
403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 1

What is Java?

Java is a programming language and a platform. Java is a high level, robust, object-oriented and secure
programming language.

Java was developed by Sun Microsystems (which is now the subsidiary of Oracle) in the year 1995. James
Gosling is known as the father of Java. Before Java, its name was Oak. Since Oak was already a registered
company, so James Gosling and his team changed the name from Oak to Java.

Platform: Any hardware or software environment in which a program runs, is known as a platform. Since Java
has a runtime environment (JRE) and API, it is called a platform.

Java Example

Let's have a quick look at Java programming example. A detailed description of Hello Java example is available in
next page.

Simple.java

class Simple{

 public static void main(String args[]){

 System.out.println("Hello Java");

 }

}

Application

According to Sun, 3 billion devices run Java. There are many devices where Java is currently used. Some of them
are as follows:

1. Desktop Applications such as acrobat reader, media player, antivirus, etc.

2. Web Applications such as irctc.co.in, javatpoint.com, etc.

3. Enterprise Applications such as banking applications.

4. Mobile

5. Embedded System

6. Smart Card

7. Robotics

8. Games, etc.

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 2

Types of Java Applications

There are mainly 4 types of applications that can be created using Java programming:

1) Standalone Application

Standalone applications are also known as desktop applications or window-based applications. These are
traditional software that we need to install on every machine. Examples of standalone application are Media
player, antivirus, etc. AWT and Swing are used in Java for creating standalone applications.

2) Web Application

An application that runs on the server side and creates a dynamic page is called a web application.
Currently, Servlet, JSP, Struts, Spring, Hibernate, JSF, etc. technologies are used for creating web applications in
Java.

3) Enterprise Application

An application that is distributed in nature, such as banking applications, etc. is called an enterprise application.
It has advantages like high-level security, load balancing, and clustering. In Java, EJB is used for creating
enterprise applications.

4) Mobile Application

An application which is created for mobile devices is called a mobile application. Currently, Android and Java ME
are used for creating mobile applications.

Java Platforms / Editions

There are 4 platforms or editions of Java:

1) Java SE (Java Standard Edition)

It is a Java programming platform. It includes Java programming APIs such as java.lang, java.io, java.net, java.util,
java.sql, java.math etc. It includes core topics like OOPs, String, Regex, Exception, Inner classes, Multithreading,
I/O Stream, Networking, AWT, Swing, Reflection, Collection, etc.

2) Java EE (Java Enterprise Edition)

It is an enterprise platform that is mainly used to develop web and enterprise applications. It is built on top of
the Java SE platform. It includes topics like Servlet, JSP, Web Services, EJB, JPA, etc.

3) Java ME (Java Micro Edition)

It is a micro platform that is dedicated to mobile applications.

https://www.javatpoint.com/servlet-tutorial
https://www.javatpoint.com/jsp-tutorial
https://www.javatpoint.com/struts-2-tutorial
https://www.javatpoint.com/spring-tutorial
https://www.javatpoint.com/hibernate-tutorial
https://www.javatpoint.com/jsf-tutorial
https://www.javatpoint.com/ejb-tutorial
https://www.javatpoint.com/java-string
https://www.javatpoint.com/jpa-tutorial

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 3

4) JavaFX

It is used to develop rich internet applications. It uses a lightweight user interface API.

1.1 Properties or Features of Java OR Java buzzwords

The primary objective of Java programming language creation was to make it portable, simple and secure
programming language. Apart from this, there are also some excellent features which play an important role in
the popularity of this language. The features of Java are also known as Java buzzwords.

A list of the most important features of the Java language is given below.

1. Simple

2. Object-Oriented

3. Portable

4. Platform independent

5. Secured

6. Robust

7. Architecture neutral

8. Interpreted

9. High Performance

10. Multithreaded

11. Distributed

12. Dynamic

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/features-of-java#Simple
https://www.javatpoint.com/features-of-java#Object-Oriented
https://www.javatpoint.com/features-of-java#Portable
https://www.javatpoint.com/features-of-java#Platform-independent
https://www.javatpoint.com/features-of-java#Secured
https://www.javatpoint.com/features-of-java#Robust
https://www.javatpoint.com/features-of-java#Architecture-neutral
https://www.javatpoint.com/features-of-java#Interpreted
https://www.javatpoint.com/features-of-java#High-Performance
https://www.javatpoint.com/features-of-java#Multithreaded
https://www.javatpoint.com/features-of-java#Distributed
https://www.javatpoint.com/features-of-java#Dynamic

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 4

Simple

Java is very easy to learn, and its syntax is simple, clean and easy to understand. According to Sun Microsystem,
Java language is a simple programming language because:

o Java syntax is based on C++ (so easier for programmers to learn it after C++).

o Java has removed many complicated and rarely-used features, for example, explicit pointers, operator overloading,

etc.

o There is no need to remove unreferenced objects because there is an Automatic Garbage Collection in Java.

Object-oriented

Java is an object-oriented programming language. Everything in Java is an object. Object-oriented means we
organize our software as a combination of different types of objects that incorporate both data and behavior.
Object-oriented programming (OOPs) is a methodology that simplifies software development and maintenance
by providing some rules.

Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

6. Encapsulation

Platform Independent

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java#class
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/encapsulation

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 5

Java is platform independent because it is different from other languages like C, C++, etc. which are compiled
into platform specific machines while Java is a write once, run anywhere language. A platform is the hardware or
software environment in which a program runs.

There are two types of platforms software-based and hardware-based. Java provides a software-based platform.

The Java platform differs from most other platforms in the sense that it is a software-based platform that runs
on top of other hardware-based platforms. It has two components:

1. Runtime Environment

2. API(Application Programming Interface)

Java code can be executed on multiple platforms, for example, Windows, Linux, Sun Solaris, Mac/OS, etc. Java
code is compiled by the compiler and converted into bytecode. This bytecode is a platform-independent code
because it can be run on multiple platforms, i.e., Write Once and Run Anywhere (WORA).

Secured

Java is best known for its security. With Java, we can develop virus-free systems. Java is secured because:

o No explicit pointer

o Java Programs run inside a virtual machine sandbox

o Classloader: Classloader in Java is a part of the Java Runtime Environment (JRE) which is used to load Java classes

into the Java Virtual Machine dynamically. It adds security by separating the package for the classes of the local file

system from those that are imported from network sources.

o Bytecode Verifier: It checks the code fragments for illegal code that can violate access rights to objects.

o Security Manager: It determines what resources a class can access such as reading and writing to the local disk.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 6

Java language provides these securities by default. Some security can also be provided by an application
developer explicitly through SSL, JAAS, Cryptography, etc.

Robust

The English mining of Robust is strong. Java is robust because:

o It uses strong memory management.

o There is a lack of pointers that avoids security problems.

o Java provides automatic garbage collection which runs on the Java Virtual Machine to get rid of objects which are

not being used by a Java application anymore.

o There are exception handling and the type checking mechanism in Java. All these points make Java robust.

Architecture-neutral

Java is architecture neutral because there are no implementation dependent features, for example, the size of
primitive types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4 bytes of memory for
64-bit architecture. However, it occupies 4 bytes of memory for both 32 and 64-bit architectures in Java.

Portable

Java is portable because it facilitates you to carry the Java bytecode to any platform. It doesn't require any
implementation.

High-performance

Java is faster than other traditional interpreted programming languages because Java bytecode is "close" to
native code. It is still a little bit slower than a compiled language (e.g., C++). Java is an interpreted language that
is why it is slower than compiled languages, e.g., C, C++, etc.

Distributed

Java is distributed because it facilitates users to create distributed applications in Java. RMI and EJB are used for
creating distributed applications. This feature of Java makes us able to access files by calling the methods from
any machine on the internet.

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 7

Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs that deal with many
tasks at once by defining multiple threads. The main advantage of multi-threading is that it doesn't occupy
memory for each thread. It shares a common memory area. Threads are important for multi-media, Web
applications, etc.

Dynamic

Java is a dynamic language. It supports the dynamic loading of classes. It means classes are loaded on demand. It
also supports functions from its native languages, i.e., C and C++.

Java supports dynamic compilation and automatic memory management (garbage collection).

1.2 Comparison of java with C++

There are many differences and similarities between the C++ programming language and Java.

A list of top differences between C++ and Java are given below:

Comparison

Index

C++ Java

Platform-

independent
C++ is platform-dependent. Java is platform-independent.

Mainly used for C++ is mainly used for system

programming.

Java is mainly used for application programming. It

is widely used in Windows-based, web-based,

enterprise, and mobile applications.

Design Goal C++ was designed for systems and

applications programming. It was an

extension of the C programming

language.

Java was designed and created as an interpreter

for printing systems but later extended as a

support network computing. It was designed to be

easy to use and accessible to a broader audience.

Goto C++ supports the goto statement. Java doesn't support the goto statement.

Multiple

inheritance

C++ supports multiple inheritance. Java doesn't support multiple inheritance through

class. It can be achieved by using interfaces in java.

https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-goto-statement
https://www.javatpoint.com/interface-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 8

Operator

Overloading

C++ supports operator overloading. Java doesn't support operator overloading.

Pointers C++ supports pointers. You can write

a pointer program in C++.

Java supports pointer internally. However, you

can't write the pointer program in java. It means

java has restricted pointer support in java.

Compiler and

Interpreter

C++ uses compiler only. C++ is

compiled and run using the compiler

which converts source code into

machine code so, C++ is platform

dependent.

Java uses both compiler and interpreter. Java

source code is converted into bytecode at

compilation time. The interpreter executes this

bytecode at runtime and produces output. Java is

interpreted that is why it is platform-independent.

Call by Value and

Call by reference

C++ supports both call by value and

call by reference.

Java supports call by value only. There is no call by

reference in java.

Structure and

Union

C++ supports structures and unions. Java doesn't support structures and unions.

Thread Support C++ doesn't have built-in support for

threads. It relies on third-party

libraries for thread support.

Java has built-in thread support.

Documentation

comment

C++ doesn't support documentation

comments.

Java supports documentation comment (/** ... */)

to create documentation for java source code.

