
501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 1

Unit 1 : Introduction to Linux Operating System
What is Linux?
Linux is based on the UNIX operating system. UNIX is a powerful, multi-user, multitasking
operating system originally developed in the 1970s at AT&T Bell Labs. It laid the foundation for
many modern operating systems, including Linux.
While UNIX is a licensed operating system (meaning you need to purchase a license to use
it), Linux is free and open-source, making it accessible to everyone. Anyone can inspect and
modify the source code, which enables global collaboration and innovation. Its efficient
performance and strong security model make it suitable for a wide variety of devices and
industries.

1.1 Features of Linux OS

Linux, a popular open-source operating system, is known for its features like being free and open-
source, supporting multiple users and tasks simultaneously, offering strong security, being highly
customizable, and providing excellent performance and stability. It also boasts a hierarchical file
system, a command-line interface through the shell, and supports various hardware architectures.

Key Features of Linux:

 Open Source:

The source code is publicly available, allowing for community-driven development, modification, and
distribution.

 Multiuser:

Multiple users can access the system's resources concurrently, such as RAM and storage.

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 2

 Multitasking/Multiprogramming:

The system can run multiple applications concurrently, improving efficiency.

 Security:

Linux is known for its strong security features, including user permissions, encryption, and a
proactive community focused on addressing vulnerabilities.

 Portability:

The OS can be adapted to run on various hardware platforms.

 Hierarchical File System:

Organizes files and directories in a structured tree-like manner for efficient access and
management.

 Shell/Command Line Interface:

Provides a powerful command-line interface (CLI) for executing commands and managing the
system.

 Graphical User Interface (GUI):

While it has a strong CLI, Linux also supports various GUI environments.

 Stability:

Linux is known for its stability and reliability, rarely crashing or freezing.

 Customization:

Users can customize the system to their specific needs and preferences.

 Performance:

Linux can be optimized for performance, making it suitable for resource-intensive tasks.

 Package Management:

Built-in package managers simplify the installation, update, and removal of software.

 Community Support:

A large and active community provides support, documentation, and resources.

 Interoperability:

Linux works well with other systems and platforms.

 Live CD/USB:

Many Linux distributions can be run from a USB drive or CD without installation.

 Energy Efficiency:
Linux can be configured to be energy efficient, making it suitable for various devices.

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 3

Architecture of Linux :
Linux architecture has the following components:

Linux Architecture

1. Kernel: Kernel is the core of the Linux based operating system. It virtualizes the common
hardware resources of the computer to provide each process with its virtual resources. This
makes the process seem as if it is the sole process running on the machine. The kernel is also
responsible for preventing and mitigating conflicts between different processes. Different types
of the kernel are:

 Monolithic Kernel
 Hybrid kernels
 Micro kernels
2. System Library: Linux uses system libraries, also known as shared libraries, to implement various

functionalities of the operating system. These libraries contain pre-written code that
applications can use to perform specific tasks. By using these libraries, developers can save time
and effort, as they don't need to write the same code repeatedly. System libraries act as an
interface between applications and the kernel, providing a standardized and efficient way for
applications to interact with the underlying system.

3. Shell: The shell is the user interface of the Linux Operating System. It allows users to interact
with the system by entering commands, which the shell interprets and executes. The shell
serves as a bridge between the user and the kernel, forwarding the user's requests to the kernel
for processing. It provides a convenient way for users to perform various tasks, such as running
programs, managing files, and configuring the system.

4. Hardware Layer: The hardware layer encompasses all the physical components of the computer,
such as RAM (Random Access Memory), HDD (Hard Disk Drive), CPU (Central Processing Unit),
and input/output devices. This layer is responsible for interacting with the Linux Operating
System and providing the necessary resources for the system and applications to function
properly. The Linux kernel and system libraries enable communication and control over these
hardware components, ensuring that they work harmoniously together.

https://www.geeksforgeeks.org/videos/linux-architecture/
https://www.geeksforgeeks.org/operating-systems/kernel-in-operating-system/
https://www.geeksforgeeks.org/computer-science-fundamentals/random-access-memory-ram/
https://www.geeksforgeeks.org/difference-between-hard-disk-drive-hdd-and-solid-state-drive-ssd/
https://www.geeksforgeeks.org/linux-unix/the-linux-kernel/

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 4

5. System Utility: System utilities are essential tools and programs provided by the Linux Operating
System to manage and configure various aspects of the system. These utilities perform tasks
such as installing software, configuring network settings, monitoring system performance,
managing users and permissions, and much more. System utilities simplify system
administration tasks, making it easier for users to maintain their Linux systems efficiently.
How is the Linux Operating System Used
The Linux operating system is widely used across various domains due to its flexibility, security,
and open-source nature:

 Servers and Hosting: Powers web servers, cloud infrastructure, and database management
systems.

 Development: Used by developers for coding, debugging, and running applications.
 Desktop and Personal Use: Provides secure and customizable desktop environments.
 Cyber security: Essential for ethical hacking, penetration testing, and security research.
 Embedded Systems: Runs lightweight devices like routers, IoT gadgets, and smart appliances.
 Supercomputers: Dominates high-performance computing for scientific research and

simulations.
 Education: A cost-effective tool for teaching programming and system administration.

KERNEL and IT’s Architecture :
The kernel is the core of the operating system. Kernel is mostly written in C. It is loaded into
memory when the system is booted and communicates directly with the hardware. User programs
that need to access the hardware use the services of the kernel, which performs the job on the
user’s behalf. The programs access kernel through set of functions called system calls. The kernel
program is usually stored in a file called “Unix”.

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 5

Architecture of UNIX (Kernel Architecture) :
The UNIX architecture can be divided into three levels: User level, Kernel level, Hardware level.
The system call and library Interface represent the border between user programs and the kernel
as shown in the figure. System calls are ordinary function calls in C programs and libraries map
these functions calls to primitive needed to enter the operating system. Programs frequently use
other libraries such as standard I/O library to provide more sophisticated use of the system calls.
The libraries are linked with the programs at compile time.

The system calls are partitioned to the system calls that interact with the file sub system and the
system calls that interact with the process control subsystem.

The file subsystem manages the files, allocates files space, administrating the free space,
controlling access to files, and retrieving data for users. Processes interact with the file system
through system calls. E.g. Open, close, read, write, etc. The files subsystem accesses the data using
buffering mechanism that regulates dataflow between the kernel and secondary storage devices.
The buffering mechanism interacts with block I/O devices drivers to initiate data transfer to and
from the kernel.

Device drivers are the kernel modules that control the operation of peripheral devices. Block I/O
devices are random access storage device to the rest of the system.

The file subsystem also interacts directly with the raw (Character devices) I/O device drivers
without the intervention of a buffering mechanism.

The process control subsystem is responsible for process synchronization, inter-process
communication, memory management, process scheduling. The system calls used with process
control systems are fork (creating a new process), exec (overlay the image of a program onto the
running process), Exit (finish executing a process), wait (Synchronize process execution with the
exit of a previously forked process), and signal(control process response to extraordinary events).

The memory management module controls the allocation of memory. If at any time the system
doesn’t have enough physical memory for all processes, the kernel moves between main memory
and secondary memory so that the all processes get a fair chance to execute.

The scheduler module allocates the CPU to processes. It schedules them to run in turn until they
voluntarily relinquish the CPU while awaiting a resource or until the kernel preempts them when
their recent run time exceeds a time quantum. The scheduler then chooses the highest priority
eligible process to run; the original process will run when it is the highest priority eligible process
available.
The inter-process communication provides message passing between processes. i.e.: it facilitates
the communication between processes.

 The hardware control is responsible for handling interrupts and for communicating with the
 machine. Devices such as disks or terminals may interrupt the CPU while a process is executing.
 The kernel executes the interrupt and then resumes the previously executing process. This way it
 provides access of hardware devices.

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 6

1.2Components of Linux OS (Hardware, Kernel, Shell, GNU Utilities & Applications)

The Linux operating system is composed of several key elements: the hardware, kernel, shell, GNU
utilities, and applications. The hardware provides the physical components like CPU, RAM, and
storage. The kernel acts as the core, managing resources and interacting with the hardware. The
shell is the user interface, allowing commands to be executed. GNU utilities are a collection of tools
for system management and user interaction. Finally, applications are the software programs that
users utilize for various tasks.
 Hardware:
This encompasses the physical components of the computer system, including the CPU, memory
(RAM), storage (hard drives, SSDs), input/output devices (keyboard, mouse, display), and
network interfaces.
 Kernel:
The kernel is the heart of the Linux operating system. It manages the system's resources,
including the CPU, memory, and input/output devices. It acts as a bridge between the hardware
and the rest of the operating system, providing a layer of abstraction for applications.
 Shell:
The shell is a command-line interpreter that acts as an intermediary between the user and the
kernel. It accepts commands from the user and translates them into actions that the kernel can
understand and execute. Common shells include Bash, Zsh, and Fish.
 GNU Utilities:

GNU utilities are a collection of free software tools that provide a wide range of functionalities
for system administration, file manipulation, text processing, and more. Examples
include ls, grep, sed, awk, and bash (which is also a shell).

 Applications:
Applications are the software programs that users interact with to perform specific
tasks. Examples include web browsers, word processors, media players, and games.

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 7

1.3Shell in Linux (Bash, Zsh, Dash – Features and Differences)
Linux distributions utilize various shells, with Bash, Zsh, and Dash being prominent examples, each
offering distinct features and use cases.
Bash (Bourne-Again Shell):

 Features: Default shell for most Linux distributions, widely compatible with Bourne Shell scripts,
supports command history, aliases, job control, loops, conditionals, variables, arrays, and
input/output redirection.

 Role:
Primarily used for interactive command-line sessions and general-purpose shell scripting due to its
robust features and widespread adoption.

Zsh (Z Shell):
 Features:

Builds upon and extends Bash, offering enhanced features like improved command completion, built-
in spelling correction, shared history, smart path expansion, and a highly customizable framework
with themes and plugins (e.g., Oh My Zsh).

 Role:
Favored by users seeking advanced customization, improved interactivity, and more powerful
scripting capabilities than Bash.

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 8

Dash (Debian Almquist Shell):
 Features:

A lightweight, POSIX-compliant shell optimized for speed and minimal resource consumption, often
serving as /bin/sh in Debian-based systems (like Ubuntu) for executing system scripts. Lacks many
interactive features found in Bash or Zsh.

 Role:
Primarily used for system scripts and situations where performance and a small footprint are critical,
rather than interactive user sessions.

Dash is significantly smaller and faster than Bash and Zsh, making it ideal for system scripts, whereas
Bash and Zsh are larger and more feature-rich for interactive use.

 Default Usage:
Bash is typically the default interactive shell, while Dash often serves as the default shell for executing
system scripts. Zsh is an optional upgrade for users desiring more advanced features.

Table of Difference between Bash and Zsh

Bash Zsh

Bash is the default shell for Linux and it is
released in the replacement of Bourne
Shell.

Z shell is built on top of the bash shell and is an
extended version of the bash with plenty of new
features.

Bash reads the .bashrc file in non-login
interactive shell and .bash_profile in
login shells.

Zsh reads .zshrc in an interactive shell and
.zprofile in a login shell.

Bash uses backslash escapes. Zsh uses percentage escapes.

Bash doesn't have an inline wildcard
expansion.

Zsh has a built-in wildcard expansion.

Doesn't have customization options.
Zsh has many frameworks that provide
customization.

It doesn't have many themes and plug-in
support.

Has plenty of plug-in's and themes.

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 9

Bash Zsh

Bash lacks syntax highlighting and auto-
correction features.

Zsh has syntax highlighting and auto-correction
features.

In bash keybinding is done using '.inputrc'
and 'bind builtin'.

In zsh binding is done using 'bindkey builtin'.

1.4 Introduction to Files and File Types in Linux (text, binary, special files)

In Linux, most of the operations are performed on files. And to handle these files Linux has
directories also known as folders which are maintained in a tree-like structure. Though, these
directories are also a type of file themselves. Linux has 3 types of files:

1. Regular Files: It is the common file type in Linux. it includes files like - text files, images, binary
files, etc. Such files can be created using the touch command. They consist of the majority of
files in the Linux/UNIX system. The regular file contains ASCII or Human Readable text,
executable program binaries, program data and much more.

2. Directories: Windows call these directories as folders. These are the files that store the list of
file names and the related information. The root directory(/) is the base of the system, /home/
is the default location for user's home directories, /bin for Essential User Binaries, /boot –
Static Boot Files, etc. We could create new directories with mkdir command.

3. Special Files: Represents a real physical device such as a printer which is used for IO operations.
Device or special files are used for device Input/Output(I/O) on UNIX and Linux systems. You
can see them in a file system like an ordinary directory or file.

4. Files Listing
To perform Files listings or to list files and directories ls command is used
$ls

All your files and directories in the current directory would be listed and each type of file would
be displayed with a different color. Like in the output directories are displayed with dark blue
color.

https://www.geeksforgeeks.org/mkdir-command-in-linux-with-examples/
https://www.geeksforgeeks.org/practical-applications-ls-command-linux/

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 10

$ls -l

Creating Files touch command can be used to create a new file. It will create and open a new
blank file if the file with a filename does not exist. And in case the file already exists then the
file will not be affected.

$touch filename

Displaying File Contents

cat command can be used to display the contents of a file. This command will display the
contents of the 'filename' file. And if the output is very large then we could use more or less to
fit the output on the terminal screen otherwise the content of the whole file is displayed at
once.
$cat filename

https://www.geeksforgeeks.org/touch-command-in-linux-with-examples/
https://www.geeksforgeeks.org/cat-command-in-linux-with-examples/

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 11

Copying a File

cp command could be used to create the copy of a file. It will create the new file in destination
with the same name and content as that of the file 'filename'.
$cp source/filename destination/

Moving a File

mv command could be used to move a file from source to destination. It will remove the file
filename from the source folder and would be creating a file with the same name and content
in the destination folder.
$mv source/filename destination/

Renaming a File

mv command could be used to rename a file. It will rename the filename to new_filename or in
other words, it will remove the filename file and would be creating a new file with the
new_filename with the same content and name as that of the filename file.
$mv filename new_filename

Deleting a File

rm command could be used to delete a file. It will remove the filename file from the directory.
$rm filename

Categories of Files in Linux/UNIX :
In Linux/UNIX, Files are mainly categorized into 3 parts:

1. Regular Files: Standard files like text, executable, or binary files.
2. Directory Files: Files that represent directories containing other files and folders.
3. Special Files: This category includes block device files, character device files, symbolic links,

pipes, and socket files.
The easiest way to find out file type in any operating system is by looking at its extension such
as .txt, .sh, .py, etc. If the file doesn't have an extension then in Linux we can use file utility.

