

Sed Pattern Format 5: /PATTERN/,+N

It prints the lines which matches the pattern and next N lines following the matched
line.

# sed -n ‘/PATTERN/,+Np’ filename
For example, following prints the 5th line which matches the pattern /Storage/ and
next two lines following /Storage/.

# sed -n '/Storage/,+2p' thegeekstuff.txt
5. Storage

6. Cool gadgets and websites

~N

. Productivity (Too many technologies to explore, not much time available)

Sed Pattern Format 6: /PATTERN/,/PATTERN/

Prints the section of file between two regular expression (including the matched line

).

# sed -n ‘/P1/,/P2/p’ filename
For example, 5th line matches “Storage” and 8th line matches “Design”, so it prints
5th to 8th.

# sed -n '/Storage/,/Design/p' thegeekstuff.txt
5. Storage

6. Cool gadgets and websites

~N

. Productivity (Too many technologies to explore, not much time available)

8. Website Design

Unix Sed Tutorial : 7 Examples for Sed Hold
and Pattern Buffer Operations

As its name implies, sed hold buffer is used to save all or part of the sed pattern
space for subsequent retrieval. The contents of the pattern space can be copied to
the hold space, then back again. No operations are performed directly on the hold
space. sed provides a set of hold and get functions to handle these movements.

Sed h function

The h (hold) function copies the contents of the pattern space into a holding area
(also called as sed hold space), destroying any previous contents of the holding
area.



Sed H function
The H function appends the contents of the pattern space to the contents of the
holding area. The former and new contents are separated by a newline.

Sed g function
The g function copies the contents of the holding area into the pattern space,
destroying the previous contents of the pattern space.

Sed G function

The G function appends the contents of the holding area to the contents of the
pattern space. The former and new contents are separated by a newline. The
maximum number of addresses is two.

Sed x function
The exchange function interchanges the contents of the pattern space and the
holding area. The maximum number of addresses is two.

Now let us see some examples to learn about the above commands.

Let us first create thegeekstuff.txt file that will be used in the examples mentioned
below.

$ cat thegeekstuff.txt
#Linux
Administration
Scripting

Tips and Tricks

#Windows

Administration

#Database
Mysql
Oracle
Queries

Procedures



1. Double Space a File Content Using Sed Command

$sed 'G' thegeekstuff.txt

#Linux

Administration

Scripting

Tips and Tricks

#Windows

Administration

#Database

Mysql

Oracle

Queries

Procedures



In this example,

1. Sed reads a line and places it in the pattern buffer.
G command appends the hold buffer to the pattern buffer separated by \n. so one
newline will be appended with the pattern space content.

3. Similarly, If you want to triple space a file, append hold buffer content to the
pattern buffer twice. (G;G)

2. Print File Content in Reverse Order Using Sed
Command

Print the lines of a file in reverse order (similar to tac command that we discussed
earlier).

$sed -n '11G;h;$p"' thegeekstuff.txt
Procedures
Queries
Oracle
Mysql

#Database

Administration

#Windows

Tips and Tricks
Scripting
Administration

#Linux

In this example,

First line will be placed into the hold space as it is.

From the 2nd line onwards, just append the hold space content with the pattern
space. (Remember 2nd line is in pattern space, and 1st line is in hold space).
Now 1st and 2nd line got reversed and move this to the hold space.

Repeat the above steps till last line.

Once the last line is reached, just append the hold space content with the pattern
space and print the pattern space.

M=

S ol


https://www.thegeekstuff.com/2009/10/file-manipulation-examples-using-tac-rev-paste-and-join-unix-commands/

3. Print a Paragraph (Only if it contains given pattern)
Using Sed Command

In thegeekstuff.txt print paragraph only if it contains the pattern “Administration”.

$ sed -e '/./{H;$!d;}"' -e 'x;/Administration/!d' thegeekstuff.txt

Linux
Administration
Scripting
Tips and Tricks
Windows

Administration

In this example,

1. Till the empty line comes, keep appending the non empty lines into the hold
space

2. When empty line comes i.e paragraph ends, exchange the data between pattern
and hold space. So that whole paragraph will be available in pattern space.
Check if pattern “Administration” is available, if yes don’t delete it i.e print the
pattern space

4. Print the line immediately before a pattern match
using Sed Command

Print only the line immediately before,the pattern “Mysql”.

$ sed -n '/Mysql/{g;1!p;};h"' thegeekstuff.txt

#Database

In this example,

1. For each cycle, place the line into hold buffer, if it doesn’t match with the pattern
“Mysql”.

2. If the line matches with the pattern, get the data from the hold space(previous
line) using g command and print it.

3. In case, if the first line matches with the pattern “Mysql”,anyway hold space will
be empty.(There is no previous line to the first line).So first line should not get
printed(1!p)



5. Delete the last line of each paragraph using Sed
Command

$ sed -n -e '/"$/{x;d}' -e '/./x;p' thegeekstuff.txt

#Linux
Administration
Scripting
#Windows
#Database
Mysql
Oracle
Queries

In this example,

1. If the line is not empty,then exchange the line between pattern and hold space. So
first line will be placed in the hold space.

2. When next non empty line comes, exchange the pattern space and hold space,
and print the pattern space. i.e first non empty line will be printed and 2nd line
goes to hold. And in next cycle, 2nd non empty line is printed when 3rd line goes
to hold and goes on like this.

3. When empty line comes (previous line to the empty line will be available in hold
buffer) just exchange pattern and hold space, and delete the line (last line of the
paragraph) and start the next cycle.

6. For each line, append the previous line to the end of it
using Sed Command

$ sed "H;x;s/A\(.*\)\n\(.*\)/\2\1/"' thegeekstuff.txt
#Linux

Administration#Linux

Scripting Administration

Tips and Tricks Scripting



Tips and Tricks
#Windows

Administration#Windows

Administration
#Database

Mysql#Database

Oracle Mysql

Queries Oracle

Procedures Queries

In this example,

Place the first line in Hold buffer.

When the second line comes, append to Hold space (first line)

3. Then exchange pattern and hold buffer. So now pattern space will have first and
second line separated by \n, Hold space will have only second line.

4. So interchange the lines in the pattern space.

5. The above steps happens till the end of the file

M=

7. Prepend tag of every block to every line of that block

$ sed '

/™#/4

s/ANCF\)\n#\ (. *\)/\2 \1/"' thegeekstuff.txt

Linux Administration
Linux Scripting
Linux Tips and Tricks

Linux



Windows Administration

Windows

Database Mysql
Database Oracle
Database Queries
Database Procedures

In this example,

1. When the first line of a block is met (beginning with #)
» keep that line to the Hold Space via command “h’
» Then delete using ‘d’ to start another cycle.
2. For the rest lines of a block, Command "G’ appends the tag line from the Hold
Space and substitute command interchanges tag and lines properly.



	What is Linux?
	Architecture of Linux :
	How is the Linux Operating System Used
	Table of Difference between Bash and Zsh
	4. Files Listing
	Creating Files touch command can be used to create a new file. It will create and open a new blank file if the file with a filename does not exist. And in case the file already exists then the file will not be affected.
	Displaying File Contents
	Copying a File
	Moving a File
	Renaming a File
	Deleting a File

	Categories of Files in Linux/UNIX :
	Types of File and Explanation
	1. Regular Files
	2. Directory Files

	Special Files
	1. Block Files:
	2. Character device files:
	3. Pipe Files:
	4. Symbol link files:
	5. Socket Files:

	Difference between Windows and Linux File System