Virtual Keyword C++ supports virtual keyword so that

we can decide whether or not to

override a function.

Java has no virtual keyword. We can override all

non-static methods by default. In other words,

non-static methods are virtual by default.

unsigned right

shift >>>

C++ doesn't support >>> operator. Java supports unsigned right shift >>> operator

that fills zero at the top for the negative numbers.

For positive numbers, it works same like >>

operator.

Inheritance Tree C++ always creates a new inheritance

tree.

Java always uses a single inheritance tree because

all classes are the child of the Object class in Java.

The Object class is the root of the inheritance tree

in java.

Hardware C++ is nearer to hardware. Java is not so interactive with hardware.

https://www.javatpoint.com/cpp-overloading
https://www.javatpoint.com/cpp-pointers
https://www.javatpoint.com/multithreading-in-java
https://www.javatpoint.com/inheritance-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 9

Object-oriented C++ is an object-oriented language.

However, in the C language, a single

root hierarchy is not possible.

Java is also an object-oriented language. However,

everything (except fundamental types) is an object

in Java. It is a single root hierarchy as everything

gets derived from java.lang.Object.

Note

o Java doesn't support default arguments like C++.

o Java does not support header files like C++. Java uses the import keyword to include different classes and methods.

C++ Program Example

File: main.cpp

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello C++ Programming";

 return 0;

}

Output:

Hello C++ Programming

Java Program Example

File: Simple.java

class Simple{

 public static void main(String args[]){

 System.out.println("Hello Java");

 }

}

Output:

Hello Java

https://www.javatpoint.com/java-oops-concepts

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 10

First Java Program | Hello World Example
1. Software Requirements

2. Creating Hello Java Example

3. Resolving javac is not recognized

In this section, we will learn how to write the simple program of Java. We can write a simple hello Java program
easily after installing the JDK.

To create a simple Java program, you need to create a class that contains the main method. Let's understand the
requirement first.

The requirement for Java Hello World Example

For executing any Java program, the following software or application must be properly installed.

o Install the JDK if you don't have installed it, download the JDK and install it.

o Set path of the jdk/bin directory. http://www.javatpoint.com/how-to-set-path-in-java

o Create the Java program

o Compile and run the Java program

Creating Hello World Example

Let's create the hello java program:

class Simple{

 public static void main(String args[]){

 System.out.println("Hello Java");

 }

}

Save the above file as Simple.java.

To compile: javac Simple.java

To execute: java Simple

Output:

Hello Java

https://www.javatpoint.com/simple-program-of-java#hellojavareq
https://www.javatpoint.com/simple-program-of-java#hellojavaex
https://www.javatpoint.com/simple-program-of-java#hellojavawhatjavacnot
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.javatpoint.com/how-to-set-path-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 11

1.3 Java Compiler, Java Interpreter :

When we compile Java program using javac tool, the Java compiler converts the source code into byte code.

Parameters used in First Java Program

Let's see what is the meaning of class, public, static, void, main, String[], System.out.println().

o class keyword is used to declare a class in Java.

o public keyword is an access modifier that represents visibility. It means it is visible to all.

o static is a keyword. If we declare any method as static, it is known as the static method. The core advantage of the

static method is that there is no need to create an object to invoke the static method. The main() method is

executed by the JVM, so it doesn't require creating an object to invoke the main() method. So, it saves memory.

o void is the return type of the method. It means it doesn't return any value.

o main represents the starting point of the program.

o String[] args or String args[] is used for command line argument. We will discuss it in coming section.

o System.out.println() is used to print statement. Here, System is a class, out is an object of the PrintStream class,

println() is a method of the PrintStream class. We will discuss the internal working

of System.out.println() statement in the coming section.

To write the simple program, you need to open notepad by start menu -> All Programs -> Accessories ->
Notepad and write a simple program as we have shownbelow:

https://www.javatpoint.com/command-line-argument
https://www.javatpoint.com/system-out-println-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 12

As displayed in the above diagram, write the simple program of Java in notepad and saved it as Simple.java. In
order to compile and run the above program, you need to open the command prompt by start menu -> All
Programs -> Accessories -> command prompt. When we have done with all the steps properly, it shows the
following output:

To compile and run the above program, go to your current directory first; my current directory is c:\new. Write
here:

To compile: javac Simple.java

To execute: java Simple

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 13

In how many ways we can write a Java program?

There are many ways to write a Java program. The modifications that can be done in a Java program are given
below:

1) By changing the sequence of the modifiers, method prototype is not changed in Java.

Let's see the simple code of the main method.

1. static public void main(String args[])

2) The subscript notation in the Java array can be used after type, before the variable or after the variable.

Let's see the different codes to write the main method.

1. public static void main(String[] args)

2. public static void main(String []args)

3. public static void main(String args[])

3) You can provide var-args support to the main() method by passing 3 ellipses (dots)

Let's see the simple code of using var-args in the main() method. We will learn about var-args later in the Java
New Features chapter.

1. public static void main(String... args)

4) Having a semicolon at the end of class is optional in Java.

Let's see the simple code.

1. class A{

2. static public void main(String... args){

3. System.out.println("hello java4");

4. }

5. };

Valid Java main() method signature

1. public static void main(String[] args)

2. public static void main(String []args)

3. public static void main(String args[])

4. public static void main(String... args)

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 14

5. static public void main(String[] args)

6. public static final void main(String[] args)

7. final public static void main(String[] args)

8. final strictfp public static void main(String[] args)

Invalid Java main() method signature

1. public void main(String[] args)

2. static void main(String[] args)

3. public void static main(String[] args)

4. abstract public static void main(String[] args)

Resolving an error "javac is not recognized as an internal or external command"?

If there occurs a problem like displayed in the below figure, you need to set a path. Since DOS doesn't recognize
javac and java as internal or external command. To overcome this problem, we need to set a path. The path is
not required in a case where you save your program inside the JDK/bin directory. However, it is an excellent
approach to set the path. Click here for How to set path in java.

https://www.javatpoint.com/how-to-set-path-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 15

Identifiers in Java

Identifiers in Java are symbolic names used for identification. They can be a class name, variable name, method
name, package name, constant name, and more. However,

In Java,There are some reserved words that can not be used as an identifier.

For every identifier there are some conventions that should be used before declaring them. Let's understand it
with a simple Java program:

public class HelloJava {

1. public static void main(String[] args) {

2. System.out.println("Hello JavaTpoint");

3. }

4. }

From the above example, we have the following Java identifiers:

1. HelloJava (Class name)

2. main (main method)

3. String (Predefined Class name)

4. args (String variables)

5. System (Predefined class)

6. out (Variable name)

7. println (method)

https://www.javatpoint.com/java-tutorial

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 16

let's understand the rules for Java identifier:

Rules for Identifiers in Java

There are some rules and conventions for declaring the identifiers in Java. If the identifiers are not properly
declared, we may get a compile-time error. Following are some rules and conventions for declaring identifiers:

o A valid identifier must have characters [A-Z] or [a-z] or numbers [0-9], and underscore(_) or a dollar sign ($). for

example, @javatpoint is not a valid identifier because it contains a special character which is @.

o There should not be any space in an identifier. For example, java tpoint is an invalid identifier.

o An identifier should not contain a number at the starting. For example, 123javatpoint is an invalid identifier.

o An identifier should be of length 4-15 letters only. However, there is no limit on its length. But, it is good to follow

the standard conventions.

o We can't use the Java reserved keywords as an identifier such as int, float, double, char, etc. For example, int

double is an invalid identifier in Java.

o An identifier should not be any query language keywords such as SELECT, FROM, COUNT, DELETE, etc.

Literals in Java

In Java

, literal is a notation that represents a fixed value in the source code. In lexical analysis, literals of a given type are generally

known as tokens

. In this section, we will discuss the term literals in Java.

Literals

In Java, literals are the constant values that appear directly in the program. It can be assigned directly to a
variable. Java has various types of literals. The following figure represents a literal.

Types of Literals in Java

There are the majorly four types of literals in Java:

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tokens
https://www.javatpoint.com/java-tokens

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 17

1. Integer Literal

2. Character Literal

3. Boolean Literal

4. String Literal

Integer Literals

Integer literals are sequences of digits. There are three types of integer literals:

o Decimal Integer: These are the set of numbers that consist of digits from 0 to 9. It may have a positive (+) or

negative (-) Note that between numbers commas and non-digit characters are not permitted. For example, 5678,

+657, -89, etc.

int decVal = 26;

o Octal Integer: It is a combination of number have digits from 0 to 7 with a leading 0. For example, 045, 026,

 int octVal = 067;

o Hexa-Decimal: The sequence of digits preceded by 0x or 0X is considered as hexadecimal integers. It may also

include a character from a to f or A to F that represents numbers from 10 to 15, respectively. For example, 0xd,

0xf,

 int hexVal = 0x1a;

o Binary Integer: Base 2, whose digits consists of the numbers 0 and 1 (you can create binary literals in Java SE 7 and

later). Prefix 0b represents the Binary system. For example, 0b11010.

 int binVal = 0b11010;

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 18

Real Literals

The numbers that contain fractional parts are known as real literals. We can also represent real literals in
exponent form. For example, 879.90, 99E-3, etc.

Backslash Literals

Java supports some special backslash character literals known as backslash literals. They are used in formatted
output. For example:

\n: It is used for a new line

\t: It is used for horizontal tab

\b: It is used for blank space

\v: It is used for vertical tab

\a: It is used for a small beep

\r: It is used for carriage return

\': It is used for a single quote

\": It is used for double quotes

Character Literals

A character literal is expressed as a character or an escape sequence, enclosed in a single quote ('') mark. It is
always a type of char. For example, 'a', '%', '\u000d', etc.

String Literals

String literal is a sequence of characters that is enclosed between double quotes ("") marks. It may be alphabet,
numbers, special characters, blank space, etc. For example, "Jack", "12345", "\n", etc.