File Type
Command to
create the File Located in

The file type
using "ls -l" is
denoted using FILE command output

Regular FIle
touch

Any
directory/Folder

-
PNG Image data, ASCII
Text, RAR archive

https://www.geeksforgeeks.org/cp-command-linux-examples/
https://www.geeksforgeeks.org/mv-command-linux-examples/
https://www.geeksforgeeks.org/mv-command-linux-examples/
https://www.geeksforgeeks.org/rm-command-linux-examples/

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 12

File Type
Command to
create the File Located in

The file type
using "ls -l" is
denoted using FILE command output

data, etc

Directory
File

mkdir It is a directory d Directory

Block Files fdisk /dev b Block special

Character
Files

mknod /dev c Character special

Pipe Files mkfifo /dev p FIFO

Symbol
Link Files

ln /dev l
Symbol link to
<linkname>

Socket Files
socket()
system call

/dev s Socket

Types of File and Explanation
1. Regular Files
Regular files are ordinary files on a system that contains programs, texts, or data. It is used to
store information such as text, or images. These files are located in a directory/folder. Regular
files contain all readable files such as text files, Docx files, programming files, etc, Binary files,
image files such as JPG, PNG, SVG, etc, compressed files such as ZIP, RAR, etc.
Example:
Or we can use the "file *" command to find out the file type

2. Directory Files
The sole job of directory files is to store the other regular files, directory files, and special files
and their related information. This type of file will be denoted in blue color with links greater
than or equal to 2. A directory file contains an entry for every file and sub-directory that it
houses. If we have 10 files in a directory, we will have 10 entries in the directory file. We can
navigate between directories using the cd command
We can find out directory file by using the following command:
ls -l | grep ^d

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 13

We can also use the file * command

Special Files
1. Block Files:
Block files act as a direct interface to block devices hence they are also called block devices. A
block device is any device that performs data Input and Output operations in units of blocks.
These files are hardware files and most of them are present in '/dev'.
We can find out block file by using the following command:
ls -l | grep ^b

We can use the file command also:

2. Character device files:
A character file is a hardware file that reads/writes data in character by character in a file.
These files provide a serial stream of input or output and provide direct access to hardware
devices. The terminal, serial ports, etc are examples of this type of file.
We can find out character device files by:
ls -l | grep ^c

We can use the file command to find out the type of file:

3. Pipe Files:
The other name of pipe is a “named” pipe, which is sometimes called a FIFO. FIFO stands for
“First In, First Out” and refers to the property that the order of bytes going in is the same
coming out. The “name” of a named pipe is actually a file name within the file system. This file
sends data from one process to another so that the receiving process reads the data first-in-
first-out manner.
We can find out pipe file by using the following command:
ls -l | grep ^p
We can use the file command to find out file type:

4. Symbol link files:
A symbol link file is a type of file in Linux which points to another file or a folder on your device.
Symbol link files are also called Symlink and are similar to shortcuts in Windows.
We can find out Symbol link file by using the following command:
ls -l | grep ^l
We can use the file command to find out file type:

5. Socket Files:
A socket is a special file that is used to pass information between applications and enables the
communication between two processes. We can create a socket file using the socket() system
call. A socket file is located in /dev of the root folder or you can use the find / -type
s command to find socket files.
find / -type s

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 14

We can find out Symbol link file by using the following command:
ls -l | grep ^s

1.5 Linux Directory Structure and File System Hierarchy Standard (FHS)
The Linux Directory Structure, as defined by the File system Hierarchy Standard (FHS), is a
hierarchical system where all files and directories branch off from the root directory, denoted by a
forward slash "/". The FHS standardizes this structure, ensuring consistency across different Linux
distributions and other Unix-like systems.

Here's a breakdown of some key directories:

 / (Root): The top-level directory, the base of the entire file system hierarchy.

 /bin: Contains essential user command binaries (executable files).

 /boot: Contains files needed for booting the system, such as the kernel and boot loader.

 /dev: Contains device files, which provide access to hardware devices.

 /etc: Contains system-wide configuration files.

 /home: Contains user home directories, where users store their personal files and settings.

 /lib: Contains shared library files needed by programs.

 /media: For mounting removable media like USB drives and CDs.

 /mnt: Temporary mount points for file systems.

 /opt: For optional, add-on software packages.

 /proc: A virtual file system that provides information about running processes.

 /root: The home directory for the root user.

 /sbin: Contains essential system binaries, often used by the root user.

 /tmp: A directory for temporary files, which may be deleted on reboot.

 /usr: Contains user-related programs, libraries, documentation, and other read-only data.

 /var: Contains variable data, such as log files, that may change frequently.
The FHS ensures a consistent and organized file system structure, making it easier for users and
administrators to navigate, manage, and back up a Linux system

501 Linux Operating System Unit – 1

MS. Shafika Kolia Page 15

Difference between Windows and Linux File System
Windows and Linux differ significantly in how they organize, access, and manage files within
their operating systems.

Feature Windows Linux

Structure
Drives (C:, D:, etc.) and

folders
Single, unified tree structure starting from

root (/)

Case Sensitivity Not case-sensitive Case-sensitive

File
Permissions

Simpler (user accounts) More granular control (user, group, others)

File System
Primarily NTFS

Ext4 (most common)
FAT32, NTFS (sometimes)

Overall
Remarks

User-friendly, familiar
interface

Flexible, powerful for advanced users

501 Linux Operating System Unit-2

RASHMI PATEL 1

Unit 2 : Basic Linux Commands

2.1 Directory Navigation Commands (pwd, cd, mkdir, rmdir, ls, tree)

These commands help you navigate, organize, and manage files and directories within the

Linux file system.

 1. pwd : print/present Working directory

Syntax:

pwd

Example:

$ pwd

/c/Users/Admin/Desktop

2. cd: change directory

Syntax:

cd [path-name/directory-name]

Example:

(a) cd : It change home directory

$ cd "C:\Users\Admin\Desktop\BCA\Fybca"

(b) cd .. : It goes up to one directory level

$ cd ..

(c) cd ../.. : It goes up to two directory level

$ cd ../..

(d) cd / : It change directory to the system’s root

$ cd /

501 Linux Operating System Unit-2

RASHMI PATEL 2

(e) cd ~ : It switches to home directory of user which is similar to cd without any

argument.

$ cd ~

3. mkdir: make a directory. It is used to create one or more new directories.

Syntax:

mkdir [option] path-name/directory-name[path-name/directory-name]….

Example:

$ mkdir sem1

It has following option are use

(a)–p :This option create subdirectory tree under current directory.

$ mkdir -p sem1/dbms

(b)-v :If a directory created successfully then this option shows the name of the

directory.

$ mkdir -v sem1/math

mkdir: created directory 'sem1/math'

(c)-m mode: This option sets the permission mode of new directory.

$ mkdir -m444 myprg

mkdir: cannot change permissions of ‘myprg’: Permission denied

4. rmdir: Remove a directory. It removes one or more empty directories.

Syntax:

rmdir [option] path-name/directory-name[path-name/directory-name]….

Example:
$ rmdir myprg

501 Linux Operating System Unit-2

RASHMI PATEL 3

It has following option are use

(a)-p: It is useful for removing subdirectory trees.
$ rmdir -p sem1/math

(b)-v:
$ rmdir -v sem1/dbms

rmdir: removing directory, 'sem1/dbms'

5. ls: It stand for list. It display list of file and directories in current working

directory.

Syntax:

ls [option] [argument-list]

Example:
$ ls

It has following option are use

(a)-x: It displays files listing in multi-column on line by line.

(b)-C: It displays files listing in multi-column on column by

(c)-a: It display all file present in the current directory with

(d)-F: It is useful to identifying directories which is executable

(e)-l: It displays long listing or detailed information about file or

(g)-n: It list numeric user-id and group id instead of name.

(h)-R: It lists subdirectories recursively.

(i)-L: It list all symbolic files pointed by symbolic links.

(j)-d: It is used to verify the directory name exists or not.

(k)-t: It sort by last modification time .Latest modified file should be display first.

(l)-u: It sorts by last access time, latest access file display first.

(m)-i: It shows i-node number of specific file.

(n)-S: It sort by file size, the largest file display first.

(o)-r: It sort files list in reverse order.

(p)-U: It does not sort. It display files in the order in which they

(q)-1: It lists one file per line.

501 Linux Operating System Unit-2

RASHMI PATEL 4

5. Tree: The tree command displays the contents of a directory in a hierarchical

(tree-like) format, showing the structure of files and subdirectories.

Syntax:

tree [options] [directory]

Example:

1. Basic usage

tree

→ Displays the tree structure of the current directory.

2. Display tree of a specific directory

tree /home/user/Documents

→ Shows tree structure starting from /home/user/Documents.

3. Limit the depth of the tree

tree -L 2

→ Shows the directory structure up to 2 levels deep.

4. Display only directories

tree -d

→ Shows only directories, not files.

5. Print file sizes

tree -s

→ Shows file sizes in bytes next to each file.

6. Include hidden files

tree -a

→ Includes files/directories starting with . (hidden files).

7. Save the output to a file

tree > tree.txt

→ Saves the directory structure to tree.txt.

2.2 File Management Commands (cat, rm, cp, mv, touch)

1. cat: cat stands for concatenate. It is display the contents of one or more files.

Syntax:

501 Linux Operating System Unit-2

RASHMI PATEL 5

cat [option][file1][file2]…..

Example 1: see output of file

$ cat f1.txt

Example 2: See output of subdirectory

$ cat sem5/unix/unit1/unit1.txt

Example 3: It will take input from standards input devices and display them on

standard output device.

$ cat

Example 4: User can create file using cat command.

$ cat > file1.txt

Example 5: It can display contents of one or more files.

$ cat file1.txt f1.txt

Example 6: This command appends more lines into exists file.

$ cat >> file1.txt

Example 7: This command read the standard input and a file input during the

execution of command..

$ cat - file1.txt

It has following option are use

(a)-v: It display control characters and other non-printing characters.

$ cat -v f1.txt

(b)-e or -E: It print a $ to mark the end of file.

$ cat -e file1.txt

(c)-t: It prints tab character as ^I and form feed character as ^L.

$ cat -t f1.txt

501 Linux Operating System Unit-2

RASHMI PATEL 6

(d)-n: It displays the number of line.

$ cat -n f1.txt

2. rm: rm stands for remove. It deletes one or more files/directories.

Syntax: rm [option]file(s)/directory-name(s)

Example 1: To remove a single file from current directory

$ rm file1.txt

Example 2: To remove more than one file from current directory

$ rm file1.txt file2.txt

It has following option are use

(a) - i (interactive): This option remove files interactively and display prompt for

remove file?

$ rm -i f1.txt

rm: remove regular file 'f1.txt'? y

(b) - r (recursive) : It is used to remove non-empty directory, together with all the

files and subdirectories.

$ rm -r sem5

$ rm -r sem5 sem6

(c) – f (force) :It is used to remove the file forcefully which have set permission.

$ rm -f myprg

3. cp: cp stands for copy. It create duplicate files having access and modification

date-time similar to current system date-time.

Syntax:

cp [option] filename/directory-name filename/directory-name

Example 1: It create duplicate file of file1 with different name at current directory.

$ cp f1 f2

501 Linux Operating System Unit-2

RASHMI PATEL 7

Example 2: File can be copied to and from another sub-directory with different

name.

$ cp "sem1\math\f1" "sem2\crdbms\f2"

Example 3: File can be copied to and from another sub-directory with same name.

$ cp "sem1\math\f1" "sem2\crdbms"

Example 4: It also copy one or more files with the same name to another directory.

$ cp f1 f2 f3 myprg

It has following option are use

(a) - i (interactive): This option copy files interactively and display prompt for

copy file?

$ cp -i f1 f3

cp: overwrite 'f3'? y

(b) - r (recursive) : It is used copy an entire directory structure to onther directory.

$ cp -r sem1 sem5

(c) – p (preserve) :It is used copy file with access and modification date-time.

$ ls -l f1

(d) – l(link) : This option create a link instead of copying a file.

$ cp -l f1 f1.ln

4. mv: mv stand for move. It is used to move an individual file, a list of file or a

directory from one directory to another .It is also used to rename a file/directory.

Syntax:

mv [option] filename(s)/directory-name filename/directory-name

Example 1: File can be moved from one directory to another directory.

$ mv "sem2\crdbms\f1" "sem3\f2"

501 Linux Operating System Unit-2

RASHMI PATEL 8

Example 2: Move more than one file in directory at the same destination directory.

$ mv f1 f2 sem5

Example 3: To rename the file in the current directory.

$ mv f1 f2

Example 4: It move one directory to another location. If new directory on same

destination then it rename old directory with new name

$ mv myprg prog1

It has following option are use

(a) - i (interactive): It warm you before overwrite an existing file.

$ mv -i f1 f3

mv: overwrite 'f3'? y

5. Touch: The touch command in Linux is used to create empty files or update

the timestamp (access and modification time) of existing files.

Syntax:

 touch [options] filename

1. Create a New Empty File

 touch file1.txt

This creates a new file named file1.txt in the current directory if it doesn’t already

exist.

2. Create Multiple Files at Once

 touch file1.txt file2.txt file3.txt

Creates three files at once.

3. Update the Timestamp of an Existing File

 touch existingfile.txt

501 Linux Operating System Unit-2

RASHMI PATEL 9

If existingfile.txt already exists, touch updates its modification and access time to

the current time.

 4. Create a File in Another Directory

 touch /home/user/newfile.txt

Creates newfile.txt in the /home/user/ directory.

5. Set a Specific Timestamp

 touch -t 202507140930 file1.txt

Sets the file's time to 14th July 2025, 09:30 AM (format:

[[CC]YY]MMDDhhmm[.ss]).

2.3 File Permissions and Ownership (chmod, chgrp, chown, umask)

Each file or directory has three types of permission for three types of users:

Type Description

R Read permission

W Write (modify) permission

X Execute (run) permission

For:

• Owner (u) – user who owns the file

• Group (g) – group the file belongs to

• Others (o) – everyone else

Example:

-rwxr-xr-- 1 user group file.txt

• Owner: rwx (read/write/execute)

501 Linux Operating System Unit-2

RASHMI PATEL 10

• Group: r-x (read/execute)

• Others: r-- (read only)

1. chmod – Change File Permissions

Syntax:

 chmod [options] mode file

Example 1: Symbolic mode

 chmod u+x script.sh

→ Adds execute (x) permission for the owner.

Example 2: Remove write permission from group

 chmod g-w file.txt

Example 3: Numeric (Octal) mode

Symbolic Octal

Rwx 7

rw- 6

r-- 4

--- 0

chmod 755 script.sh

→ rwxr-xr-x

2. chown – Change File Ownership

Syntax:

 chown [owner][:group] file

501 Linux Operating System Unit-2

RASHMI PATEL 11

Example 1: Change owner

 sudo chown alice file.txt

Example 2: Change owner and group

 sudo chown bob:developers file.txt

 4. chgrp – Change Group Ownership

Syntax:

 chgrp groupname file

Example:

 sudo chgrp staff report.pdf

5. umask – Set Default Permissions for New Files

The umask command sets default permissions by subtracting from full access.

• Default permissions:

o Files: 666 (rw-rw-rw-)

o Directories: 777 (rwxrwxrwx)

Example: View current umask

 umask

Example: Set umask

 umask 022

This removes write (w) permission for group and others.

New files will have 644 (rw-r--r--) and directories will have 755.

501 Linux Operating System Unit-2

RASHMI PATEL 12

2.4 Common System Commands (who, whoami, man, echo, date,

clear)

1. who: Shows who is currently logged into the system.

Syntax: who

Example:

who

Output Example:

user1 tty7 2025-07-16 09:12

2. whoami: Displays the username of the current user.

Syntax:

whoami

Example:

whoami

3. man: Displays the manual (help page) for a command.

Syntax:

man <command>

Example:

man ls

4. echo: Prints text or variables to the terminal.

501 Linux Operating System Unit-2

RASHMI PATEL 13

Syntax:

echo [text or $variable]

Example:

echo "Hello, world!"

5. date: Displays the current system date and time.

Syntax:

Date

Example:

 Date

6. clear: Clears the terminal screen.

Syntax:

Clear

2.5 Text Processing Commands (head, tail, cut, sort, cmp, tr, uniq,

wc, tee)

1. head: Displays the first N lines of a file.

Syntax:

head [options] filename

Example:

501 Linux Operating System Unit-2

RASHMI PATEL 14

head -n 5 file.txt

→ Displays the first 5 lines of file.txt.

2. tail: Displays the last N lines of a file

 Displays the last n lines of file.

Syntax:

tail [options] filename

Example:

tail -n 3 log.txt

→ Displays the last 3 lines of log.txt.

 3. cut: Extracts columns or fields from lines.

Syntax:

cut [options] filename

Examples:

cut -c1-5 file.txt

→ Extracts characters 1 to 5 from each line.

cut -d',' -f2 data.csv

→ Extracts the second field using comma , as delimiter.

4. sort: Sorts lines alphabetically or numerically.

 Syntax:

sort [options] filename

501 Linux Operating System Unit-2

RASHMI PATEL 15

Examples:

sort names.txt

→ Sorts lines in alphabetical order.

sort -n numbers.txt

→ Sorts numbers in ascending numerical order.

5. cmp: Compares two files byte by byte.

Syntax:

cmp file1 file2

Example:

cmp file1.txt file2.txt

→ Compares files byte by byte. If they differ, it shows the first difference.

6. tr: Translate or delete characters.

Syntax:

tr [options] SET1 [SET2]

Examples:

tr 'a-z' 'A-Z' < input.txt

→ Converts lowercase to uppercase.

tr -d '0-9' < data.txt

→ Deletes all digits from the input.

 7. uniq: Removes duplicate lines (requires sorted input).

501 Linux Operating System Unit-2

RASHMI PATEL 16

Syntax:

uniq [options] filename

Examples:

sort data.txt | uniq

→ Removes duplicate lines from a sorted file.

uniq -c sorted.txt

→ Shows duplicate count for each line.

8. wc: Counts lines, words, or characters.

 Syntax:

wc [options] filename

Examples:

wc file.txt

→ Displays line, word, and byte count.

wc -l file.txt

→ Displays only line count.

 9. tee: Reads input and writes to file and screen.

Syntax:

command | tee filename

Example:

501 Linux Operating System Unit-2

RASHMI PATEL 17

ls -l | tee output.txt

→ Displays the output of ls -l on the screen and writes it to output.txt.

2.6 Introduction to Process

A program/command when executed, a special instance is provided by

the system to the process. This instance consists of all the services/resources

that may be utilized by the process under execution.

Whenever a command is issued in Unix/Linux, it creates/starts a new

process. For example, pwd when issued which is used to list the current

directory location the user is in, a process starts.

Through a 5 digit ID number Unix/Linux keeps an account of the

processes, this number is called process ID or PID. Each process in the system

has a unique PID.

Used up pid’s can be used in again for a newer process since all the

possible combinations are used.

At any point of time, no two processes with the same pid exist in the

system because it is the pid that Unix uses to track each process.

Initializing a process

A process can be run in two ways:

Method 1: Foreground Process : Every process when started runs in

foreground by default, receives input from the keyboard, and sends output to

the screen. When issuing pwd command

$ ls pwd

Output:

501 Linux Operating System Unit-2

RASHMI PATEL 18

$ /home/geeksforgeeks/root

When a command/process is running in the foreground and is taking a

lot of time, no other processes can be run or started because the prompt would

not be available until the program finishes processing and comes out.

Method 2: Background Process: It runs in the background without keyboard

input and waits till keyboard input is required. Thus, other processes can be

done in parallel with the process running in the background since they do not

have to wait for the previous process to be completed.

Adding & along with the command starts it as a background process

 $ pwd &

Since pwd does not want any input from the keyboard, it goes to the stop

state until moved to the foreground and given any data input. Thus, on

pressing Enter:

Output:

[1] + Done pwd

$

2.7 Process Control commands: ps, fg, bg, kill, sleep

1. ps – Show Running Processes

Syntax:

ps [options]

Examples:

ps # Show your current shell's processes

ps -e # Show all system processes

501 Linux Operating System Unit-2

RASHMI PATEL 19

ps -ef # Full-format listing of all processes

ps aux # Detailed info including CPU/memory usage

2. fg – Bring Job to Foreground

Syntax:

fg [%job_id]

Examples:

fg # Resume most recent background job

fg %1 # Resume job number 1

Use jobs to list background/suspended jobs with their job IDs.

3. bg – Resume Job in Background

Syntax:

bg [%job_id]

Examples:

bg # Resume most recently stopped job in background

bg %2 # Resume job number 2 in background

4. kill – Terminate Process

Syntax:

501 Linux Operating System Unit-2

RASHMI PATEL 20

kill [signal] PID

Examples:

kill 1234 # Send SIGTERM (graceful termination) to process 1234

kill -9 1234 # Send SIGKILL (force kill) to process 1234

kill -l # List all available signals

5. sleep – Pause Execution

Syntax:

sleep duration

Examples:

sleep 5 # Pause for 5 seconds

sleep 2m # Pause for 2 minutes

sleep 1h # Pause for 1 hour

2.8 Job Scheduling commands : at, batch, crontab

1. at – Schedule One-Time Tasks

The at command runs a job once at a specified time.

Syntax:

at [TIME]

501 Linux Operating System Unit-2

RASHMI PATEL 21

Examples:

at 10:00 # Run job at 10:00 AM today

at now + 1 hour # Run job 1 hour from now

After typing the command:

echo "echo 'Hello'" | at now + 1 minute

Or interactive:

$ at 17:30

at> echo "Backup started" >> backup.log

at> <Ctrl+D> # Press Ctrl+D to save and exit

2. batch – Schedule Tasks When Load is Low

The batch command schedules jobs to run when system load is low.

Syntax:

batch

Example:

echo "tar -czf backup.tar.gz /home/user" | batch

Like at, use atq to view and atrm to remove batch jobs.

3. crontab – Repeated Scheduled Tasks (Cron Jobs)

The crontab command schedules recurring tasks (daily, weekly, etc.).

Syntax:

crontab -e # Edit user's crontab

501 Linux Operating System Unit-2

RASHMI PATEL 22

crontab -l # List current crontab entries

crontab -r # Remove current crontab

Example:

Open the crontab editor

crontab -e

Add a job (runs every day at 7 AM):

0 7 * * * /home/user/backup.sh

Cron Format:

┌───────────── minute (0 - 59)

│ ┌───────────── hour (0 - 23)

│ │ ┌───────────── day of the month (1 - 31)

│ │ │ ┌───────────── month (1 - 12)

│ │ │ │ ┌───────────── day of the week (0 - 7) (Sunday = 0 or 7)

│ │ │ │ │

* * * * * command to execute

Process Management In Unix

When you execute a program on your Unix system, the system creates a special
environment for that program. This environment contains everything needed
for the system to run the program as if no other program were running on the
system.

Whenever you issue a command in Unix, it creates, or starts, a new process.
When you tried out the ls command to list the directory contents, you started a
process. A process, in simple terms, is an instance of a running program.

The operating system tracks processes through a five-digit ID number known as
the pid or the process ID. Each process in the system has a unique pid.

Pids eventually repeat because all the possible numbers are used up and the
next pid rolls or starts over. At any point of time, no two processes with the same
pid exist in the system because it is the pid that Unix uses to track each process.

Starting a Process

When you start a process (run a command), there are two ways you can run it −

• Foreground Processes

• Background Processes

Foreground Processes

By default, every process that you start runs in the foreground. It gets its input
from the keyboard and sends its output to the screen.

You can see this happen with the ls command. If you wish to list all the files in
your current directory, you can use the following command −

$ls ch*.doc

This would display all the files, the names of which start with ch and end
with .doc −

ch01-1.doc ch010.doc ch02.doc ch03-2.doc
ch04-1.doc ch040.doc ch05.doc ch06-2.doc
ch01-2.doc ch02-1.doc

The process runs in the foreground, the output is directed to my screen, and if
the ls command wants any input (which it does not), it waits for it from the
keyboard.

While a program is running in the foreground and is time-consuming, no other
commands can be run (start any other processes) because the prompt would
not be available until the program finishes processing and comes out.

Background Processes

A background process runs without being connected to your keyboard. If the
background process requires any keyboard input, it waits.

The advantage of running a process in the background is that you can run other
commands; you do not have to wait until it completes to start another!

The simplest way to start a background process is to add an ampersand (&) at
the end of the command.

$ls ch*.doc &

This displays all those files the names of which start with ch and end with .doc −

ch01-1.doc ch010.doc ch02.doc ch03-2.doc
ch04-1.doc ch040.doc ch05.doc ch06-2.doc
ch01-2.doc ch02-1.doc

Here, if the ls command wants any input (which it does not), it goes into a stop
state until we move it into the foreground and give it the data from the
keyboard.

That first line contains information about the background process - the job
number and the process ID. You need to know the job number to manipulate it
between the background and the foreground.

Press the Enter key and you will see the following −

[1] + Done ls ch*.doc &
$

The first line tells you that the ls command background process finishes
successfully. The second is a prompt for another command.

Listing Running Processes

It is easy to see your own processes by running the ps (process status) command
as follows −

$ps
PID TTY TIME CMD
18358 ttyp3 00:00:00 sh
18361 ttyp3 00:01:31 abiword
18789 ttyp3 00:00:00 ps

One of the most commonly used flags for ps is the -f (f for full) option, which
provides more information as shown in the following example −

$ps -f
UID PID PPID C STIME TTY TIME CMD
amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one
amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one
amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh
amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

Here is the description of all the fields displayed by ps -f command –

Sr.No. Column & Description

1 UID

User ID that this process belongs to (the person running it)

2 PID

Process ID

3 PPID

Parent process ID (the ID of the process that started it)

4 C

CPU utilization of process

5 STIME

Process start time

6 TTY

Terminal type associated with the process

7 TIME

CPU time taken by the process

8 CMD

The command that started this process

There are other options which can be used along with ps command –

Sr.No. Option & Description

1 -a

Shows information about all users

2 -x

Shows information about processes without terminals

3 -u

Shows additional information like -f option

4 -e

Displays extended information

Stopping Processes

Ending a process can be done in several different ways. Often, from a console-
based command, sending a CTRL + C keystroke (the default interrupt character)
will exit the command. This works when the process is running in the foreground
mode.

If a process is running in the background, you should get its Job ID using
the ps command. After that, you can use the kill command to kill the process as
follows −

$ps -f
UID PID PPID C STIME TTY TIME CMD
amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one
amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one
amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh
amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f
$kill 6738
Terminated

Here, the kill command terminates the first_one process. If a process ignores a
regular kill command, you can use kill -9 followed by the process ID as follows −

$kill -9 6738
Terminated

Parent and Child Processes

Each unix process has two ID numbers assigned to it: The Process ID (pid) and
the Parent process ID (ppid). Each user process in the system has a parent
process.

Most of the commands that you run have the shell as their parent. Check the ps
-f example where this command listed both the process ID and the parent
process ID.

Zombie and Orphan Processes

Normally, when a child process is killed, the parent process is updated via
a SIGCHLD signal. Then the parent can do some other task or restart a new child
as needed. However, sometimes the parent process is killed before its child is
killed. In this case, the "parent of all processes," the init process, becomes the

new PPID (parent process ID). In some cases, these processes are called orphan
processes.

When a process is killed, a ps listing may still show the process with a Z state.
This is a zombie or defunct process. The process is dead and not being used.
These processes are different from the orphan processes. They have completed
execution but still find an entry in the process table.

Daemon Processes

Daemons are system-related background processes that often run with the
permissions of root and services requests from other processes.

A daemon has no controlling terminal. It cannot open /dev/tty. If you do a "ps -
ef" and look at the tty field, all daemons will have a ? for the tty.

o be precise, a daemon is a process that runs in the background, usually waiting
for something to happen that it is capable of working with. For example, a
printer daemon waiting for print commands.

If you have a program that calls for lengthy processing, then it’s worth to make
it a daemon and run it in the background.

Job ID Versus Process ID

Background and suspended processes are usually manipulated via job number
(job ID). This number is different from the process ID and is used because it is
shorter.

In addition, a job can consist of multiple processes running in a series or at the
same time, in parallel. Using the job ID is easier than tracking individual
processes.

bg command in Linux with Examples

In Linux, the bg command is a useful tool that allows you to manage and move
processes between the foreground and background. It's especially helpful when
you want to multitask in the terminal by placing a process in the background,
enabling you to continue using the terminal for other commands while the
process runs quietly in the background.