Floating Point Literals

The vales that contain decimal are floating literals. In Java, float and double primitive types fall into floating-point
literals. Keep in mind while dealing with floating-point literals.

o Floating-point literals for float type end with F or f. For example, 6f, 8.354F, etc. It is a 32-bit float literal.

o Floating-point literals for double type end with D or d. It is optional to write D or d. For example, 6d, 8.354D, etc. It

is a 64-bit double literal.

o It can also be represented in the form of the exponent.

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 19

 Floating:

 float length = 155.4f;

 Decimal:

 double interest = 99658.445;

 Decimal in Exponent form:

 double val= 1.234e2;

Boolean Literals

Boolean literals are the value that is either true or false. It may also have values 0 and 1. For example, true,
0, etc.

 boolean isEven = true;

Null Literals

Null literal is often used in programs as a marker to indicate that reference type object is unavailable. The
value null may be assigned to any variable, except variables of primitive types.

 String stuName = null;

 Student age = null;

Class Literals

Class literal formed by taking a type name and appending .class extension. For example, Scanner.class. It refers
to the object (of type Class) that represents the type itself.

class classType = Scanner.class;

Invalid Literals

There is some invalid declaration of literals.

float g = 6_.674f;

float g = 6._674F;

long phoneNumber = 99_00_99_00_99_L;

int x = 77_;

int y = 0_x76;

int z = 0X_12;

int z = 0X12_;

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 20

Restrictions to Use Underscore (_)

o It can be used at the beginning, at the end, and in-between of a number.

o It can be adjacent to a decimal point in a floating-point literal.

o Also, can be used prior to an F or L suffix.

o In positions where a string of digits is expected.

Why use literals?

To avoid defining the constant somewhere and making up a label for it. Instead, to write the value of a constant
operand as a part of the instruction.

How to use literals?

A literal in Java can be identified with the prefix =, followed by a specific value.

Let's create a Java program and use above discussed literals.

LiteralsExample.java

public class LiteralsExample

{

public static void main(String args[])

{

int count = 987;

float floatVal = 4534.99f;

double cost = 19765.567;

int hexaVal = 0x7e4;

int binary = 0b11010;

char alpha = 'p';

String str = "Java";

boolean boolVal = true;

int octalVal = 067;

String stuName = null;

char ch1 = '\u0021';

char ch2 = 1456;

System.out.println(count);

System.out.println(floatVal);

System.out.println(cost);

System.out.println(hexaVal);

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 21

System.out.println(binary);

System.out.println(alpha);

System.out.println(str);

System.out.println(boolVal);

System.out.println(octalVal);

System.out.println(stuName);

System.out.println(ch1);

System.out.println("\t" +"backslash literal");

System.out.println(ch2);

}

}

Output:

987
4534.99
19765.567
2020
26
p
Java
true
55
null
!
 backslash literal
?

Operators in Java

There are many types of operators in Java which are given below:

o Unary Operator,

o Arithmetic Operator,

o Shift Operator,

o Relational Operator,

o Bitwise Operator,

o Logical Operator,

o Ternary Operator and

o Assignment Operator.

Java Operator Precedence

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 22

Operator Type Category Precedence

Unary postfix expr++ expr--

prefix ++expr --expr +expr -expr ~ !

Arithmetic multiplicative * / %

additive + -

Shift shift << >> >>>

Relational comparison < > <= >= instanceof

equality == !=

Bitwise bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

Logical logical AND &&

logical OR ||

Ternary ternary ? :

Assignment assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

Java Unary Operator

The Java unary operators require only one operand. Unary operators are used to

perform various operations i.e.: rementing/decrementing a value by one

o negating an expression

o inverting the value of a boolean

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 23

Java Unary Operator Example: ++ and --

public class OperatorExample{

public static void main(String args[]){

int x=10;

System.out.println(x++);//10 (11)

System.out.println(++x);//12

System.out.println(x--);//12 (11)

System.out.println(--x);//10

}}

Output:

10
12
12
10

Java Unary Operator Example 2: ++ and --

public class OperatorExample{

public static void main(String args[]){

int a=10;

int b=10;

System.out.println(a++ + ++a);//10+12=22

System.out.println(b++ + b++);//10+11=21

}}

Output:

22
21

Java Unary Operator Example: ~ and !

public class OperatorExample{

public static void main(String args[]){

int a=10;

int b=-10;

boolean c=true;

boolean d=false;

System.out.println(~a);//-11 (minus of total positive value which starts from 0)

System.out.println(~b);//9 (positive of total minus, positive starts from 0)

System.out.println(!c);//false (opposite of boolean value)

System.out.println(!d);//true

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 24

}}

Output:

-11
9
false
true

Java Arithmetic Operators

Java arithmetic operators are used to perform addition, subtraction, multiplication, and division. They act as
basic mathematical operations.

Java Arithmetic Operator Example

public class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

System.out.println(a+b);//15

System.out.println(a-b);//5

System.out.println(a*b);//50

System.out.println(a/b);//2

System.out.println(a%b);//0

}}

Output:

15
5
50
2
0

Java Arithmetic Operator Example: Expression

public class OperatorExample{

public static void main(String args[]){

System.out.println(10*10/5+3-1*4/2);

}}

Output:

21

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 25

Java Left Shift Operator

The Java left shift operator << is used to shift all of the bits in a value to the left side of a specified number of
times.

Java Left Shift Operator Example

public class OperatorExample{

public static void main(String args[]){

System.out.println(10<<2);//10*2^2=10*4=40

System.out.println(10<<3);//10*2^3=10*8=80

System.out.println(20<<2);//20*2^2=20*4=80

System.out.println(15<<4);//15*2^4=15*16=240

}} Output:
40
80
80
240

Java Right Shift Operator

The Java right shift operator >> is used to move the value of the left operand to right by the number of bits
specified by the right operand.

Java Right Shift Operator Example

public OperatorExample{

public static void main(String args[]){

System.out.println(10>>2);//10/2^2=10/4=2

System.out.println(20>>2);//20/2^2=20/4=5

System.out.println(20>>3);//20/2^3=20/8=2

}}

Output:

2
5
2

Java Shift Operator Example: >> vs >>>

public class OperatorExample{

public static void main(String args[]){

 //For positive number, >> and >>> works same

 System.out.println(20>>2);

 System.out.println(20>>>2);

 //For negative number, >>> changes parity bit (MSB) to 0

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 26

 System.out.println(-20>>2);

 System.out.println(-20>>>2);

}}

Output:

5
5
-5
1073741819

Java AND Operator Example: Logical && and Bitwise &

The logical && operator doesn't check the second condition if the first condition is false. It checks the second
condition only if the first one is true.

The bitwise & operator always checks both conditions whether first condition is true or false.

public class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

int c=20;

System.out.println(a<b&&a<c);//false && true = false

System.out.println(a<b&a<c);//false & true = false

}}

Output:

false
false

Java AND Operator Example: Logical && vs Bitwise &

public class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

int c=20;

System.out.println(a<b&&a++<c);//false && true = false

System.out.println(a);//10 because second condition is not checked

System.out.println(a<b&a++<c);//false && true = false

System.out.println(a);//11 because second condition is checked

}}

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 27

Output:

false
10
false
11

Java OR Operator Example: Logical || and Bitwise |

The logical || operator doesn't check the second condition if the first condition is true. It checks the second
condition only if the first one is false.

The bitwise | operator always checks both conditions whether first condition is true or false.

public class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

int c=20;

System.out.println(a>b||a<c);//true || true = true

System.out.println(a>b|a<c);//true | true = true

//|| vs |

System.out.println(a>b||a++<c);//true || true = true

System.out.println(a);//10 because second condition is not checked

System.out.println(a>b|a++<c);//true | true = true

System.out.println(a);//11 because second condition is checked

}}

Output:

true
true
true
10
true
11

Java Ternary Operator

Java Ternary operator is used as one line replacement for if-then-else statement and used a lot in Java
programming. It is the only conditional operator which takes three operands.

Java Ternary Operator Example

public class OperatorExample{

public static void main(String args[]){

https://www.javatpoint.com/operators-in-java
https://www.javatpoint.com/operators-in-java
https://www.javatpoint.com/operators-in-java
https://www.javatpoint.com/operators-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 28

int a=2;

int b=5;

int min=(a<b)?a:b;

System.out.println(min);

}}

Output:

2

Another Example:

public class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

int min=(a<b)?a:b;

System.out.println(min);

}}

Output:

5

Java Assignment Operator

Java assignment operator is one of the most common operators. It is used to assign the value on its right to the
operand on its left.

Java Assignment Operator Example

public class OperatorExample{

public static void main(String args[]){

int a=10;

int b=20;

a+=4;//a=a+4 (a=10+4)

b-=4;//b=b-4 (b=20-4)

System.out.println(a);

System.out.println(b);

}}

 Output:
14

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 29

16

Java Assignment Operator Example

public class OperatorExample{

public static void main(String[] args){

int a=10;

a+=3;//10+3

System.out.println(a);

a-=4;//13-4

System.out.println(a);

a*=2;//9*2

System.out.println(a);

a/=2;//18/2

System.out.println(a);

}}

Output:

13
9
18
9

Java Assignment Operator Example: Adding short

public class OperatorExample{

public static void main(String args[]){

short a=10;

short b=10;

//a+=b;//a=a+b internally so fine

a=a+b;//Compile time error because 10+10=20 now int

System.out.println(a);

}}

Output:
Compile time error

After type cast:

public class OperatorExample{

public static void main(String args[]){

short a=10;

https://www.javatpoint.com/operators-in-java
https://www.javatpoint.com/operators-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 30

short b=10;

a=(short)(a+b);//20 which is int now converted to short

System.out.println(a);

}}

Output:

20

Java Variables

A variable is a container which holds the value while the Java program

is executed. A variable is assigned with a data type.

Variable is a name of memory location. There are three types of variables in java: local, instance and static.

Variable

A variable is the name of a reserved area allocated in memory. In other words, it is a name of the memory
location. It is a combination of "vary + able" which means its value can be changed.

int data=50;//Here data is variable

Types of Variables

There are three types of variables in Java

o local variable

o instance variable

o static variable

1) Local Variable

A variable declared inside the body of the method is called local variable. You can use this variable only within
that method and the other methods in the class aren't even aware that the variable exists.

A local variable cannot be defined with "static" keyword.

https://www.javatpoint.com/simple-program-of-java
https://www.javatpoint.com/simple-program-of-java
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 31

2) Instance Variable

A variable declared inside the class but outside the body of the method, is called an instance variable. It is not
declared as static.

It is called an instance variable because its value is instance-specific and is not shared among instances.

3) Static variable

A variable that is declared as static is called a static variable. It cannot be local. You can create a single copy of
the static variable and share it among all the instances of the class. Memory allocation for static variables
happens only once when the class is loaded in the memory.

Example to understand the types of variables in java

public class A

{

 static int m=100;//static variable

 void method()

 {

 int n=90;//local variable

 }

 public static void main(String args[])

 {

 int data=50;//instance variable

 }

}//end of class

Java Variable Example: Add Two Numbers

public class Simple{

public static void main(String[] args){

int a=10;

int b=10;

int c=a+b;

System.out.println(c);

}

}

Output:

20

https://www.javatpoint.com/static-keyword-in-java
https://www.javatpoint.com/static-keyword-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 32

Java Keywords

Java keywords are also known as reserved words. Keywords are particular words that act as a key to a code.
These are predefined words by Java so they cannot be used as a variable or object name or class name.

List of Java Keywords

A list of Java keywords or reserved words are given below:

1. abstract: Java abstract keyword is used to declare an abstract class. An abstract class can provide the

implementation of the interface. It can have abstract and non-abstract methods.

2. boolean:Java boolean keyword is used to declare a variable as a boolean type. It can hold True and False values

only.

3. break: Java break keyword is used to break the loop or switch statement. It breaks the current flow of the program

at specified conditions.

4. byte: Java byte keyword is used to declare a variable that can hold 8-bit data values.

5. case: Java case keyword is used with the switch statements to mark blocks of text.

6. catch: Java catch keyword is used to catch the exceptions generated by try statements. It must be used after the

try block only.

7. char: Java char keyword is used to declare a variable that can hold unsigned 16-bit Unicode characters

8. class: Java class keyword is used to declare a class.

9. continue: Java continue keyword is used to continue the loop. It continues the current flow of the program and

skips the remaining code at the specified condition.

10. default: Java default keyword is used to specify the default block of code in a switch statement.

11. do: Java do keyword is used in the control statement to declare a loop. It can iterate a part of the program several

times.

12. double: Java double keyword is used to declare a variable that can hold 64-bit floating-point number.

13. else: Java else keyword is used to indicate the alternative branches in an if statement.

14. enum: Java enum keyword is used to define a fixed set of constants. Enum constructors are always private or

default.

15. extends: Java extends keyword is used to indicate that a class is derived from another class or interface.

16. final: Java final keyword is used to indicate that a variable holds a constant value. It is used with a variable. It is

used to restrict the user from updating the value of the variable.

17. finally: Java finally keyword indicates a block of code in a try-catch structure. This block is always executed whether

an exception is handled or not.

18. float: Java float keyword is used to declare a variable that can hold a 32-bit floating-point number.

https://www.javatpoint.com/abstract-keyword-in-java
https://www.javatpoint.com/boolean-keyword-in-java
https://www.javatpoint.com/java-break
https://www.javatpoint.com/byte-keyword-in-java
https://www.javatpoint.com/case-keyword-in-java
https://www.javatpoint.com/try-catch-block
https://www.javatpoint.com/char-keyword-in-java
https://www.javatpoint.com/class-keyword-in-java
https://www.javatpoint.com/java-continue
https://www.javatpoint.com/default-keyword-in-java
https://www.javatpoint.com/java-do-while-loop
https://www.javatpoint.com/double-keyword-in-java
https://www.javatpoint.com/java-if-else
https://www.javatpoint.com/enum-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/final-keyword
https://www.javatpoint.com/finally-block-in-exception-handling
https://www.javatpoint.com/float-keyword-in-java

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 33

19. for: Java for keyword is used to start a for loop. It is used to execute a set of instructions/functions repeatedly

when some condition becomes true. If the number of iteration is fixed, it is recommended to use for loop.

20. if: Java if keyword tests the condition. It executes the if block if the condition is true.

21. implements: Java implements keyword is used to implement an interface.

22. import: Java import keyword makes classes and interfaces available and accessible to the current source code.

23. instanceof: Java instanceof keyword is used to test whether the object is an instance of the specified class or

implements an interface.

24. int: Java int keyword is used to declare a variable that can hold a 32-bit signed integer.

25. interface: Java interface keyword is used to declare an interface. It can have only abstract methods.

26. long: Java long keyword is used to declare a variable that can hold a 64-bit integer.

27. native: Java native keyword is used to specify that a method is implemented in native code using JNI (Java Native

Interface).

28. new: Java new keyword is used to create new objects.

29. null: Java null keyword is used to indicate that a reference does not refer to anything. It removes the garbage

value.

30. package: Java package keyword is used to declare a Java package that includes the classes.

31. private: Java private keyword is an access modifier. It is used to indicate that a method or variable may be accessed

only in the class in which it is declared.

32. protected: Java protected keyword is an access modifier. It can be accessible within the package and outside the

package but through inheritance only. It can't be applied with the class.

33. public: Java public keyword is an access modifier. It is used to indicate that an item is accessible anywhere. It has

the widest scope among all other modifiers.

34. return: Java return keyword is used to return from a method when its execution is complete.

35. short: Java short keyword is used to declare a variable that can hold a 16-bit integer.

36. static: Java static keyword is used to indicate that a variable or method is a class method. The static keyword in

Java is mainly used for memory management.

37. strictfp: Java strictfp is used to restrict the floating-point calculations to ensure portability.

38. super: Java super keyword is a reference variable that is used to refer to parent class objects. It can be used to

invoke the immediate parent class method.

39. switch: The Java switch keyword contains a switch statement that executes code based on test value. The switch

statement tests the equality of a variable against multiple values.

40. synchronized: Java synchronized keyword is used to specify the critical sections or methods in multithreaded code.

41. this: Java this keyword can be used to refer the current object in a method or constructor.

https://www.javatpoint.com/java-for-loop
https://www.javatpoint.com/java-if-else
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/package
https://www.javatpoint.com/downcasting-with-instanceof-operator
https://www.javatpoint.com/int-keyword-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/long-keyword-in-java
https://www.javatpoint.com/new-keyword-in-java
https://www.javatpoint.com/null-keyword-in-java
https://www.javatpoint.com/package
https://www.javatpoint.com/private-keyword-in-java
https://www.javatpoint.com/protected-keyword-in-java
https://www.javatpoint.com/public-keyword-in-java
https://www.javatpoint.com/return-keyword-in-java
https://www.javatpoint.com/short-keyword-in-java
https://www.javatpoint.com/static-keyword-in-java
https://www.javatpoint.com/strictfp-keyword
https://www.javatpoint.com/super-keyword
https://www.javatpoint.com/java-switch
https://www.javatpoint.com/synchronization-in-java
https://www.javatpoint.com/this-keyword

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 34

42. throw: The Java throw keyword is used to explicitly throw an exception. The throw keyword is mainly used to

throw custom exceptions. It is followed by an instance.

43. throws: The Java throws keyword is used to declare an exception. Checked exceptions can be propagated with

throws.

44. transient: Java transient keyword is used in serialization. If you define any data member as transient, it will not be

serialized.

45. try: Java try keyword is used to start a block of code that will be tested for exceptions. The try block must be

followed by either catch or finally block.

46. void: Java void keyword is used to specify that a method does not have a return value.

47. volatile: Java volatile keyword is used to indicate that a variable may change asynchronously.

48. while: Java while keyword is used to start a while loop. This loop iterates a part of the program several times. If the

number of iteration is not fixed, it is recommended to use the while loop.

Data Types in Java

Data types specify the different sizes and values that can be stored in the variable. There are two types of data
types in Java:

1. Primitive data types: The primitive data types include boolean, char, byte, short, int, long, float and double.

2. Non-primitive data types: The non-primitive data types include Classes, Interfaces, and Arrays.

Java Primitive Data Types

In Java language, primitive data types are the building blocks of data manipulation. These are the most basic
data types available in Java language.
Java is a statically-typed programming language. It means, all variables must be declared before its use. That is why

we need to declare variable's type and name.

There are 8 types of primitive data types:obile Data Breach Affects Over 40 Million People

o boolean data type

o byte data type

o char data type

o short data type

o int data type

o long data type

o float data type

o double data type

https://www.javatpoint.com/throw-keyword
https://www.javatpoint.com/throws-keyword-and-difference-between-throw-and-throws
https://www.javatpoint.com/transient-keyword
https://www.javatpoint.com/try-catch-block
https://www.javatpoint.com/volatile-keyword-in-java
https://www.javatpoint.com/java-while-loop
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-variables

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 35

Data Type Default Value Default size

boolean false 1 bit

char '\u0000' 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

Boolean Data Type

The Boolean data type is used to store only two possible values: true and false. This data type is used for simple
flags that track true/false conditions.

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 36

The Boolean data type specifies one bit of information, but its "size" can't be defined precisely.

Example:

Boolean one = false

Byte Data Type

The byte data type is an example of primitive data type. It isan 8-bit signed two's complement integer. Its value-
range lies between -128 to 127 (inclusive). Its minimum value is -128 and maximum value is 127. Its default value
is 0.

The byte data type is used to save memory in large arrays where the memory savings is most required. It saves
space because a byte is 4 times smaller than an integer. It can also be used in place of "int" data type.

Example:

byte a = 10, byte b = -20

Short Data Type

The short data type is a 16-bit signed two's complement integer. Its value-range lies between -32,768 to 32,767
(inclusive). Its minimum value is -32,768 and maximum value is 32,767. Its default value is 0.

The short data type can also be used to save memory just like byte data type. A short data type is 2 times smaller
than an integer.

Example:

short s = 10000, short r = -5000

Int Data Type

The int data type is a 32-bit signed two's complement integer. Its value-range lies between - 2,147,483,648 (-
2^31) to 2,147,483,647 (2^31 -1) (inclusive). Its minimum value is - 2,147,483,648and maximum value is
2,147,483,647. Its default value is 0.