Syntax

bg [job_spec ...]

where,

• job_spec: This is used to identify the job you want to move to the
background. It can be specified in several formats:

o %n: Refers to job number n.

o %str: Refers to a job that was started by a command beginning with
str.

o %?str: Refers to a job that was started by a command containing
str.

o %% or %+: Refers to the current job. Both fg and bg commands will
operate on this job if no job_spec is provided.

o %-: Refers to the previous job.

If no job_spec is provided, the most recent job is resumed in the background.

Useful Options for bg command

1. bg [JOB_SPEC]:

This command is used to put the mentioned job in background. In the below
screenshot, we do following :

'sleep 500' is used to create
dummy foreground job.

• We use jobs command to list all jobs

• We create a process using sleep command, we get its ID as 1.

• We put it in background by providing its ID to bg.

2. bg --help:

Displays the help information for the bg command. This is useful if you need
more information on how to use the command or if you're unsure of the
available options.

fg command in Linux with examples

The fg command in Linux is used to bring a background job into the foreground.
It allows you to resume a suspended job or a background process directly in the
terminal window, so you can interact with it.

https://www.geeksforgeeks.org/linux-unix/process-control-commands-unixlinux/

Syntax

fg [job_spec]

The job_spec is a way to refer to the background jobs that are currently running
or suspended. Here are some common ways to specify a job:

• %n: Refers to job number n.

• %str: Refers to a job that was started by a command beginning with str.

• %?str: Refers to a job that was started by a command containing str.

• %% or %+: Refers to the current job (this is the default job operated on by
fg if no job_spec is provided).

• %-: Refers to the previous job.

Key Options for the fg command

1. fg [JOB_SPEC]:

This is the primary use of the fg command, bringing a specified job running in
the background back to the foreground. For example, if you create a dummy job
using sleep 500, you can bring it back to the foreground by referencing its job

number: "sleep 500" is a
command which is used to create a dummy job which runs for 500 seconds.

2. fg --help:

This option displays help information for the fg command, explaining usage and
available options.

Top

This utility tells the user about all the running processes on the Linux machine.

Press ‘q’ on the keyboard to move out of the process display.

The terminology follows:

Field Description Example 1

PID The process ID of each task 1525

User The username of task owner Home

PR
Priority
Can be 20(highest) or -20(lowest)

20

NI The nice value of a task 0

VIRT Virtual memory used (kb) 1775

RES Physical memory used (kb) 100

SHR Shared memory used (kb) 28

S

Status

There are five types:
S

Field Description Example 1

‘D’ = uninterruptible sleep

‘R’ = running

‘S’ = sleeping

‘T’ = traced or stopped

‘Z’ = zombie

%CPU % of CPU time 1.7

%MEM Physical memory used 10

TIME+ Total CPU time 5:05.34

Command Command name Photoshop.exe

Priority of process in Linux | nice value

The running instance of program is process, and each process needs space in
RAM and CPU time to be executed, each process has its priority in which it is
executed.

Now observe the below image and see column NI
top

Output:

top command output

The column NI represents nice value of a process. It’s value ranges from -20 to
20(on most unix like operating systems).

 -20 20

most priority least priority

 process process

One important thing to note is nice value only controls CPU time assigned to
process and not utilisation of memory and I/O devices.

nice and renice command
nice command is used to start a process with specified nice value, which renice
command is used to alter priority of running process.
Usage of nice command :
Now let’s assume the case that system has only 1GB of RAM and it’s working
really slow, i.e. programs running on it(processes) are not responding quickly,
in that case if you want to kill some of the processes, you need to start a
terminal, if you start your bash shell normally, it will also produce lag but you
can avoid this by starting the bash shell with high priority.
For example:

nice -n -5 bash

First observe output of top without setting nice value of any process in below
image

nice value of top is 0

Now start a bash shell with nice value -5, if you see the highlighted line, the top
command which is running on bash shell has nice value set to -5

nice value of bash shell is -5

Usage of renice command :
To alter priority of running process, we use renice command.
renice value PID

value is new priority to be assigned
PID is PID of process whose priority is to be changed

One thing to note is you can’t set high priority to any process without having
root permissions though any normal user can set high priority to low priority of
a process.

We will see one example of how you alter priority of process.

nice value of gnome terminal is 0

You can observe that nice value of process(PID = 2371) is 0, now let’s try to set
the new priority of 5 to this process.

renice 5 2371

Output:

2371 (process ID) old priority 0, new priority 5

You can also see this priority using top command(see highlighted line in
image).

process 2371 has nice value 5

Command Description

bg To send a process to the background

fg To run a stopped process in the foreground

top Details on all Active Processes

ps Give the status of processes running for a user

ps PID Gives the status of a particular process

pidof Gives the Process ID (PID) of a process

kill PID Kills a process

nice Starts a process with a given priority

renice Changes priority of an already running process

df Gives free hard disk space on your system

free Gives free RAM on your system

nohup Command in Linux with Examples

Every command in Linux starts a process at the time of its execution, which

automatically gets terminated upon exiting the terminal. Suppose, you are

executing programs over SSH and if the connection drops, the session will be

terminated, all the executed processes will stop, and you may face a huge

accidental crisis. In such cases, running commands in the background can be

very helpful to the user and this is where nohup command comes into the

picture. nohup (No Hang Up) is a command in Linux systems that runs the

process even after logging out from the shell/terminal.

Nohup Command

Usually, every process in Linux systems is sent a SIGHUP (Signal Hang

UP) which is responsible for terminating the process after closing/exiting the

terminal. Nohup command prevents the process from receiving this signal

upon closing or exiting the terminal/shell. Once a job is started or executed

using the nohup command, stdin will not be available to the user

and nohup.out file is used as the default file for stdout and stderr. If the

output of the nohup command is redirected to some other file, nohup.out file

is not generated.

Nohup Command Syntax

The syntax for using the Nohup command is straightforward:

nohup command [options] &

• `command`: Specifies the command or script that you want to execute.

• `[options]`: Optional arguments or flags that modify the behavior of the

command.

• `&`: Placing an ampersand (&) at the end of the command instructs the

shell to run the command in the background.

 Khyati Patel

Vi Editor

The vi Editor is a text based editor used in Linux and Unix for editing configuration

files and creating text documents.

 Vi- editor is one of the most versatile editors of linux. The vi-editor was created by Bill

Joy for BSD versions for unix.Bram Moolenaar improved the editor and called it “vim” (vi-

improved) editor. Vi uses number of internal commands to navigate to any point in a text file

and edit the text there. It allows to copy and move text within a file and also from one file to

another. Vi offers cryptic and sometimes mnemonic, internal commands for editing work.

Syntax (for invoking vi editor)

$ vi (enter) [will open vi editor with a temporary file name]

$ vi filename (enter) [will open vi editor with the given file name in the current

directory]

e.g. vi test (enter)

After applying above command the vi editor gets open as shown in the figure

above.

Vi editor operates in two mode.

1. Command mode: This mode enables you to perform administrative tasks such as

saving files, executing commands, moving the cursor, cutting (yanking) and pasting

lines or words, and finding and replacing. In this mode, whatever you type is interpreted

as a command.

2. Insert mode: This mode enables you to insert text into the file. Everything that's typed

in this mode is interpreted as input and finally it is put in the file .

~

~

~

~

~

~

~

~

~

~

Ex-mode works

at this line

Command-mode

& Input mode

work in this area

 Khyati Patel

Hint: If you are not sure which mode you are in, press the Esc key twice, and then you'll be in

command mode.

Creating a script using the vi editor involves the following steps:

Open or Create the Script File.

Step-1:

Open your terminal and type vi script_name.sh, replacing script_name.sh with your

desired script filename. The .sh extension is conventional for shell scripts. If the file doesn't

exist, vi will create a new one; otherwise, it will open the existing file.

Step-2: Enter insert mode.

 Upon opening vi, you are in command mode. To begin typing your script, you must

switch to insert mode. Press the i key to enter insert mode. Write Your Script.

In insert mode, you can type the commands and logic for your script.

Code

Step-2: Exit Insert Mode.

Once you have finished writing your script, press the Esc key to return to command mode. Save

and Exit.

In command mode, type :wq and press Enter. : initiates a command line within vi, w saves the

changes to the file, and q quits the vi editor.

If you want to exit without saving changes, use :q!.

 Khyati Patel

Step-3: Execute script from the terminal:

You can now execute your script from the terminal:

Code

 sh script_name.sh

Ex: sh printhello.sh

Insert Command:

you can enter Insert mode using various keys, each with a slightly different effect:

i: Inserts text before the current cursor position.

I: Inserts text at the beginning of the current line.

a: Appends text after the current cursor position.

A: Appends text at the end of the current line.

o: Insert a new line below the current line.

O: Insert a new line above the current line.

Navigation Commands:

h, j, k, l: Move cursor left, down, up, right respectively.

w, b, e: Move to beginning of next word, beginning of previous word, end of current word.

0, $: Move to beginning of line, end of line.

gg, G: Move to first line, last line of file.

nG: Move to line number 'n'.

 Khyati Patel

Editing Commands:
x: Delete character under cursor.

dd: Delete the current line.

ndd: Delete 'n' lines.

yy: Yank (copy) the current line.

nyy: Yank (copy) 'n' lines.

p: Paste yanked or deleted text below the current line.

P: Paste yanked or deleted text above the current line.

u: Undo the last change.

Saving and Exiting:
:w: Save the file.

 :wq or ZZ: Save and quit.

:q!: Quit without saving changes.

 :x: Save and quit (similar to :wq).

Shell Metacharacters and operator.

Metacharacters in Linux are special symbols that have specific meanings to the shell,

allowing for pattern matching, redirection, and other powerful command-line operations. They

are used to manipulate files, directories, and command output.

Filename Expansion(wildcard:*,?,[])

There are mainly three metacharacters for filename substitution:

1. Asterisk (*)

2. Question mark (?)

3. Character class [].

They are used for matching filenames in a directory.

1. asterisk (*)
It matches zero or one more occurrences of any characters in a filename. When the

Asterisk(*) is appended to the sring file, the pattern file* matches all filenames in the

directory with the string file and also include the file fileitself. You can also use * as an

argument to ls as follow:

$ls * #display all files of current directory

When shell encounters this command line, it immediately identifies the * as a

metacharacter. It then generates a list of files from the current directory that match this pattern

and passes it on to the kernel for execution. So, this command display name of all files in the

directory.

2. Question-mark (?)
 It is another metacharacter used for filename substitution. It matches any single

character. If we use it with file string then it matches filename of current directory that start

 Khyati Patel

with string file followed by any single character. For example, you can write a command as

follow:

$ls file? #display filename begins with string file followed by any character

Then it display all files begins with 'file' and the last character is any.

Character class ([])
The character class uses two metacharacter represented by a pair of square brackets i.e.

[].You can write as many characters inside the square brackets, but matching takes place for

only a single character in the class i.e. it matches any single character from character set. For

example, a single character expression taking the value either 1 or 2 or 3 or 4 can be represented

by character class as [1234]. This can be combined with any string or another wild-card

expression.

Character class uses two another metacharacter : !(bang or exclamation) and

(hyphen). Hyphen (i.e. -) is used to specify range inside the class eg. [1-4]. A valid range

specification requires that the character on the left have a lower ASCII value than the one on

the right.

 Exclamation (i.e. !) reverses the matching criteria i.e., it matches all other characters

except the ones in the class. It is placed at the beginning of character or character set within the

class. For example, consider command as follow:

$ls [!0-9]*

It displays all the files whose filename begins with other than digit.

Eliminate the meaning of wild-card character:

The metacharacters asterisk (i.e. *) and question mark (i.e. ?) lose their meaning when

used inside the character class, and are matched literally. Similarly, '-' and '!' also lose their

significance when placed outside the class. Additionally '!' loses its meaning when placed

anywhere but at the beginning within the class. The '-' loses its meaning if it is not bounded

properly on either side by a single character. e.g. [a-] or [-a].

Matching a Dot
The * does not match all files beginning with a . (dot) or the /of a pathname. If you want

to list all the hidden files in your directory, then the dot must be matched explicitly as follow:

$ls .*

It displays all files begins with . and also display. and .. contents.

$ls .[!.]*

It displays only those files in your directory begins with. (dot).

Linux - Shell Input/Output Redirections

 Khyati Patel

In linux, commands take input from your terminal and send the resulting output back

to your terminal. A command normally reads its input from the standard input, which happens

to be your terminal by default. Similarly, a command normally writes its output to standard

output, which is again your terminal by default.

Redirection allows users to change the default behaviour of standared streams.

Redirection is the process through which is a user can use file instead of the standard I/O

devices. There are three types of redirection:

1. Output Redirection

2. Input Redirection

3. Error Redirection

1. Output Redirection

In output redirection, the output of command sends to file instead of standard output

devices (i.e Monitor) this capability is known as output redirection. When shell encountered >

in the command line then it understand that standard output is to be sent to the file instead of

monitor. The shell first opens the file, writes output of command into it and then close the file.

Check the following who command which redirects the complete output of the command in

the users file.

$ who > users

Notice that no output appears at the terminal. This is because the output has been

redirected from the default standard output device (the terminal) into the specified file. You

can check the users file for the complete content –

$ cat users

User1 tty01 Sep 12 07:30

User2 tty15 Sep 12 13:32

User3 tty21 Sep 12 10:10

User4 tty24 Sep 12 13:07

User5 tty25 Sep 12 13:03

$

 The above command is also written using file discripter as follow:

$ who 1 > users

If a command has its output redirected to a file and the file already contains some data,

that data will be lost. Consider the following example –

$ echo line 1 > users

$ cat users

line 1

$

 Khyati Patel

You can use >> operator to append the output in an existing file as follows –

$ echo line 2 >> users

$ cat users

line 1

line 2

$

2. Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a

command be redirected from a file. As the greater-than character > is used for output

redirection, the less-than character < is used to redirect the input of a command. The commands

that normally take their input from the standard input can have their input redirected from a file

in this manner. For example, to count the number of lines in the file users generated above, you

can execute the command as follows –

$ wc -l users

2 users

$

Upon execution, you will receive the following output. You can count the number of

lines in the file by redirecting the standard input of the wc command from the file users −

$ wc -l < users

2

$

Note that there is a difference in the output produced by the two forms of the wc

command. In the first case, the name of the file users is listed with the line count; in the second

case, it is not. In the first case, wc knows that it is reading its input from the file users. In the

second case, it only knows that it is reading its input from standard input so it does not display

file name.