The int data type is generally used as a default data type for integral values unless if there is no problem about
memory.

Example:

int a = 100000, int b = -200000

Long Data Type

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 37

The long data type is a 64-bit two's complement integer. Its value-range lies between -
9,223,372,036,854,775,808(-2^63) to 9,223,372,036,854,775,807(2^63 -1)(inclusive). Its minimum value is -
9,223,372,036,854,775,808and maximum value is 9,223,372,036,854,775,807. Its default value is 0. The long
data type is used when you need a range of values more than those provided by int.

Example:

long a = 100000L, long b = -200000L

Float Data Type

The float data type is a single-precision 32-bit IEEE 754 floating point.Its value range is unlimited. It is
recommended to use a float (instead of double) if you need to save memory in large arrays of floating point
numbers. The float data type should never be used for precise values, such as currency. Its default value is 0.0F.

Example:

float f1 = 234.5f

Double Data Type

The double data type is a double-precision 64-bit IEEE 754 floating point. Its value range is unlimited. The double
data type is generally used for decimal values just like float. The double data type also should never be used for
precise values, such as currency. Its default value is 0.0d.

Example:

double d1 = 12.3

Char Data Type

The char data type is a single 16-bit Unicode character. Its value-range lies between '\u0000' (or 0) to '\uffff' (or
65,535 inclusive).The char data type is used to store characters.

Example:

char letterA = 'A'

Why char uses 2 byte in java and what is \u0000 ?

It is because java uses Unicode system not ASCII code system. The \u0000 is the lowest range of Unicode system.
To get detail explanation about Unicode visit next page.

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 38

Java Control Statements | Control Flow in Java

Java compiler executes the code from top to bottom. The statements in the code are executed according to the
order in which they appear. However, Java

provides statements that can be used to control the flow of Java code. Such statements are called control flow statements.

It is one of the fundamental features of Java, which provides a smooth flow of program.

Java provides three types of control flow statements.

1. Decision Making statements

o if statements

o switch statement

2. Loop statements

o do while loop

o while loop

o for loop

o for-each loop

3. Jump statements

o break statement

o continue statement

Decision-Making statements:

As the name suggests, decision-making statements decide which statement to execute and when. Decision-
making statements evaluate the Boolean expression and control the program flow depending upon the result of
the condition provided. There are two types of decision-making statements in Java, i.e., If statement and switch
statement.

1) If Statement:

In Java, the "if" statement is used to evaluate a condition. The control of the program is diverted depending upon
the specific condition. The condition of the If statement gives a Boolean value, either true or false. In Java, there
are four types of if-statements given below.

1. Simple if statement

2. if-else statement

3. if-else-if ladder

4. Nested if-statement

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 39

Let's understand the if-statements one by one.

1) Simple if statement:

It is the most basic statement among all control flow statements in Java. It evaluates a Boolean expression and
enables the program to enter a block of code if the expression evaluates to true.

Syntax:

if(condition) {

statement 1; //executes when condition is true

}

Consider the following example in which we have used the if statement in the java code.

Student.java

Student.java

public class Student {

public static void main(String[] args) {

int x = 10;

int y = 12;

if(x+y > 20) {

System.out.println("x + y is greater than 20");

}

}

}

Output:

x + y is greater than 20

2) if-else statement

The if-else statement

is an extension to the if-statement, which uses another block of code, i.e., else block. The else block is executed if the

condition of the if-block is evaluated as false.

Syntax:

if(condition) {

statement 1; //executes when condition is true

https://www.javatpoint.com/java-if-else
https://www.javatpoint.com/java-if-else

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 40

}

else{

statement 2; //executes when condition is false

}

Consider the following example.

Student.java

public class Student {

public static void main(String[] args) {

int x = 10;

int y = 12;

if(x+y < 10) {

System.out.println("x + y is less than 10");

} else {

System.out.println("x + y is greater than 20");

}

}

}

Output:

x + y is greater than 20

3) if-else-if ladder:

The if-else-if statement contains the if-statement followed by multiple else-if statements. In other words, we can
say that it is the chain of if-else statements that create a decision tree where the program may enter in the block
of code where the condition is true. We can also define an else statement at the end of the chain.

Syntax:

if(condition 1) {

statement 1; //executes when condition 1 is true

}

else if(condition 2) {

statement 2; //executes when condition 2 is true

}

else {

statement 2; //executes when all the conditions are false

}

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 41

Consider the following example.

Student.java

public class Student {

public static void main(String[] args) {

String city = "Delhi";

if(city == "Meerut") {

System.out.println("city is meerut");

}else if (city == "Noida") {

System.out.println("city is noida");

}else if(city == "Agra") {

System.out.println("city is agra");

}else {

System.out.println(city);

}

}

}

Output:

Delhi

4. Nested if-statement

In nested if-statements, the if statement can contain a if or if-else statement inside another if or else-if
statement.

Syntax:

if(condition 1) {

statement 1; //executes when condition 1 is true

if(condition 2) {

statement 2; //executes when condition 2 is true

}

else{

statement 2; //executes when condition 2 is false

}

}

Consider the following example.

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 42

Student.java

public class Student {

public static void main(String[] args) {

String address = "Delhi, India";

if(address.endsWith("India")) {

if(address.contains("Meerut")) {

System.out.println("Your city is Meerut");

}else if(address.contains("Noida")) {

System.out.println("Your city is Noida");

}else {

System.out.println(address.split(",")[0]);

}

}else {

System.out.println("You are not living in India");

}

}

}

Output:
Delhi

Switch Statement:

In Java, Switch statements

are similar to if-else-if statements. The switch statement contains multiple blocks of code called cases and a single case is

executed based on the variable which is being switched. The switch statement is easier to use instead of if-else-if

statements. It also enhances the readability of the program.

Points to be noted about switch statement:

o The case variables can be int, short, byte, char, or enumeration. String type is also supported since version 7 of Java

o Cases cannot be duplicate

o Default statement is executed when any of the case doesn't match the value of expression. It is optional.

o Break statement terminates the switch block when the condition is satisfied.

It is optional, if not used, next case is executed.

o While using switch statements, we must notice that the case expression will be of the same type as the variable.

However, it will also be a constant value.

o

https://www.javatpoint.com/java-switch
https://www.javatpoint.com/java-switch

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 43

syntax:

switch (expression){

 case value1:

 statement1;

 break;

 .

 .

 .

 case valueN:

 statementN;

 break;

 default:

 default statement;

}

Consider the following example to understand the flow of the switch statement.

Student.java

public class Student implements Cloneable {

public static void main(String[] args) {

int num = 2;

switch (num){

case 0:

System.out.println("number is 0");

break;

case 1:

System.out.println("number is 1");

break;

default:

System.out.println(num);

}

}

}

Output:

2

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 44

While using switch statements, we must notice that the case expression will be of the same type as the variable.
However, it will also be a constant value. The switch permits only int, string, and Enum type variables to be used.

Loop Statements

In programming, sometimes we need to execute the block of code repeatedly while some condition evaluates to
true. However, loop statements are used to execute the set of instructions in a repeated order. The execution of
the set of instructions depends upon a particular condition.

In Java, we have three types of loops that execute similarly. However, there are differences in their syntax and
condition checking time.

1. for loop

2. while loop

3. do-while loop

Let's understand the loop statements one by one.

Java for loop

In Java, for loop is similar to C and C++

. It enables us to initialize the loop variable, check the condition, and increment/decrement in a single line of code. We use

the for loop only when we exactly know the number of times, we want to execute the block of code.

Syntax:

for(initialization, condition, increment/decrement) {

//block of statements

}

The flow chart for the for-loop is given below.

https://www.javatpoint.com/java-for-loop
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/cpp-tutorial

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 45

Consider the following example to understand the proper functioning of the for loop in java.

Calculation.java

public class Calculattion {

public static void main(String[] args) {

int sum = 0;

for(int j = 1; j<=10; j++) {

sum = sum + j;

}

System.out.println("The sum of first 10 natural numbers is " + sum);

}

}

Output:

The sum of first 10 natural numbers is 55

Java for-each loop
Java provides an enhanced for loop to traverse the data structures like array or collection. In the for-each loop, we don't

need to update the loop variable.

 Syntax:

for(data_type var : array_name/collection_name){

//statements

}

Consider the following example to understand the functioning of the for-each loop in Java.

Calculation.java

public class Calculation {

public static void main(String[] args) {

String[] names = {"Java","C","C++","Python","JavaScript"};

System.out.println("Printing the content of the array names:\n");

for(String name:names) {

System.out.println(name);

}

}

}

Output:

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 46

Printing the content of the array names:
Java
C
C++
Python
JavaScript

Java while loop

The while loop

is also used to iterate over the number of statements multiple times. However, if we don't know the number of iterations

in advance, it is recommended to use a while loop. Unlike for loop, the initialization and increment/decrement doesn't take

place inside the loop statement in while loop.

It is also known as the entry-controlled loop since the condition is checked at the start of the loop. If the
condition is true, then the loop body will be executed; otherwise, the statements after the loop will be executed.

Syntax:

while(condition){

//looping statements

}

The flow chart for the while loop is given in the following image.

Consider the following example.

Calculation .java

public class Calculation {

public static void main(String[] args) {

int i = 0;

System.out.println("Printing the list of first 10 even numbers \n");

while(i<=10) {

https://www.javatpoint.com/java-while-loop
https://www.javatpoint.com/java-while-loop

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 47

System.out.println(i);

i = i + 2;

}

}

}

Output:

Printing the list of first 10 even numbers
0
2
4
6
8
10

Java do-while loop

The do-while loop

checks the condition at the end of the loop after executing the loop statements. When the number of iteration is not

known and we have to execute the loop at least once, we can use do-while loop.It is also known as the exit-controlled loop

since the condition is not checked in advance.

Syntax:

do

{

//statements

} while (condition);

The flow chart of the do-while loop is given in the following image.