The above command is also written using file discripter as follow:

$ wc -l 0< users

3. Error Redirection

In Linux, it is possible to redirect the error messages of an invalid command to a file

oth

er than the standard error file so that error messages do not appear on the terminal. This

is done using a file descriptor for the standard error file. To redirect the error message of a

command to a file other than the terminal, we use error redirection as 2>

Assume that the file file1 does not exist in the current working directory and you apply a

command like this:

$cat file1 2 > err_msg <enter>

 Khyati Patel

So, linux will generate an error message because the execution is unsuccessful. This

error message will be written into the file err_msg.

Piping mechanism
A user can combine more than commands using a metacharacter known as pipe. It is

denoted by vertical bar (i.e. |)) symbol. This allows for sequential processing of data, where the

output of the first command becomes the input for the second, and so on. The general form of

piping mechanism is as follow:

command1\command2\....\commandN

There is no restriction on number of commands used in pipeline. Here, output of

commandl send as standard input to command2, the output of command2 sends as standard

input to command3 and so forth. In this way, the standard output of one filter command can be

sent as standard input to another filter command.

Let us consider a command as follow:

 $ cat fl | wc-c

 123

 $

Here, the output of cat command can be use as standard input for wc command. So, the result

shows number of characters in file fl.

Consider the command sequences as follow:

$sort fl > fl.sort

Suniq –u fl.sort >fl.uniq

$wc -1 <fl.uniq

5

$

The purpose of these command sequences is that to count number of unique lines in file

f1. Through the pipe feature, these three steps can be done in one command without creating a

temporary files as shown below:

$sort fl | uniq-u | wc-l

 5

$

The vertical bar (i.e.|) indicates to the Linux to send the output of the command before

| (i.e. sort fl) as input to the command after | (i.e. uniq-u).Again sends the output of the

command before | (i.e. uniq-u) as input to the command after | (i.e.wc –l).Thus, the commands

sort, uniq and wc create a pipeline through which data to flow without creating temporary files.

Therefore, the advantages of the pipe feature is that

• There is no need to create intermediate temporary files to perform complex tasks.

• As compare to redirection, it is faster.

 Khyati Patel

Command Substitution
Command substitution is the mechanism by which the shell performs a given set of

commands and then substitutes their output in the place of the commands.

Command substitution in Linux allows the output of a command to be used as an

argument or value within another command or statement. This mechanism enables dynamic

scripting and the creation of more complex and flexible shell commands.

Syntax

The command substitution is performed when a command is given as −

`command`

When performing the command substitution make sure that you use the back quote,

not the single quote character.

Example

Command substitution is generally used to assign the output of a command to a

variable. Each of the following examples demonstrates the command substitution −

DATE=`date`

echo "Date is $DATE"

USERS=`who | wc -l`

echo "Logged in user are $USERS"

Upon execution, you will receive the following result −

Date is Thu Jul 2 03:59:57 MST 2009

Logged in user are 1

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

Unit 3 : Shell Scripting in Linux

3.3 Control Flow Structures (if-else, case, for, while, until)
3.4 Logical Operators (&&, ||, !)
3.5 test and [] command for Condition Testing (file, numeric, string)
3.6 Arithmetic Operations (expr, $(()))

 Read statement

• The read statement is used to make the shell interactive.

• It is the input taking tool of the shell script.

• Syntax: read var1 var2 var3 ….

• We can read values for multiple variables using a single read statement.

• If the number of input values given is more than the number of variables then the

last values are assigned to the last variable.

• If the number of input values given is less than the number of variables then the

last variable is left unassigned.

Example: read n1 n2 n3

i/p 1 2 3 (n1=1,n2=2,n3=3)

1 2 (n1=1,n2=2 & n3 is left unassigned)

1 2 3 4 5 (n1=1,n2=2,n3=3 4 5)

3.3 Control Flow Structures (if-else, case, for, while, until)

Control flow structures allow you to control the execution sequence of commands based

on conditions or repetitive patterns. Here are the commonly used control structures in

Linux shell scripting:

1. if-else Statement

Used to execute commands conditionally.

Syntax:

if [condition]; then

 commands

elif [another_condition]; then

 other_commands

else

 fallback_commands

fi

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

Example:

num=10

if [$num -gt 0]; then

 echo "Positive number"

else

 echo "Non-positive number"

fi

2. case Statement

Used for multiple choice decision making, like a switch-case in other languages.

Syntax:

case $variable in

 pattern1)

 commands ;;

 pattern2)

 commands ;;

 *)

 default_commands ;;

esac

Example:

day="Mon"

case $day in

 "Mon") echo "Start of the week" ;;

 "Fri") echo "End of the week" ;;

 *) echo "Midweek day" ;;

esac

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

3. for Loop

Used to iterate over a list or range.

Syntax:

for var in list; do

 commands

done

Example:

for i in 1 2 3 4 5; do

 echo "Number: $i"

done

4. while Loop

Executes commands as long as a condition is true.

Syntax:

while [condition]; do

 commands

done

Example:

count=1

while [$count -le 5]; do

 echo "Count is $count"

 count=$((count + 1))

done

5. until Loop

Opposite of while: Executes commands until a condition becomes true.

Syntax:

until [condition]; do

 commands

done

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

Example:

count=1

until [$count -gt 5]; do

 echo "Count is $count"

 count=$((count + 1))

done

Summary Table

Structure Purpose Common Use Case

if-else Conditional branching Check file existence, number test

case Multi-branch decision Menu selection, option handling

for Iteration over list or range Loop through numbers, files

while Loop while condition is true Read file line-by-line

until Loop until condition becomes true Retry logic until success

 Break and continue in Linux.

for i in `seq 1 5`

 do

 if(($i== 2))

 then

 break

 fi

 echo "value of i is $i"

done

for i in `seq 1 5`

 do

 if(($i== 2))

 then

 continue

 fi

 echo "value of i is $i"

 done

o/p : value of i is 1

o/p : value of i is 1

value of i is 3

value of i is 4

value of i is 5

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

 Select loop in linux

clear

select DRINK in tea cofee water juice appey all none

do

case $DRINK in

tea|cofee|water|all)

 echo "Go to canteen";;

juice|appey)

 echo "Available at home";;

none)

 break ;;

*)

 echo "ERROR: Invalid selection";;

esac

done

output :

1) tea

2) cofee

3) water

4) juice

5) appey

6) all

7) none

#? 3

Go to canteen

#? 8

ERROR: Invalid selection

#? 2

Go to canteen

#?

3.4 Logical Operators (&&, ||, !) in Linux

In Linux shell scripting (especially bash), logical operators are used to control the flow

of execution based on the success or failure of commands. These are particularly useful

in conditional statements and command chaining.

1. && – Logical AND

• Executes the second command only if the first command succeeds (i.e., returns

exit status 0).

• Commonly used for chaining commands.

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

Syntax:

command1 && command2

 Example:

mkdir newdir && cd newdir

 Here, cd newdir will execute only if mkdir newdir succeeds.

 2. || – Logical OR

• Executes the second command only if the first command fails (i.e., returns a non-

zero exit status).

 Syntax:

command1 || command2

 Example:

cd unknown_dir || echo "Directory not found!"

 If cd unknown_dir fails, then echo will be executed.

 3. ! – Logical NOT

• Negates the exit status of a command.

• If the command succeeds, ! makes it fail and vice versa.

 Syntax:

! command

 Example:

! ls somefile && echo "File does not exist"

 If ls somefile fails (file doesn't exist), the ! makes it "succeed", and the message is

printed.

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

 Combined Example:

file="myfile.txt"

[-f "$file"] && echo "$file exists" || echo "$file does not exist"

• This checks if a file exists.

• If it exists, it prints the first message.

• If not, the second message is printed.

Example

Logical Operators with Mathematical Operations

a=10

b=5

c=0

echo "a = $a, b = $b, c = $c"

echo

1. && (Logical AND) - Perform multiplication only if a > b

[$a -gt $b] && echo "$a is greater than $b, so a * b = $((a * b))"

2. || (Logical OR) - If b is not greater than a, then show subtraction

[$b -gt $a] || echo "$b is not greater than $a, so a - b = $((a - b))"

3. ! (Logical NOT) - Check if c is NOT greater than 0, then do addition

if ! [$c -gt 0]; then

 echo "$c is not greater than 0, so a + b = $((a + b))"

fi

 The exit status of a command

Each Linux command returns a status when it terminates normally or abnormally. You

can use value of exit status in the shell script to display an error message or take some

sort of action. For example, if tar command is unsuccessful, it returns a code which tells

the shell script to send an e-mail to sysadmin.

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

Exit Status

• Every Linux command executed by the shell script or user, has an exit status.

• The exit status is an integer number.

• The Linux man pages stats the exit statuses of each command.

• 0 exit status means the command was successful without any errors.

• A non-zero (1-255 values) exit status means command was failure.

• You can use special shell variable called $? to get the exit status of the

previously executed command. To print $? variable use the echo command:

echo $?

date # run date command

echo $? # print exit status

foobar123 # not a valid command

echo $? # print exit status

How Do I See Exit Status Of The Command?

Type the following command:

date

To view exist status of date command, enter:

echo $?

Sample Output:

0

Try non-existence command

date1

echo $?

ls /eeteec

echo $?

Sample Output:

2

According to ls man page - exit status is 0 if OK, 1 if minor problems, 2 if serious

trouble

https://bash.cyberciti.biz/guide/Echo_command

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

3.5 test and [] Commands for Condition Testing

In Linux shell scripting, condition testing is essential for decision-making. The test

command and the [] (square brackets) are used to evaluate conditions such as

comparisons on files, numbers, and strings. Both are functionally equivalent, but the

square brackets are more commonly used in scripts for readability.

Test uses certain operators to evaluate the condition on its right and returns either a true

or false exit status, which is then used by if statement for decision making

Test works in three ways:

Compare two numbers

Compare two strings

Checks file’s attributes

General Syntax

• Using test:

test condition

test -f "$file"

• Using []:

[condition]

[-f /etc/passwd]

Note: In [], spaces are required after the opening [and before the closing].

1. File Condition Tests

These check the attributes of files or directories.

Expression Meaning

-e file File exists

-f file File exists and is a regular file

-d file File exists and is a directory

-r file File is readable

-w file File is writable

-x file File is executable

-file File exits and is a directory

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

Expression Meaning

-u file File exits and has SUID bit set

-k file File exits and has sticky bit set

-L file File exits and has symbolic link (Korn and Bash only)

F1 –nt f2 F1 is newer than f2(Korn and Bash only)

F1 –ot f2 F1 is older than f2(Korn and Bash only)

F1 –ef f2 F1 is linked to f2(Korn and Bash only)

Example:

if [-f /etc/passwd]; then

 echo "File exists"

fi

 File Condition Testing with test

file="/etc/passwd"

if test -f "$file"; then

 echo "The file exists and is a regular file."

else

 echo "File does not exist or is not a regular file."

fi

2. Numeric Condition Tests

Used to compare integer values.

Expression Meaning

n1 -eq n2 n1 is equal to n2

n1 -ne n2 n1 is not equal to n2

n1 -gt n2 n1 is greater than n2

n1 -lt n2 n1 is less than n2

n1 -ge n2 n1 is greater than or equal to n2

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

Expression Meaning

n1 -le n2 n1 is less than or equal to n2

Example:

a=10

b=20

if ["$a" -lt "$b"]; then

 echo "a is less than b"

fi

Numeric Condition Testing with test

a=10

b=20

if test "$a" -lt "$b"; then

 echo "a is less than b"

else

 echo "a is not less than b"

fi

3. String Condition Tests

Used to compare strings or check their properties.

Expression Meaning

str1 = str2 Strings are equal

str1 != str2 Strings are not equal

-z str String is empty

-n str String is not empty

Example:

name="admin"

if ["$name" = "admin"]; then

 echo "Welcome, admin"

fi

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

String Condition Testing with test

username="admin"

if test "$username" = "admin"; then

 echo "Welcome, admin"

else

 echo "Access denied"

fi

4. Using [[...]] (Advanced Bash)

[[...]] is a more modern and safer alternative to [...], with features like:

• Pattern matching using == with wildcards

• No need to quote variables (avoids word splitting issues)

• Supports logical operators like && and ||

Example:

if [[$user == a*]]; then

 echo "Username starts with 'a'"

fi

Summary

• test, [], and [[]] are tools for conditional checks in shell scripts.

• Use -f, -d, etc., for file tests.

• Use -eq, -lt, etc., for numeric comparisons.

• Use =, !=, -z, -n for string evaluations.

• Prefer [[...]] for safer and more advanced scripting when using Bash.

3.6 Arithmetic Operations : expr and $(())

In Linux shell scripting, arithmetic operations are commonly performed using the expr

command or the $(()) syntax. These tools allow you to perform basic integer arithmetic

like addition, subtraction, multiplication, etc.

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

The expr statement

The expr is an external command which is used for computations in Linux. It performs

following features.

• Perform arithmetic operations on integers

• Manipulates strings.

Arithmetic Computations

expr can perform 4 basic arithmetic operations and the modulus function.

i.e for two variables x any y the arithmetic operations can be:

Indicates the shell prompt.

$expr $x + $y

$expr $x - $y

Is required as * is considered as meta-character and \ will hide its special meaning

$expr $x * $y

$expr $x / $y

$expr $x % $y

The above example shows the working of expr command on the command line. If the

user wants to use the expr in shell scripts the user has to use it with command

substitution.

e.g. to store the value of the summation of two values in a variable.

c=`expr $x + $y`

the value of sum is stored in variable c.

1. Using expr

expr is a command-line utility used to evaluate expressions.

Syntax:

expr <operand1> <operator> <operand2>

 Example:

a=10

b=5

result=$(expr $a + $b)

echo "Sum is: $result"

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

 Notes:

• Spaces between operands and operator are mandatory.

• You need to escape special characters like *:

result=$(expr $a * $b)

2. Using Arithmetic Expansion $(())

This is the preferred and modern method for arithmetic operations in bash. It's more

concise and readable.

Syntax:

$((expression))

Example:

a=10

b=5

sum=$((a + b))

echo "Sum is: $sum"

product=$((a * b))

echo "Product is: $product"

 Advantages:

• No need to escape operators.

• Works directly within scripts and command substitution.

• Faster and more readable than expr.

Supported Operators

Operation Symbol

Addition +

Subtraction -

Multiplication *

Division /

Modulo %

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

 String Handling

The expr command is also used for handling strings. Using expr we can perform basic

string functions like,

1. Finding length of string

echo "enter string"

read s

len=`expr length $s`

echo $len

2. Substring of string

st="good-morning"

t=`expr substr $st 4 4`

echo $t

3. Concat string

echo "enter string"
read s1
echo "enter string"
read s2
echo "concate is" $s1 $s2

 Logical operator -a(and) -o(or) and !(not)

What they mean:

• -a = AND (both conditions must be true)

• -o = OR (either condition can be true)

• ! = NOT (negates the condition)

Example files for testing

file1="/etc/passwd"

file2="/tmp/nonexistentfile"

Using -a (AND)

if [-e "$file1" -a ! -e "$file2"]; then

 echo "File1 exists AND File2 does NOT exist."

else

 echo "Either File1 does not exist OR File2 exists."

fi

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-3

Using -o (OR)

if [-e "$file1" -o -e "$file2"]; then

 echo "Either File1 exists OR File2 exists (or both)."

else

 echo "Neither File1 nor File2 exists."

fi

Explanation:

• [-e "$file1" -a ! -e "$file2"]

Checks if file1 exists AND file2 does NOT exist

• [-e "$file1" -o -e "$file2"]

Checks if either file1 exists OR file2 exists

Important notes:

• The -a and -o operators are sometimes considered deprecated because they can

cause ambiguous parsing in complex expressions.

• It’s better to use [[...]] with && (AND) and || (OR) operators instead:

if [[-e "$file1" && ! -e "$file2"]]; then

 echo "File1 exists AND File2 does NOT exist."

fi

if [[-e "$file1" || -e "$file2"]]; then

 echo "Either File1 exists OR File2 exists."

fi

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-4

Unit 4 : Advanced Text Processing Tools

4.1 Introduction to Regular Expressions (Basic and Extended)
4.2 Pattern Matching using grep, egrep, and fgrep
4.3 Stream Editing with sed (search, replace, line deletion, insertion)

4.1 Introduction to Regular Expressions (Basic and Extended)

Regular expressions (regex) are powerful tools for pattern matching and text
processing. In Linux, they are widely used with command-line tools such as grep, sed
and awk. There are two main types of regular expressions in Linux:

• Basic Regular Expressions (BRE)
• Extended Regular Expressions (ERE)

1. Basic Regular Expressions (BRE)

BRE is the default mode used by many commands such as grep.

Key Features and Symbols:

Symbol Description

. Matches any single character

^ Matches the beginning of a line

$ Matches the end of a line

* Matches zero or more of the preceding char

[] Matches any one character in the set

[^] Matches any one character not in the set

\{n,m\} Matches between n and m occurrences

\? Matches zero or one occurrence

\+ Matches one or more occurrences

| Alternation (OR)

\(and \) Group expressions

In BRE, special characters like {}, ?, +, |, (), must be escaped with a backslash (\).

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-4

Example Commands (BRE):

grep '^a' file.txt # Lines starting with 'a'
grep 'ing$' file.txt # Lines ending with 'ing'
grep '[0-9]' file.txt # Lines containing a digit
grep '^\(ab\)*$' file.txt # Lines with zero or more repetitions of 'ab'

2. Extended Regular Expressions (ERE)

Used by tools like egrep or grep -E, ERE supports more features without needing to
escape characters.

Key Features and Symbols (additional from BRE):

Symbol Description

? Matches zero or one of the preceding element

+ Matches one or more of the preceding element

` `

() Group expressions

I
n ERE, you do not need to escape +, ?, |, ().

Example Commands (ERE):

grep -E 'a|b' file.txt # Lines containing 'a' or 'b'
grep -E 'ab+' file.txt # 'a' followed by one or more 'b'
grep -E '(foo|bar)' file.txt # Lines with 'foo' or 'bar'
grep -E '^a(bc)*$' file.txt # Lines starting with 'a' followed by zero or more 'bc'

Common Tools Using Regex in Linux

Tool Regex Type Used Notes

grep BRE by default Use -E for ERE

sed BRE by default Can use ERE with -r

awk Uses ERE Powerful for structured text

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-4

4.2 Pattern Matching using grep, egrep, and fgrep

grep [OPTIONS] PATTERN [FILE...]

1. grep (Basic Regular Expressions - BRE)

• Uses Basic Regular Expressions by default.

• You must escape special characters like ?, +, |, ().

grep '^hello' file.txt # Lines starting with 'hello'

grep 'world$' file.txt # Lines ending with 'world'

grep '[0-9]' file.txt # Lines containing digits

grep 'ab\+c' file.txt # 'a' followed by one or more 'b' then 'c' (BRE requires \+)

 2. egrep (Extended Regular Expressions - ERE)

• Equivalent to grep -E

• No need to escape special characters like +, ?, |, ().

egrep 'ab+c' file.txt # 'a' followed by one or more 'b' then 'c'

egrep '(foo|bar)' file.txt # Match 'foo' or 'bar'

egrep 'a[0-9]+z?' file.txt # 'a' followed by one or more digits and optional 'z'

 Use egrep when you want more complex regex without escaping.

3. fgrep (Fixed grep / Literal Match)

• Searches for exact strings, no regex processing.

• Much faster when regex is not needed.

• Equivalent to grep -F

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-4

fgrep 'a.b' file.txt # Matches literal string 'a.b', not any character

fgrep 'hello?' file.txt # Matches literal string 'hello?'

fgrep '[a-z]' file.txt # Matches literal string '[a-z]', not a character class

 Use fgrep when searching for plain text, especially with special characters.

Comparison Table

Feature grep (BRE) egrep (ERE) fgrep (Fixed)

Regex Type Basic Extended None (literal)

Special Chars Escaped Direct use Treated as plain

Grouping () \(\) () Literal

Alternation ` ` | `

Use Case Simple patterns Complex patterns Exact text search

4.3 Stream Editing with sed (search, replace, line deletion, insertion)

sed stands for Stream Editor — a powerful tool to search, replace, delete, and insert

text in a stream or file.

Basic Syntax

sed [options] 'command' file

You can also use sed with pipelines:

cat file | sed 'command'

1. Search and Replace (s)

sed 's/pattern/replacement/' file

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-4

Common Variants:

Command Description

s/foo/bar/ Replace first occurrence of foo with bar on each line

s/foo/bar/g Replace all occurrences on each line

s/foo/bar/2 Replace 2nd occurrence only

s/foo/bar/gI Replace all (case-insensitive)

 Example:

sed 's/hello/hi/' file.txt

sed 's/ERROR/OK/g' log.txt

sed 's/[0-9]\+/#/' numbers.txt

2. Delete Lines (d)

sed 'Nd' file.txt # Delete line N

 Examples:

sed '3d' file.txt # Delete line 3

sed '1,5d' file.txt # Delete lines 1 to 5

sed '/^$/d' file.txt # Delete all blank lines

sed '/error/d' file.txt # Delete lines containing 'error'

3. Insert and Append Lines

Action Syntax Example

Insert sed 'Nd i\text' sed '2i\New line before 2'

Append sed 'Nd a\text' sed '2a\New line after 2'

 Use \ to continue text on a new line in shell.

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-4

sed '1i\Start of file' file.txt # Insert at beginning

sed '$a\End of file' file.txt # Append at end

4. Change a Line (c)

sed '3c\This is new content' file.txt

Replaces line 3 completely.

5. Multiple Commands

You can run multiple sed commands using:

• Semicolon (;)

• Multiple -e options

sed -e '1d' -e 's/foo/bar/' file.txt

OR

sed '1d; s/foo/bar/' file.txt

 In-place Editing (-i)

To edit a file directly (no output to stdout):

sed -i 's/foo/bar/g' file.txt

Optionally backup original:

sed -i.bak 's/foo/bar/g' file.txt # Backs up to file.txt.bak

 Summary Table

Task Command Example

Replace sed 's/old/new/' file.txt

Replace globally sed 's/old/new/g' file.txt

Delete line sed '5d' file.txt

Delete range sed '10,20d' file.txt

Delete blank sed '/^$/d' file.txt

 KHYATI SOLANKI

LINUX OPERATING SYSTEM-UNIT-4

Task Command Example

Insert before sed '3i\Inserted line' file.txt

Append after sed '3a\Appended line' file.txt

Change line sed '2c\New content' file.txt

grep command in Unix/Linux

The grep filter searches a file for a particular pattern of characters, and displays

all lines that contain that pattern. The pattern that is searched in the file is

referred to as the regular expression (grep stands for global search for regular

expression and print out).

Syntax:

grep [options] pattern [files]

Options Description

-c : This prints only a count of the lines that match a pattern

-h : Display the matched lines, but do not display the filenames.

-i : Ignores, case for matching

-l : Displays list of a filenames only.

-n : Display the matched lines and their line numbers.

-v : This prints out all the lines that do not matches the pattern

-e exp : Specifies expression with this option. Can use multiple times.

-f file : Takes patterns from file, one per line.

-E : Treats pattern as an extended regular expression (ERE)

-w : Match whole word

-o : Print only the matched parts of a matching line,

 with each such part on a separate output line.

-A n : Prints searched line and nlines after the result.

-B n : Prints searched line and n line before the result.

-C n : Prints searched line and n lines after before the result.

Sample Commands

Consider the below file as an input.

$cat > geekfile.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

1. Case insensitive search : The -i option enables to search for a string case

insensitively in the given file. It matches the words like “UNIX”, “Unix”,

“unix”.

$grep -i "UNix" geekfile.txt

Output:

unix is great os. unix is opensource. unix is free os.

Unix linux which one you choose.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

2. Displaying the count of number of matches : We can find the number of

lines that matches the given string/pattern

$grep -c "unix" geekfile.txt

Output:

2

3. Display the file names that matches the pattern : We can just display the

files that contains the given string/pattern.

$grep -l "unix" *

or

$grep -l "unix" f1.txt f2.txt f3.xt f4.txt

Output:

geekfile.txt

4. Checking for the whole words in a file : By default, grep matches the given

string/pattern even if it is found as a substring in a file. The -w option to grep

makes it match only the whole words.

$ grep -w "unix" geekfile.txt

Output:

unix is great os. unix is opensource. unix is free os.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

5. Displaying only the matched pattern : By default, grep displays the entire

line which has the matched string. We can make the grep to display only the

matched string by using the -o option.

$ grep -o "unix" geekfile.txt

Output:

unix

unix

unix

unix

unix

unix

6. Show line number while displaying the output using grep -n : To show

the line number of file with the line matched.

$ grep -n "unix" geekfile.txt

Output:

1:unix is great os. unix is opensource. unix is free os.

4:uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

7. Inverting the pattern match : You can display the lines that are not

matched with the specified search string pattern using the -v option.

$ grep -v "unix" geekfile.txt

-vn

Output:

learn operating system.

Unix linux which one you choose.

8. Matching the lines that start with a string : The ^ regular expression

pattern specifies the start of a line. This can be used in grep to match the lines

which start with the given string or pattern.

$ grep "^unix" geekfile.txt

Output:

unix is great os. unix is opensource. unix is free os.

9. Matching the lines that end with a string : The $ regular expression pattern

specifies the end of a line. This can be used in grep to match the lines which end

with the given string or pattern.

$ grep "os$" geekfile.txt

10.Specifies expression with -e option. Can use multiple times :

$grep –e "Agarwal" –e "Aggarwal" –e "Agrawal" geekfile.txt

11. -f file option Takes patterns from file, one per line.

$cat pattern.txt

Agarwal

Aggarwal

Agrawal

$grep –f pattern.txt geekfile.txt

12. Print n specific lines from a file: -A prints the searched line and n lines

after the result, -B prints the searched line and n lines before the result, and -C

prints the searched line and n lines after and before the result.

Syntax:

$grep -A[NumberOfLines(n)] [search] [file]

$grep -B[NumberOfLines(n)] [search] [file]

$grep -C[NumberOfLines(n)] [search] [file]

Example:

$grep -A1 learn geekfile.txt

Output:

learn operating system.

Unix linux which one you choose.

--

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

(Prints the searched line along with the next n lines (here n = 1 (A1).)

(Will print each and every occurrence of the found line, separating each

output by --)

(Output pattern remains the same for -B and -C respectively)

Unix linux which one you choose.

--

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

Unix linux which one you choose.

--

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

13. Search recursively for a pattern in the directory: -R prints the searched

pattern in the given directory recursively in all the files.

Syntax

$grep -R [Search] [directory]

 Example :

$grep -iR geeks /home/geeks

Output:

./geeks2.txt:Well Hello Geeks

./geeks1.txt:I am a big time geek

-i to search for a string case insensitively

-R to recursively check all the files in the directory.

Linux grep

The 'grep' command stands for "global regular expression print". grep

command filters the content of a file which makes our search easy.

grep with pipe

The 'grep' command is generally used with pipe (|).

Syntax:

command | grep <searchWord>

Example:

cat marks.txt | grep 9

Look at the above snapshot, grep command filters all the data containing '9'.

grep without pipe

It can be used without pipe also.

Syntax:

grep <searchWord> <file name>

Example: grep 9 marks.txt

Look at the above snapshot, grep command do the same work as earlier example

but without pipe.

grep options

o grep -vM: The 'grep -v' command displays lines not matching to the

specified word.

Syntax: grep -v <searchWord> <fileName>

Example: grep -v 9 marks.txt

Look at the above snapshot, command "grep -v 9 marks.txt" displays

lines hwich don't contain our search word '9'.

o grep -i: The 'grep -i' command filters output in a case-insensitive way.

Syntax: grep -i <searchWord> <fileName>

Example: grep -i red exm.txt

Look at the above snapshot, command "grep -i red exm.txt" displays all

lines containing 'red' whether in upper case or lower case.

o grep -A/ grep -B/ grep -C

grep -A command is used to display the line after the result.

grep -B command is used to display the line before the result.

grep -C command is used to display the line after and line before the

result.

You can use (A1, A2, A3.....)(B1, B2, B3....)(C1, C2, C3....) to display any

number of lines.

Syntax: grep -A<lineNumber> <searchWord> <fileName>

grep -B<lineNumber> <searchWord> <fileName>

grep -C<lineNumber> <searchWord> <fileName>

Example:

1. grep -A1 yellow exm.txt

2. grep -B1 yellow exm.txt

3. grep -C1 yellow exm.txt

Look at the above snapshot, command "grep -A1 yellow

exm.txt" displays searched line with next succeeding line,

command "grep -B1 yellow exm.txt" displays searched line with one

preceding line and command "grep -C1 yellow exm.txt" displays

searched line with one preceding and succeeding line.