Consider the following example to understand the functioning of the do-while loop in Java.

https://www.javatpoint.com/java-do-while-loop
https://www.javatpoint.com/java-do-while-loop

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 48

Calculation.java

public class Calculation {

public static void main(String[] args) {

// TODO Auto-generated method stub

int i = 0;

System.out.println("Printing the list of first 10 even numbers \n");

do {

System.out.println(i);

i = i + 2;

}while(i<=10);

}

}

Output:

Printing the list of first 10 even numbers
0
2
4
6
8
10

Jump Statements

Jump statements are used to transfer the control of the program to the specific statements. In other words,
jump statements transfer the execution control to the other part of the program. There are two types of jump
statements in Java, i.e., break and continue.

Java break statement

As the name suggests, the break statement

is used to break the current flow of the program and transfer the control to the next statement outside a loop or switch

statement. However, it breaks only the inner loop in the case of the nested loop.

The break statement cannot be used independently in the Java program, i.e., it can only be written inside the
loop or switch statement.

The break statement example with for loop

Consider the following example in which we have used the break statement with the for loop.

https://www.javatpoint.com/java-break
https://www.javatpoint.com/java-break

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 49

BreakExample.java

public class BreakExample {

public static void main(String[] args) {

for(int i = 0; i<= 10; i++) {

System.out.println(i);

if(i==6) {

break;

}

}

}

}

Output:

0
1
2
3
4
5
6

break statement example with labeled for loop

Calculation.java

public class Calculation {

public static void main(String[] args) {

a:

for(int i = 0; i<= 10; i++) {

b:

for(int j = 0; j<=15;j++) {

c:

for (int k = 0; k<=20; k++) {

System.out.println(k);

if(k==5) {

break a;

}

}

}

}

}

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 50

 }

Output:

0
1
2
3
4
5

Java continue statement

Unlike break statement, the continue statement

doesn't break the loop, whereas, it skips the specific part of the loop and jumps to the next iteration of the loop

immediately.

Consider the following example to understand the functioning of the continue statement in Java.

public class ContinueExample {

public static void main(String[] args) {

for(int i = 0; i<= 2; i++) {

for (int j = i; j<=5; j++) {

if(j == 4) {

continue;

}

System.out.println(j);

}

}

}

 }

Output:

0
1
2
3
5
1
2
3
5
2
3
5

https://www.javatpoint.com/java-continue
https://www.javatpoint.com/java-continue

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 51

Type Casting in Java

In Java, type casting is a method or process that converts a data type into another data type in both ways
manually and automatically. The automatic conversion is done by the compiler and manual conversion
performed by the programmer. In this section, we will discuss type casting and its types with proper examples.

Type casting

Convert a value from one data type to another data type is known as type casting.

Types of Type Casting

There are two types of type casting:

o Widening Type Casting

o Narrowing Type Casting

Widening Type Casting

Converting a lower data type into a higher one is called widening type casting. It is also known as implicit
conversion or casting down. It is done automatically. It is safe because there is no chance to lose data. It takes
place when:

o The target type must be larger than the source type.

 byte -> short -> char -> int -> long -> float -> double

For example, the conversion between numeric data type to char or Boolean is not done automatically. Also, the
char and Boolean data types are not compatible with each other. Let's see an example.

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 52

WideningTypeCastingExample.java

public class WideningTypeCastingExample

{

public static void main(String[] args)

{

int x = 7;

//automatically converts the integer type into long type

long y = x;

//automatically converts the long type into float type

float z = y;

System.out.println("Before conversion, int value "+x);

System.out.println("After conversion, long value "+y);

System.out.println("After conversion, float value "+z);

}

}

Output
Before conversion, the value is: 7
After conversion, the long value is: 7
After conversion, the float value is: 7.0

In the above example, we have taken a variable x and converted it into a long type. After that, the long type is
converted into the float type.

Narrowing Type Casting

Converting a higher data type into a lower one is called narrowing type casting. It is also known as explicit
conversion or casting up. It is done manually by the programmer. If we do not perform casting then the compiler
reports a compile-time error.

 double -> float -> long -> int -> char -> short -> byte

Let's see an example of narrowing type casting.

In the following example, we have performed the narrowing type casting two times. First, we have converted the
double type into long data type after that long data type is converted into int type.

403 – Java Programming Language

Unit 1. Introduction to Java

RASHMI PATEL 53

NarrowingTypeCastingExample.java

public class NarrowingTypeCastingExample

{

public static void main(String args[])

{

double d = 166.66;

//converting double data type into long data type

long l = (long)d;

//converting long data type into int data type

int i = (int)l;

System.out.println("Before conversion: "+d);

//fractional part lost

System.out.println("After conversion into long type: "+l);

//fractional part lost

System.out.println("After conversion into int type: "+i);

}

}

Output

Before conversion: 166.66
After conversion into long type: 166
After conversion into int type: 166

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 1

What is an object in Java

An entity that has state and behavior is known as an object e.g., chair, bike, marker, pen, table,

car, etc. It can be physical or logical (tangible and intangible). The example of an intangible

object is the banking system.

An object has three characteristics:

o State: represents the data (value) of an object.

o Behavior: represents the behavior (functionality) of an object such as deposit, withdraw,

etc.

o Identity: An object identity is typically implemented via a unique ID. The value of the

ID is not visible to the external user. However, it is used internally by the JVM to

identify each object uniquely.

For Example, Pen is an object. Its name is Reynolds; color is white, known as its state. It is

used to write, so writing is its behavior.

An object is an instance of a class. A class is a template or blueprint from which objects are

created. So, an object is the instance(result) of a class.

Object Definitions:

o An object is a real-world entity.

o An object is a runtime entity.

o The object is an entity which has state and behavior.

o The object is an instance of a class.

What is a class in Java

A class is a group of objects which have common properties. It is a template or blueprint from

which objects are created. It is a logical entity. It can't be physical.

A class in Java can contain:

o Fields

o Methods

o Constructors

o Blocks

o Nested class and interface

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 2

Syntax to declare a class:

class <class_name>{

 field;

 method;

}

Instance variable in Java

A variable which is created inside the class but outside the method is known as an instance

variable. Instance variable doesn't get memory at compile time. It gets memory at runtime

when an object or instance is created. That is why it is known as an instance variable.

Method in Java

In Java, a method is like a function which is used to expose the behavior of an object.

Advantage of Method

o Code Reusability

o Code Optimization

new keyword in Java

The new keyword is used to allocate memory at runtime. All objects get memory in Heap

memory area.

Object and Class Example: main within the class

In this example, we have created a Student class which has two data members id and name. We

are creating the object of the Student class by new keyword and printing the object's value.

Here, we are creating a main() method inside the class.

File: Student.java

//Java Program to illustrate how to define a class and fields

//Defining a Student class.

class Student{

 //defining fields

 int id;//field or data member or instance variable

 String name;

 //creating main method inside the Student class

 public static void main(String args[]){

 //Creating an object or instance

 Student s1=new Student();//creating an object of Student

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 3

 //Printing values of the object

 System.out.println(s1.id);//accessing member through reference variable

 System.out.println(s1.name);

 }

}

Output:

0

null

Object and Class Example: main outside the class

In real time development, we create classes and use it from another class. It is a better approach

than previous one. Let's see a simple example, where we are having main() method in another

class.

We can have multiple classes in different Java files or single Java file. If you define multiple

classes in a single Java source file, it is a good idea to save the file name with the class name

which has main() method.

File: TestStudent1.java

//Java Program to demonstrate having the main method in

//another class

//Creating Student class.

class Student{

 int id;

 String name;

}

//Creating another class TestStudent1 which contains the main method

class TestStudent1{

 public static void main(String args[]){

 Student s1=new Student();

 System.out.println(s1.id);

 System.out.println(s1.name);

 }

}

Output:

0

null

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 4

3 Ways to initialize object

There are 3 ways to initialize object in Java.

1. By reference variable

2. By method

3. By constructor

1) Object and Class Example: Initialization through reference

Initializing an object means storing data into the object. Let's see a simple example where we

are going to initialize the object through a reference variable.

File: TestStudent2.java

class Student{

 int id;

 String name;

}

class TestStudent2{

 public static void main(String args[]){

 Student s1=new Student();

 s1.id=101;

 s1.name="Sonoo";

 System.out.println(s1.id+" "+s1.name);//printing members with a white space

 }

}

Output:

101 Sonoo

We can also create multiple objects and store information in it through reference variable.

File: TestStudent3.java

class Student{

 int id;

 String name;

}

class TestStudent3{

 public static void main(String args[]){

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 5

 //Creating objects

 Student s1=new Student();

 Student s2=new Student();

 //Initializing objects

 s1.id=101;

 s1.name="Sonoo";

 s2.id=102;

 s2.name="Amit";

 //Printing data

 System.out.println(s1.id+" "+s1.name);

 System.out.println(s2.id+" "+s2.name);

 }

}

Output:

101 Sonoo

102 Amit

2) Object and Class Example: Initialization through method

In this example, we are creating the two objects of Student class and initializing the value to

these objects by invoking the insertRecord method. Here, we are displaying the state (data) of

the objects by invoking the displayInformation() method.

File: TestStudent4.java

class Student{

 int rollno;

 String name;

 void insertRecord(int r, String n){

 rollno=r;

 name=n;

 }

 void displayInformation()

{

System.out.println(rollno+" "+name);

}

}

class TestStudent4{

 public static void main(String args[]){

 Student s1=new Student();

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 6

 Student s2=new Student();

 s1.insertRecord(111,"Karan");

 s2.insertRecord(222,"Aryan");

 s1.displayInformation();

 s2.displayInformation();

 }

}

Output:

111 Karan

222 Aryan

3) Object and Class Example: Initialization through a constructor

We will learn about constructors in Java later.

Object and Class Example: Employee

Let's see an example where we are maintaining records of employees.