BRE:(BASIC REGULAR EXPRESSION)

Admin@DESKTOP-TRR2ACF ~/program/grep

$ cat bre.txt

khyati

rajesh

solanki

khushi

pinky

kinjal

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep ^k bre.txt

khyati

khushi

kinjal

Admin@DESKTOP-TRR2ACF ~/program/grep

$ cat bre.txt

1khyati

2rajesh

3solanki

4khushi

5pinky

6kinjal

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep ^[3-4] bre.txt

3solanki

4khushi

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep ^[3-5] bre.txt

3solanki

4khushi

5pinky

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep ^[^3-5] bre.txt

1khyati

2rajesh

6kinjal

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep -i "agg*[ar][ar][vw]al" p1.txt

Agarwal

Aggarwal

Agrawal

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep -i "sa[kx]s*ena" bre.txt

saksena

saxena

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep -i "qui[te][te]" bre.txt

quite

quiet

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep k. bre.txt

1khyati

3solanki

4khushi

5pinky

6kinjal

saksena

Basic Regular Expression

Regular Expression provides an ability to match a “string of text” in a very

flexible and concise manner. A “string of text” can be further defined as a

single character, word, sentence or particular pattern of characters.

Like the shell’s wild–cards which match similar filenames with a single

expression, grep uses an expression of a different sort to match a group of

similar patterns.

• []: Matches any one of a set characters

• [] with hyphen: Matches any one of a range characters

• ^: The pattern following it must occur at the beginning of each line

• ^ with [] : The pattern must not contain any character in the set

specified

• $: The pattern preceding it must occur at the end of each line

• . (dot): Matches any one character

• \ (backslash): Ignores the special meaning of the character following

it

• *: zero or more occurrences of the previous character

• (dot).*: Nothing or any numbers of characters.

Examples

ERE:(EXTENDED REGULAR EXPRESSION)

agarwal

aggarwal

agrawal

agarval

agraval

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep -i "ag+[ar][ar][vw]al" bre.txt

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep -i "agg?[ar][ar][vw]al" bre.txt

saksena

Saxena

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep -i "sa[kx]s*ena" bre.txt

saksena

saxena

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep -i "sa(ks/x)ena" bre.txt

sengupta

dasgupta

Admin@DESKTOP-TRR2ACF ~/program/grep

$ grep -i "(sen/das)gupta" bre.txt

Sed Command in Linux/Unix with examples

SED command in UNIX stands for stream editor and it can perform lots of

functions on file like searching, find and replace, insertion or deletion. Though

most common use of SED command in UNIX is for substitution or for find and

replace. By using SED you can edit files even without opening them, which is

much quicker way to find and replace something in file, than first opening that

file in VI Editor and then changing it.

• SED is a powerful text stream editor. Can do insertion, deletion,

search and replace(substitution).

• SED command in unix supports regular expression which allows it

perform complex pattern matching.

Syntax:

sed OPTIONS... [SCRIPT] [INPUTFILE...]

Example:

Consider the below text file as an input.

$cat > geekfile.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

unix linux which one you choose.

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

Sample Commands

1. Replacing or substituting string : Sed command is mostly used to

replace the text in a file. The below simple sed command replaces the

word “unix” with “linux” in the file.

$sed 's/unix/linux/' geekfile.txt

Output :

linux is great os. unix is opensource. unix is free os.

learn operating system.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

Here the “s” specifies the substitution operation. The “/” are

delimiters. The “unix” is the search pattern and the “linux” is the

replacement string.

By default, the sed command replaces the first occurrence of the

pattern in each line and it won’t replace the second, third…occurrence

in the line.

2. Replacing the nth occurrence of a pattern in a line : Use the /1, /2 etc

flags to replace the first, second occurrence of a pattern in a line. The below

command replaces the second occurrence of the word “unix” with “linux” in

a line.

$sed 's/unix/linux/2' geekfile.txt

Output:

unix is great os. linux is opensource. unix is free os.

learn operating system.

unix linux which one you choose.

unix is easy to learn.linux is a multiuser os.Learn unix .unix is a

powerful.

3. Replacing all the occurrence of the pattern in a line : The substitute

flag /g (global replacement) specifies the sed command to replace all

the occurrences of the string in the line.

$sed 's/unix/linux/g' geekfile.txt

Output :

linux is great os. linux is opensource. linux is free os.

learn operating system.

linux linux which one you choose.

linux is easy to learn.linux is a multiuser os.Learn linux .linux is a

powerful.

4. Replacing from nth occurrence to all occurrences in a line : Use

the combination of /1, /2 etc and /g to replace all the patterns from the

nth occurrence of a pattern in a line. The following sed command

replaces the third, fourth, fifth… “unix” word with “linux” word in a

line.

$sed 's/unix/linux/3g' geekfile.txt

Output:

unix is great os. unix is opensource. linux is free os.

learn operating system.

unix linux which one you choose.

unix is easy to learn.unix is a multiuser os.Learn linux .linux is a

powerful.

5. Parenthesize first character of each word : This sed example prints

the first character of every word in parenthesis.

$ echo "Welcome To The Geek Stuff" | sed 's/\(\b[A-Z]\)/\(\1\)/g'

Output:

(W)elcome (T)o (T)he (G)eek (S)tuff

6. Replacing string on a specific line number : You can restrict the sed

command to replace the string on a specific line number. An example

is

$sed '3 s/unix/123/' geekfile.txt

Output:

unix is great os. unix is opensource. unix is free os.

learn operating system.

linux linux which one you choose.

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

The above sed command replaces the string only on the third line.

7. Duplicating the replaced line with /p flag : The /p print flag prints

the replaced line twice on the terminal. If a line does not have the

search pattern and is not replaced, then the /p prints that line only

once.

$sed 's/unix/linux/p' geekfile.txt

Output:

linux is great os. unix is opensource. unix is free os.

linux is great os. unix is opensource. unix is free os.

learn operating system.

linux linux which one you choose.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

8. Printing only the replaced lines : Use the -n option along with the /p

print flag to display only the replaced lines. Here the -n option

suppresses the duplicate rows generated by the /p flag and prints the

replaced lines only one time.

$sed -n 's/unix/linux/p' geekfile.txt

Output:

linux is great os. unix is opensource. unix is free os.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

If you use -n alone without /p, then the sed does not print anything.

9. Replacing string on a range of lines : You can specify a range of

line numbers to the sed command for replacing a string.

$sed '1,3 s/unix/linux/' geekfile.txt

Output:

linux is great os. unix is opensource. unix is free os.

learn operating system.

linux linux which one you choose.

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

Here the sed command replaces the lines with range from 1 to 3.

Another example is

$sed '2,$ s/unix/linux/' geekfile.txt

Output:

unix is great os. unix is opensource. unix is free os.

learn operating system.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful

Here $ indicates the last line in the file. So the sed command replaces

the text from second line to last line in the file.

10. Deleting lines from a particular file : SED command can also be

used for deleting lines from a particular file. SED command is used

for performing deletion operation without even opening the file

Examples:

1. To Delete a particular line say n in this example

 Syntax:

 $ sed 'nd' filename.txt

 Example:

$ sed '5d' filename.txt

2. To Delete a last line

Syntax:

$ sed '$d' filename.txt

3. To Delete line from range x to y

Syntax:

$ sed 'x,yd' filename.txt

Example:

$ sed '3,6d' filename.txt

4. To Delete from nth to last line

Syntax:

$ sed 'nth,$d' filename.txt

Example:

$ sed '12,$d' filename.txt

5. To Delete pattern matching line

Syntax:

$ sed '/pattern/d' filename.txt

Example:

$ sed '/abc/d' filename.txt

SED is used for finding, filtering, text substitution, replacement and text

manipulations like insertion, deletion search, etc. It’s a one of the powerful

utilities offered by Linux/Unix systems. We can use sed with regular

expressions. I hope atleast you have the basic knowledge about Linux regular

expressions.

It provides Non-interactive editing of text files that’s why it’s used to

automate editing and has two buffers – pattern buffer and hold

buffer. Sed use Pattern buffer when it read files, line by line and that currently

read line is inserted into pattern buffer whereas hold buffer is a long-term

storage, it catch the information, store it and reuse it when it is needed.

Initially, both are empty. SED command is used for performing different

operations without even opening the file.

sed general syntax –

sed OPTIONS… [SCRIPT] [INPUTFILE…]

Let’s start with File Spacing

1 – Insert one blank line after each line –

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed G f1.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

2 – To insert two blank lines –

$ sed 'G;G' f1.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

3 – Delete blank lines and insert one blank line after each line –

Admin@DESKTOP-TRR2ACF ~/program/sed

$ cat f1.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed '/^$/d;G' f1.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

4 – Insert a black line above every line which matches “Unix” –

Admin@DESKTOP-TRR2ACF ~/program/sed

$ cat f1.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed '/Unix/{x;p;x;}' f1.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

5 – Insert a blank line below every line which matches “Unix” –

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed '/Unix/G' f1.txt

unix is great os. unix is opensource. unix is free os.

learn operating system.

Unix linux which one you choose unix.

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

6 – Insert 5 spaces to the left of every lines –

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed 's/^/ /' f1.txt

 unix is great os. unix is opensource. unix is free os.

 learn operating system.

 Unix linux which one you choose unix.

 uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

 powerful.

Numbering lines

1 – Number each line of a file (left alignment). **=** is used to number the

line. \t is used for tab between number and sentence –

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed = f1.txt | sed 'N;s/\n/\t/'

1 unix is great os. unix is opensource. unix is free os.

2 learn operating system.

3 Unix linux which one you choose unix.

4 uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

5 powerful.

2 – Number each line of a file (number on left, right-aligned). This command

is similar to `cat -n filename`.

cl

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed = f1.txt | sed 'N; s/^/ /; s/ *\(.\{4,\}\)\n/\1 /'

 1 unix is great os. unix is opensource. unix is free os.

 2 learn operating system.

 3 Unix linux which one you choose unix.

 4 uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

 5 powerful.

3 – Number each line of file, only if line is not blank –

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed '/./=' f1.txt | sed '/./N; s/\n/ /'

1 unix is great os. unix is opensource. unix is free os.

2 learn operating system.

3 Unix linux which one you choose unix.

4 uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

5 powerful.

Admin@DESKTOP-TRR2ACF ~/program/sed

$ sed = f1.txt

1

unix is great os. unix is opensource. unix is free os.

2

learn operating system.

3

Unix linux which one you choose unix.

4

uNix is easy to learn.unix is a multiuser os.Learn unix .unix is a

5

powerful.

Deleting lines

1 – Delete a particular line –

Syntax: sed ‘nd’ filename

Example :

sed '5d' a.txt

2 – Delete the last line

Syntax: sed ‘$d’ filename

3 – Delete line from range x to y

Syntax: sed ‘x,yd’ filename

Example :

sed '3,5d' a.txt

4 – Delete from nth to last line

Syntax: sed ‘nth,$d’ filename

Example :

sed '2,$d' a.txt

5 – Delete the pattern matching line –

Syntax: sed ‘/pattern/d’ filename

Example :

sed '/life/d' a.txt

6 – Delete lines starting from nth line and every 2nd line from there –

Syntax: sed ‘n~2d’ filename

Example :

sed '3~2d' a.txt

7 – Delete the lines which matches the pattern and 2 lines after to that –

Syntax: sed ‘/pattern/,+2d’ filename

Example :

sed '/easy/,+2d' a.txt

8 – Delete blank Lines

sed '/^$/d' a.txt

9 – Delete empty lines or those begins with “#” –

sed -i '/^#/d;/^$/d' a.txt

View/Print the files

If we want to view content of file, then we use cat command and if we want to

view the bottom and the top content of any file, we use tools such

as head and tail. But what if we need to view a particular section in the middle

of any file? Here we’ll discuss, how to use SED command to view a section of

any file.

1 – Viewing a file from x to y range –

Syntax: sed -n ‘x,yp’ filename

Example :

sed -n '2,5p' a.txt

2 – View the entire file except the given range –

Syntax: sed ‘x,yd’ filename

Example :

sed '2,4d' a.txt

3 – Print nth line of the file –

Syntax: sed -n ‘address’p filename

Example :

sed -n '4'p a.txt

4 – Print lines from xth line to yth line.

Syntax: sed -n ‘x,y’p filename

Example :

sed -n '4,6'p a.txt

5 – Print only the last line –

Syntax: sed -n ‘$’p filename

6 – Print from nth line to end of file –

Syntax: sed -n ‘n,$p’ filename

Example :

sed -n '3,$'p a.txt

Pattern Printing

7 – Print the line only which matches the pattern –

Syntax: sed -n /pattern/p filename

Example :

sed -n /every/p a.txt

8 – Print lines which matches the pattern i.e from input to xth line.

Syntax: sed -n ‘/pattern/,xp’ filename

Example :

sed -n '/everyone/,5p' a.txt

Following prints lines which matches the pattern, 3rd line matches the pattern

“everyone”, so it prints from 3rd line to 5th line. Use $ in place of 5, if want to

print the file till end.

9 – Prints lines from the xth line of the input, up-to the line which matches the

pattern. If the pattern doesn’t found then it prints up-to end of the file.

Syntax: sed -n ‘x,/pattern/p’ filename

Example :

sed -n '1,/everyone/p' a.txt

10 – Print the lines which matches the pattern up-to the next xth lines –

Syntax: sed -n ‘/pattern/,+xp’ filename

Example :

sed -n '/learn/,+2p' a.txt

Replacement with the sed command

1 – Change the first occurrence of the pattern –

sed 's/life/leaves/' a.txt

2 – Replacing the nth occurrence of a pattern in a line –

Syntax: sed ‘s/old_pattern/new_pattern/n’ filename

Example :

 sed 's/to/two/2' a.txt

We wrote “2” because we replaces the second occurrence. Likewise you can

use 3, 4 etc according to need.

3 – Replacing all the occurrence of the pattern in a line.

sed 's/life/learn/g' a.txt

4 – Replace pattern from nth occurrence to all occurrences in a line.

Syntax: sed ‘s/old_pattern/new_pattern/ng’ filename

Example :

sed 's/to/TWO/2g' a.txt

Note – This sed command replaces the second, third, etc occurrences of

pattern “to” with “TWO” in a line.