File: TestEmployee.java

class Employee{

 int id;

 String name;

 float salary;

 void insert(int i, String n, float s) {

 id=i;

 name=n;

 salary=s;

 }

 void display(){System.out.println(id+" "+name+" "+salary);}

}

public class TestEmployee {

public static void main(String[] args) {

 Employee e1=new Employee();

 Employee e2=new Employee();

 Employee e3=new Employee();

 e1.insert(101,"ajeet",45000);

 e2.insert(102,"irfan",25000);

 e3.insert(103,"nakul",55000);

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 7

 e1.display();

 e2.display();

 e3.display();

}

}

Output:

101 ajeet 45000.0

102 irfan 25000.0

103 nakul 55000.0

Real World Example: Account

File: TestAccount.java

//Java Program to demonstrate the working of a banking-system

//where we deposit and withdraw amount from our account.

//Creating an Account class which has deposit() and withdraw() methods

class Account{

int acc_no;

String name;

float amount;

//Method to initialize object

void insert(int a,String n,float amt){

acc_no=a;

name=n;

amount=amt;

}

//deposit method

void deposit(float amt){

amount=amount+amt;

System.out.println(amt+" deposited");

}

//withdraw method

void withdraw(float amt){

if(amount<amt){

System.out.println("Insufficient Balance");

}else{

amount=amount-amt;

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 8

System.out.println(amt+" withdrawn");

}

}

//method to check the balance of the account

void checkBalance(){System.out.println("Balance is: "+amount);}

//method to display the values of an object

void display(){System.out.println(acc_no+" "+name+" "+amount);}

}

//Creating a test class to deposit and withdraw amount

class TestAccount{

public static void main(String[] args){

Account a1=new Account();

a1.insert(832345,"Ankit",1000);

a1.display();

a1.checkBalance();

a1.depssosit(40000);

a1.checkBalance();

a1.withdraw(15000);

a1.checkBalance();

}}

Output:

832345 Ankit 1000.0

Balance is: 1000.0

40000.0 deposited

Balance is: 41000.0

15000.0 withdrawn

Balance is: 26000.0

Access Modifiers in Java

There are two types of modifiers in Java: access modifiers and non-access modifiers.

The access modifiers in Java specifies the accessibility or scope of a field, method, constructor,

or class. We can change the access level of fields, constructors, methods, and class by applying

the access modifier on it.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be

accessed from outside the class.

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 9

2. Default: The access level of a default modifier is only within the package. It cannot be

accessed from outside the package. If you do not specify any access level, it will be the

default.

3. Protected: The access level of a protected modifier is within the package and outside the

package through child class. If you do not make the child class, it cannot be accessed

from outside the package.

4. Public: The access level of a public modifier is everywhere. It can be accessed from

within the class, outside the class, within the package and outside the package.

There are many non-access modifiers, such as static, abstract, synchronized, native, volatile,

transient, etc. Here, we are going to learn the access modifiers only.

Understanding Java Access Modifiers

Let's understand the access modifiers in Java by a simple table.

Access

Modifier

within

class

within

package

outside package

by subclass only

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

1) Private

The private access modifier is accessible only within the class.

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data

member and private method. We are accessing these private members from outside the class,

so there is a compile-time error.

class A{

private int data=40;

private void msg(){System.out.println("Hello java");}

}

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 10

public class Simple{

public static void main(String args[]){

A obj=new A();

System.out.println(obj.data);//Compile Time Error

obj.msg();//Compile Time Error

}

}

Role of Private Constructor

If you make any class constructor private, you cannot create the instance of that class from

outside the class. For example:

class A{

private A(){}//private constructor

void msg(){System.out.println("Hello java");}

}

public class Simple{

 public static void main(String args[]){

 A obj=new A();//Compile Time Error

 }

}

Note: A class cannot be private or protected except nested class.

2) Default

If you don't use any modifier, it is treated as default by default. The default modifier is

accessible only within package. It cannot be accessed from outside the package. It provides

more accessibility than private. But, it is more restrictive than protected, and public.

Example of default access modifier

In this example, we have created two packages pack and mypack. We are accessing the A class

from outside its package, since A class is not public, so it cannot be accessed from outside the

package.

//save by A.java

package pack;

class A{

 void msg(){System.out.println("Hello");}

}

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 11

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

In the above example, the scope of class A and its method msg() is default so it cannot be

accessed from outside the package.

3) Protected

The protected access modifier is accessible within package and outside the package but

through inheritance only.

The protected access modifier can be applied on the data member, method and constructor. It

can't be applied on the class.

It provides more accessibility than the default modifer.

Example of protected access modifier

In this example, we have created the two packages pack and mypack. The A class of pack

package is public, so can be accessed from outside the package. But msg method of this

package is declared as protected, so it can be accessed from outside the class only through

inheritance.

//save by A.java

package pack;

public class A{

protected void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B extends A{

 public static void main(String args[]){

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 12

 B obj = new B();

 obj.msg();

 }

}

Output:Hello

4) Public

The public access modifier is accessible everywhere. It has the widest scope among all other

modifiers.

Example of public access modifier

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}

Output:Hello

Java Access Modifiers with Method Overriding

If you are overriding any method, overridden method (i.e. declared in subclass) must not be

more restrictive.

class A{

protected void msg(){System.out.println("Hello java");}

}

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 13

public class Simple extends A{

void msg(){System.out.println("Hello java");}//C.T.Error

public static void main(String args[]){

Simple obj=new Simple();

obj.msg();

}

}

The default modifier is more restrictive than protected. That is why, there is a compile-time

error.

Constructors in Java

In Java, a constructor is a block of codes similar to the method. It is called when an instance of

the class is created. At the time of calling constructor, memory for the object is allocated in the

memory.

It is a special type of method which is used to initialize the object.

Every time an object is created using the new() keyword, at least one constructor is called.

It calls a default constructor if there is no constructor available in the class. In such case, Java

compiler provides a default constructor by default.

Rules for creating Java constructor

There are following rules defined for the constructor.

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Note: We can use access modifiers while declaring a constructor. It controls the object

creation. In other words, we can have private, protected, public or default constructor in Java.

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor (no-argument constructor)

2. Parameterized constructor

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/access-modifiers

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 14

1. Java Default Constructor

A constructor is called "Default Constructor" when it doesn't have any parameter.

Syntax of default constructor:

 <class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the

time of object creation.

//Java Program to create and call a default constructor

class Bike1{

//creating a default constructor

Bike1(){System.out.println("Bike is created");}

//main method

public static void main(String args[]){

//calling a default constructor

Bike1 b=new Bike1();

}

}

Output:

Bike is created

Rule: If there is no constructor in a class, compiler automatically creates a default constructor.

Example of default constructor that displays the default values

//Let us see another example of default constructor

//which displays the default values

class Student3{

int id;

String name;

//method to display the value of id and name

void display()

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 15

{

System.out.println(id+" "+name);

}

public static void main(String args[]){

//creating objects

Student3 s1=new Student3();

Student3 s2=new Student3();

//displaying values of the object

s1.display();

s2.display();

}

}

Output:

0 null

0 null

Explanation:In the above class,you are not creating any constructor so compiler provides you a

default constructor. Here 0 and null values are provided by default constructor.

2. Java Parameterized Constructor

A constructor which has a specific number of parameters is called a parameterized constructor.

Why use the parameterized constructor?

The parameterized constructor is used to provide different values to distinct objects. However,

you can provide the same values also.

Example of parameterized constructor

In this example, we have created the constructor of Student class that have two parameters. We

can have any number of parameters in the constructor.

//Java Program to demonstrate the use of the parameterized constructor.

class Student4{

int id;

String name;

//creating a parameterized constructor

Student4(int i,String n){

id = i;

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 16

name = n;

}

//method to display the values

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

//creating objects and passing values

Student4 s1 = new Student4(111,"Karan");

Student4 s2 = new Student4(222,"Aryan");

//calling method to display the values of object

s1.display();

s2.display();

}

}

Output:

111 Karan

222 Aryan

Constructor Overloading in Java

In Java, a constructor is just like a method but without return type. It can also be overloaded

like Java methods.

Constructor overloading in Java is a technique of having more than one constructor with

different parameter lists. They are arranged in a way that each constructor performs a different

task. They are differentiated by the compiler by the number of parameters in the list and their

types.

Example of Constructor Overloading

//Java program to overload constructors

class Student5{

int id;

String name;

int age;

//creating two arg constructor

Student5(int i,String n){

id = i;

name = n;

https://www.javatpoint.com/method-overloading-in-java

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 17

}

//creating three arg constructor

Student5(int i,String n,int a){

id = i;

name = n;

age=a;

}

void display(){System.out.println(id+" "+name+" "+age);}

public static void main(String args[]){

Student5 s1 = new Student5(111,"Karan");

Student5 s2 = new Student5(222,"Aryan",25);

s1.display();

s2.display();

}

}

Output:

111 Karan 0

222 Aryan 25

Difference between constructor and method in Java

There are many differences between constructors and methods. They are given below.

Java Constructor Java Method

A constructor is used to initialize the state of an

object.

A method is used to expose the

behavior of an object.

A constructor must not have a return type. A method must have a return type.

The constructor is invoked implicitly. The method is invoked explicitly.

The Java compiler provides a default constructor if

you don't have any constructor in a class.

The method is not provided by the

compiler in any case.

The constructor name must be same as the class

name.

The method name may or may not

be same as the class name.

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 18

Java Copy Constructor

There is no copy constructor in Java. However, we can copy the values from one object to

another like copy constructor in C++.

There are many ways to copy the values of one object into another in Java. They are:

o By constructor

o By assigning the values of one object into another

o By clone() method of Object class

In this example, we are going to copy the values of one object into another using Java

constructor.

//Java program to initialize the values from one object to another object.

class Student6{

int id;

String name;

//constructor to initialize integer and string

Student6(int i,String n){

id = i;

name = n;

}

//constructor to initialize another object

Student6(Student6 s){

id = s.id;

name =s.name;

}

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student6 s1 = new Student6(111,"Karan");

Student6 s2 = new Student6(s1);

s1.display();

s2.display();

}

}

Output:

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 19

111 Karan

111 Karan

Copying values without constructor

We can copy the values of one object into another by assigning the objects values to another

object. In this case, there is no need to create the constructor.

class Student7{

int id;

String name;

Student7(int i,String n){

id = i;

name = n;

}

Student7(){}

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student7 s1 = new Student7(111,"Karan");

Student7 s2 = new Student7();

s2.id=s1.id;

s2.name=s1.name;

s1.display();

s2.display();

}

}

Output:

111 Karan

111 Karan

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 20

Inheritance in Java

Inheritance in Java is a mechanism in which one object acquires all the properties and

behaviors of a parent object. It is an important part of OOPs (Object Oriented programming

system).