If you wish to print only the replaced lines, then use “-n” option along with

“/p” print flag to display only the replaced lines –

sed -n 's/to/TWO/p' a.txt

And if you wish to print the replaced lines twice, then only use “/p” print flag

without “-n” option-

sed 's/to/TWO/p' a.txt

5 – Replacing pattern on a specific line number. Here, “m” is the line number.

Syntax: sed ‘m s/old_pattern/new_pattern/’ filename

Example :

sed '3 s/every/each/' a.txt

If you wish to print only the replaced lines –

sed -n '3 s/every/each/p' a.txt

6 – Replace string on a defined range of lines –

Syntax: sed ‘x,y s/old_pattern/new_pattern/’ filename

where,

x = starting line number

and y = ending line number

Example :

sed '2,5 s/to/TWO/' a.txt

Note – $ can be used in place of “y” if we wish to change the pattern up-to last

line in the file.

Example :

sed '2,$ s/to/TWO/' a.txt

7 – If you wish to replace pattern in order to ignore character case (beginning

with uppercase or lowercase), then there are two ways to replace such patterns

–

First, By using “/i” print flag –

Syntax: sed ‘s/old_pattern/new_pattern/i’ filename

Example :

sed 's/life/Love/i' a.txt

Second, By using regular expressions –

sed 's/[Ll]ife/Love/g' a.txt

8 – To replace multiple spaces with a single space –

sed 's/ */ /g' filename

9 – Replace one pattern followed by the another pattern –

Syntax: sed ‘/followed_pattern/ s/old_pattern/new_pattern/’ filename

Example :

sed '/is/ s/live/love/' a.txt

10 – Replace a pattern with other except in the nth line.

Syntax: sed ‘n!s/old_pattern/new_pattern/’ filename

Example :

sed -i '5!s/life/love/' a.txt

Unix Sed Tutorial: Printing File Lines using

Address and Patterns

Let us review how to print file lines using address and patterns in this first part of sed
tutorial.

We’ll be posting several awesome sed tutorials with examples in the upcoming weeks.

Unix Sed Introduction

▪ sed is a “non-interactive” stream-oriented editor. Since its an “non-interactive” it
can be used to automate editing if desired.

▪ The name sed is an abbreviation for stream editor, and the utility derives many of
its commands from the ed line-editor (ed was the first UNIX text editor).

▪ This allows you to edit multiple files, or to perform common editing operations
without ever having to open vi or emacs.

▪ sed reads from a file or from its standard input, and outputs to its standard
output.

▪ sed has two buffers which are called pattern buffer and hold buffer. Both are
initially empty.

Unix Sed Working methodology

This is called as one execution cycle. Cycle continues till end of file/input is reached.

1. Read a entire line from stdin/file.
2. Removes any trailing newline.
3. Places the line, in its pattern buffer.
4. Modify the pattern buffer according to the supplied commands.
5. Print the pattern buffer to stdout.

Printing Operation in Sed

Linux Sed command allows you to print only specific lines based on the line number
or pattern matches. “p” is a command for printing the data from the pattern buffer.
To suppress automatic printing of pattern space use -n command with sed. sed -n
option will not print anything, unless an explicit request to print is found.

Syntax:

sed -n 'ADDRESS'p filename

sed -n '/PATTERN/p' filename

Let us first create thegeekstuff.txt file that will be used in all the examples mentioned
below.

cat thegeekstuff.txt

1. Linux - Sysadmin, Scripting etc.

2. Databases - Oracle, mySQL etc.

3. Hardware

4. Security (Firewall, Network, Online Security etc)

5. Storage

6. Cool gadgets and websites

7. Productivity (Too many technologies to explore, not much time available)

8. Website Design

9. Software Development

10.Windows- Sysadmin, reboot etc.

5 Sed ADDRESS Format Examples

Sed Address Format 1: NUMBER

This will match only Nth line in the input.

sed -n ‘N’p filename
For example, 3p prints third line of input file thegeekstuff.txt as shown below.

sed -n '3'p thegeekstuff.txt

3. Hardware

Sed Address Format 2: NUMBER1~NUMBER2

M~N with “p” command prints every Nth line starting from line M.

sed -n ‘M~N’p filename
For example, 3~2p prints every 2nd line starting from 3rd line as shown below.

sed -n '3~2'p thegeekstuff.txt

3. Hardware

5. Storage

7. Productivity (Too many technologies to explore, not much time available)

9. Software Development

Sed Address Format 3: START,END

M,N with “p” command prints Mth line to Nth line.

sed -n ‘M,N’p filename
For example, 4,8p prints from 4th line to 8th line from input file thegeekstuff.txt

sed -n '4,8'p thegeekstuff.txt

4. Security (Firewall, Network, Online Security etc)

5. Storage

6. Cool gadgets and websites

7. Productivity (Too many technologies to explore, not much time available)

8. Website Design

Sed Address Format 4: ‘$’ Last Line

$ with “p” command matches only the last line from the input.

sed -n ‘$’p filename
For example, $p prints only the last line as shown below.

sed -n '$'p thegeekstuff.txt

10.Windows- Sysadmin, reboot etc.

Sed Address Format 5: NUMBER,$

N,$ with “p” command prints from Nth line to end of file.

sed -n ‘N,$p’ filename
For example 4,$p prints from 4th line to end of file.

sed -n '4,$p' thegeekstuff.txt

4. Security (Firewall, Network, Online Security etc)

5. Storage

6. Cool gadgets and websites

7. Productivity (Too many technologies to explore, not much time available)

8. Website Design

9. Software Development

10.Windows- Sysadmin, reboot etc.

6 Sed PATTERN Format Examples

Sed Pattern Format 1: PATTERN

PATTERN could be unix regular expression. The below command prints only the line
which matches the given pattern.

sed -n /PATTERN/p filename
For example, following prints the line only which matches the pattern “Sysadmin”.

sed -n /Sysadmin/p thegeekstuff.txt

1. Linux - Sysadmin, Scripting etc.

10.Windows- Sysadmin, reboot etc.

Sed Pattern Format 2: /PATTERN/,ADDRESS

sed -n ‘/PATTERN/,Np’ filename
For example, following prints lines which matches the pattern to Nth line, from
input. 3rd line matches the pattern “Hardware”, so it prints from 3rd line to 6th line.

sed -n '/Hardware/,6p' thegeekstuff.txt

3. Hardware

4. Security (Firewall, Network, Online Security etc)

5. Storage

6. Cool gadgets and websites

Sed Pattern Format 3: ADDRESS,/PATTERN/

It prints from the Nth line of the input, to the line which matches the pattern. If the
pattern doesnt match, it prints upto end of the input.

sed -n ‘N,/PATTERN/p’ filename
For example, 4th line matches the pattern “Security”, so it prints from 3rd line to 4th
line.

sed -n '3,/Security/p' thegeekstuff.txt

3. Hardware

4. Security (Firewall, Network, Online Security etc)

Sed Pattern Format 4: /PATTERN/,$

It prints from the line matches the given pattern to end of file.

sed -n ‘/PATTERN/,$p’ filename

sed -n '/Website/,$p' thegeekstuff.txt

8. Website Design

9. Software Development

10.Windows- Sysadmin, reboot etc.

Sed Pattern Format 5: /PATTERN/,+N

It prints the lines which matches the pattern and next N lines following the matched
line.

sed -n ‘/PATTERN/,+Np’ filename
For example, following prints the 5th line which matches the pattern /Storage/ and
next two lines following /Storage/.

sed -n '/Storage/,+2p' thegeekstuff.txt

5. Storage

6. Cool gadgets and websites

7. Productivity (Too many technologies to explore, not much time available)

Sed Pattern Format 6: /PATTERN/,/PATTERN/

Prints the section of file between two regular expression (including the matched line
).

sed -n ‘/P1/,/P2/p’ filename
For example, 5th line matches “Storage” and 8th line matches “Design”, so it prints
5th to 8th.

sed -n '/Storage/,/Design/p' thegeekstuff.txt

5. Storage

6. Cool gadgets and websites

7. Productivity (Too many technologies to explore, not much time available)

8. Website Design

Unix Sed Tutorial : 7 Examples for Sed Hold

and Pattern Buffer Operations

As its name implies, sed hold buffer is used to save all or part of the sed pattern
space for subsequent retrieval. The contents of the pattern space can be copied to
the hold space, then back again. No operations are performed directly on the hold
space. sed provides a set of hold and get functions to handle these movements.
Sed h function

The h (hold) function copies the contents of the pattern space into a holding area
(also called as sed hold space), destroying any previous contents of the holding
area.

Sed H function

The H function appends the contents of the pattern space to the contents of the
holding area. The former and new contents are separated by a newline.

Sed g function

The g function copies the contents of the holding area into the pattern space,
destroying the previous contents of the pattern space.

Sed G function

The G function appends the contents of the holding area to the contents of the
pattern space. The former and new contents are separated by a newline. The
maximum number of addresses is two.

Sed x function

The exchange function interchanges the contents of the pattern space and the
holding area. The maximum number of addresses is two.

Now let us see some examples to learn about the above commands.

Let us first create thegeekstuff.txt file that will be used in the examples mentioned
below.

$ cat thegeekstuff.txt

#Linux

 Administration

 Scripting

 Tips and Tricks

#Windows

 Administration

#Database

 Mysql

 Oracle

 Queries

 Procedures

1. Double Space a File Content Using Sed Command

$sed 'G' thegeekstuff.txt

#Linux

 Administration

 Scripting

 Tips and Tricks

#Windows

 Administration

#Database

 Mysql

 Oracle

 Queries

 Procedures

$

In this example,

1. Sed reads a line and places it in the pattern buffer.
2. G command appends the hold buffer to the pattern buffer separated by \n. so one

newline will be appended with the pattern space content.
3. Similarly, If you want to triple space a file, append hold buffer content to the

pattern buffer twice. (G;G)

2. Print File Content in Reverse Order Using Sed
Command

Print the lines of a file in reverse order (similar to tac command that we discussed
earlier).

$sed -n '1!G;h;$p' thegeekstuff.txt

 Procedures

 Queries

 Oracle

 Mysql

#Database

 Administration

#Windows

 Tips and Tricks

 Scripting

 Administration

#Linux

In this example,

1. First line will be placed into the hold space as it is.
2. From the 2nd line onwards, just append the hold space content with the pattern

space. (Remember 2nd line is in pattern space, and 1st line is in hold space).
3. Now 1st and 2nd line got reversed and move this to the hold space.
4. Repeat the above steps till last line.
5. Once the last line is reached, just append the hold space content with the pattern

space and print the pattern space.

https://www.thegeekstuff.com/2009/10/file-manipulation-examples-using-tac-rev-paste-and-join-unix-commands/

3. Print a Paragraph (Only if it contains given pattern)
Using Sed Command

In thegeekstuff.txt print paragraph only if it contains the pattern “Administration”.

$ sed -e '/./{H;$!d;}' -e 'x;/Administration/!d' thegeekstuff.txt

Linux

 Administration

 Scripting

 Tips and Tricks

Windows

 Administration

In this example,

1. Till the empty line comes, keep appending the non empty lines into the hold
space

2. When empty line comes i.e paragraph ends, exchange the data between pattern
and hold space. So that whole paragraph will be available in pattern space.
Check if pattern “Administration” is available, if yes don’t delete it i.e print the
pattern space

4. Print the line immediately before a pattern match
using Sed Command

Print only the line immediately before,the pattern “Mysql”.

$ sed -n '/Mysql/{g;1!p;};h' thegeekstuff.txt

#Database

In this example,

1. For each cycle, place the line into hold buffer, if it doesn’t match with the pattern
“Mysql”.

2. If the line matches with the pattern, get the data from the hold space(previous
line) using g command and print it.

3. In case, if the first line matches with the pattern “Mysql”,anyway hold space will
be empty.(There is no previous line to the first line).So first line should not get
printed(1!p)

5. Delete the last line of each paragraph using Sed
Command

$ sed -n -e '/^$/{x;d}' -e '/./x;p' thegeekstuff.txt

#Linux

 Administration

 Scripting

#Windows

#Database

 Mysql

 Oracle

 Queries

In this example,

1. If the line is not empty,then exchange the line between pattern and hold space. So
first line will be placed in the hold space.

2. When next non empty line comes, exchange the pattern space and hold space,
and print the pattern space. i.e first non empty line will be printed and 2nd line
goes to hold. And in next cycle, 2nd non empty line is printed when 3rd line goes
to hold and goes on like this.

3. When empty line comes (previous line to the empty line will be available in hold
buffer) just exchange pattern and hold space, and delete the line (last line of the
paragraph) and start the next cycle.

6. For each line, append the previous line to the end of it
using Sed Command

$ sed 'H;x;s/^\(.*\)\n\(.*\)/\2\1/' thegeekstuff.txt

#Linux

 Administration#Linux

 Scripting Administration

 Tips and Tricks Scripting

 Tips and Tricks

#Windows

 Administration#Windows

 Administration

#Database

 Mysql#Database

 Oracle Mysql

 Queries Oracle

 Procedures Queries

In this example,

1. Place the first line in Hold buffer.
2. When the second line comes, append to Hold space (first line)
3. Then exchange pattern and hold buffer. So now pattern space will have first and

second line separated by \n, Hold space will have only second line.
4. So interchange the lines in the pattern space.
5. The above steps happens till the end of the file

7. Prepend tag of every block to every line of that block

$ sed '

/^#/{

h

d

}

G

s/^\(.*\)\n#\(.*\)/\2 \1/' thegeekstuff.txt

Linux Administration

Linux Scripting

Linux Tips and Tricks

Linux

Windows Administration

Windows

Database Mysql

Database Oracle

Database Queries

Database Procedures

In this example,

1. When the first line of a block is met (beginning with #)
▪ keep that line to the Hold Space via command `h’
▪ Then delete using ‘d’ to start another cycle.

2. For the rest lines of a block, Command `G’ appends the tag line from the Hold
Space and substitute command interchanges tag and lines properly.

	What is Linux?
	Architecture of Linux :
	How is the Linux Operating System Used
	Table of Difference between Bash and Zsh
	4. Files Listing
	Creating Files touch command can be used to create a new file. It will create and open a new blank file if the file with a filename does not exist. And in case the file already exists then the file will not be affected.
	Displaying File Contents
	Copying a File
	Moving a File
	Renaming a File
	Deleting a File

	Categories of Files in Linux/UNIX :
	Types of File and Explanation
	1. Regular Files
	2. Directory Files

	Special Files
	1. Block Files:
	2. Character device files:
	3. Pipe Files:
	4. Symbol link files:
	5. Socket Files:

	Difference between Windows and Linux File System