The idea behind inheritance in Java is that you can create new classes that are built upon

existing classes. When you inherit from an existing class, you can reuse methods and fields of

the parent class. Moreover, you can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-child relationship.

Terms used in Inheritance

o Class: A class is a group of objects which have common properties. It is a template or

blueprint from which objects are created.

o Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called

a derived class, extended class, or child class.

o Super Class/Parent Class: Superclass is the class from where a subclass inherits the

features. It is also called a base class or a parent class.

o Reusability: As the name specifies, reusability is a mechanism which facilitates you to

reuse the fields and methods of the existing class when you create a new class. You can

use the same fields and methods already defined in the previous class.

The syntax of Java Inheritance

class Subclass-name extends Superclass-name

{

//methods and fields

}

The extends keyword indicates that you are making a new class that derives from an existing

class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or superclass, and the

new class is called child or subclass.

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the superclass.

The relationship between the two classes is Programmer IS-A Employee. It means that

Programmer is a type of Employee.

class Employee{

float salary=40000;

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 21

}

class Programmer extends Employee{

int bonus=10000;

public static void main(String args[]){

Programmer p=new Programmer();

System.out.println("Programmer salary is:"+p.salary);

System.out.println("Bonus of Programmer is:"+p.bonus);

}

}

Programmer salary is:40000.0

 Bonus of programmer is:10000

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and

hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only. We

will learn about interfaces later.

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 22

Note: Multiple inheritance is not supported in Java through class.

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the example given

below, Dog class inherits the Animal class, so there is the single inheritance.

File: TestInheritance.java

class Dog {

void bark(){System.out.println("barking...");}

}

class TestInheritance extends Dog{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

}}

Output:

barking...

Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see in

the example given below, BabyDog class inherits the Dog class which again inherits the

Animal class, so there is a multilevel inheritance.

File: TestInheritance2.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class BabyDog extends Dog{

void weep(){System.out.println("weeping...");}

}

class TestInheritance2{

public static void main(String args[]){

BabyDog d=new BabyDog();

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 23

d.weep();

d.bark();

d.eat();

}}

Output:

weeping...

barking...

eating...

Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical inheritance. In the

example given below, Dog and Cat classes inherits the Animal class, so there is hierarchical

inheritance.

File: TestInheritance3.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error

}}

Output:

meowing...

eating...

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 24

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in

java.

Consider a scenario where A, B, and C are three classes. The C class inherits A and B classes.

If A and B classes have the same method and you call it from child class object, there will be

ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time error if you

inherit 2 classes. So whether you have same method or different, there will be compile time

error.

class A{

void msg(){System.out.println("Hello");}

}

class B{

void msg(){System.out.println("Welcome");}

}

class C extends A,B{//suppose if it were

public static void main(String args[]){

C obj=new C();

obj.msg();//Now which msg() method would be invoked?

}

}

Compile Time Error

Polymorphism in Java

 Polymorphism is the greek word whose meaning is “same object having different

behaviour”.

 Polymorphism in Java is a concept by which we can perform a single action in different

ways. Polymorphism is derived from 2 Greek words: poly and morphs. The word "poly"

means many and "morphs" means forms. So polymorphism means many forms.

 We can perform polymorphism in java by method overloading and method overriding.

 There are two types of polymorphism in Java:

1. compile-time polymorphism

2. runtime polymorphism.

1. Compile time Polymorphism (or Static polymorphism)

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 25

Polymorphism that is resolved during compiler time is known as static polymorphism. Method

overloading is an example of compile time polymorphism.

Method Overloading: This allows us to have more than one method having the same name, if

the parameters of methods are different in number, sequence and data types of parameters.

Example of static Polymorphism:

Method overloading is one of the way java supports static polymorphism. Here we have two

definitions of the same method add() which add method would be called is determined by the

parameter list at the compile time. That is the reason this is also known as compile time

polymorphism.

class SimpleCalculator

{

 int add(int a, int b)

 {

 return a+b;

 }

 int add(int a, int b, int c)

 {

 return a+b+c;

 }

}

public class Demo

{

 public static void main(String args[])

 {

 SimpleCalculator obj = new SimpleCalculator();

 System.out.println(obj.add(10, 20));

 System.out.println(obj.add(10, 20, 30));

 }

}

Output:

30

60

2. Runtime Polymorphism (or Dynamic polymorphism)

It is also known as Dynamic Method Dispatch. Dynamic polymorphism is a process in which a

call to an overridden method is resolved at runtime, thats why it is called runtime

polymorphism.

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 26

Example
In this example we have two classes ABC and XYZ. ABC is a parent class and XYZ is a child

class. The child class is overriding the method myMethod() of parent class. In this example we

have child class object assigned to the parent class reference so in order to determine which

method would be called, the type of the object would be determined at run-time. It is the type

of object that determines which version of the method would be called (not the type of

reference).

class ABC{

 public void myMethod(){

 System.out.println("Overridden Method");

 }

}

public class XYZ extends ABC{

 public void myMethod(){

 System.out.println("Overriding Method");

 }

 public static void main(String args[]){

 ABC obj = new XYZ();

 obj.myMethod();

 }

}

Output:

Overriding Method

Method Overloading

Method Overloading is a feature that allows a class to have multiple methods with the same

name but with different number, sequence or type of parameters. In short multiple methods

with same name but with different signatures. For example the signature of method add(int

a, int b) having two int parameters is different from signature of method add(int a, int b, int

c) having three int parameters.

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 27

This is one of the most popular OOP feature in java, there are several cases where we need

more than one methods with same name. For example let‟s say we are writing a java program

to find the sum of input numbers, we need different variants of add method based on the user

inputs such as add(int, int), add(float, float) etc.

Three ways to overload a method

In order to overload a method, the parameter list of the methods must differ in either of these:

1. Number of parameters.
For example: This is a valid case of overloading

add(int, int)

add(int, int, int)

2. Data type of parameters.
For example:

add(int, int)

add(int, float)

3. Sequence of Data type of parameters.
For example:

add(int, float)

add(float, int)

Invalid case of method overloading:
Parameters list doesn‟t mean the return type of the method, for example if two methods have

same name, same parameters and have different return type, then this is not a valid method

overloading example. This will throw a compilation error.

int add(int, int)

float add(int, int)

Method overloading is an example of Static Polymorphism.

Example: Overloading – Data type of parameters are different

In this example, we are overloading the method add() based on the data type of parameters.

We have two methods with the name add() but the type of parameters are different. The first

variation of add() has two int params while the second variation of method add() has two float

params.

class DisplayOverloading2

{

 //two int parameters

https://beginnersbook.com/2013/04/oops-concepts/

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 28

 public int add(int a, int b)

 {

 int sum = a+b;

 return sum;

 }

 //two float parameters

 public float add(float a, float b)

 {

 float sum = a+b;

 return sum;

 }

}

class JavaExample

{

 public static void main(String args[])

 {

 DisplayOverloading2 obj = new DisplayOverloading2();

 //This will call the method add with two int params

 System.out.println(obj.add(5, 15));

 //This will call the method add with two float params

 System.out.println(obj.add(5.5f, 2.5f));

 }

}

Output:

20

8.0

Method overriding

Declaring a method in sub class which is already present in parent class is known as method

overriding. Overriding is done so that a child class can give its own implementation to a

method which is already provided by the parent class. In this case the method in parent class is

called overridden method and the method in child class is called overriding method. In this

guide, we will see what is method overriding in Java and why we use it.

Method Overriding Example

Lets take a simple example to understand this. We have two classes: A child class Boy and a

parent class Human. The Boy class extends Human class. Both the classes have a common

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 29

method void eat(). Boy class is giving its own implementation to the eat() method or in other

words it is overriding the eat() method.

The purpose of Method Overriding is clear here. Child class wants to give its own

implementation so that when it calls this method, it prints Boy is eating instead of Human is

eating.

class Human{

 //Overridden method

 public void eat()

 {

 System.out.println("Human is eating");

 }

}

class Boy extends Human{

 //Overriding method

 public void eat(){

 System.out.println("Boy is eating");

 }

 public static void main(String args[]) {

 Boy obj = new Boy();

 //This will call the child class version of eat()

 obj.eat();

 }

}

Output:

Boy is eating

Advantage of method overriding

The main advantage of method overriding is that the class can give its own specific

implementation to a inherited method without even modifying the parent class code.

This is helpful when a class has several child classes, so if a child class needs to use the parent

class method, it can use it and the other classes that want to have different implementation can

use overriding feature to make changes without touching the parent class code.

Abstract method

Method which has no body has to be declare as abstract method.

Abstract class

 When there is one or more abstract method in a class then that class should be declared

as abstract class.

 To declare a class as abstract, use abstract keyword in front of class keyword.

 We cannot create an object of abstract class, it is only used for inheritance purpose.

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 30

 We cannot declare abstract constructor or abstract static method.

Syntax:

abstract class classname

 {

 //variable declarations;

 //method declarations;

 }

Example

class A

{

 int x;

 abstract void show();

 void getx(int a)

{

 x=a;

}

}

class B extends A

{

 void show()

{

 System.out.println(x);

}

}

class AbsDemo

{

public static void main(String a[])

{

 B ob=new B();

 //A ob1=new A();

 ob.getx(10);

 ob.show();

}

}

Final keyword (important)
There are three use of final keyword;

1. To declare constant variable

2. To prevent method overriding

3. To prevent inheritance

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 31

1. To declare constant variable

 If a variable is declared as final then it will become constant.

 Its value cannot be change throughout the program.

 To declare a final variable, write final keyword in front of datatype.

Example;

 final int a=10;

2. To prevent method overriding.

 To prevent method from being overridden write final keyword in front of the method

name.

 Method declared as final cannot be overridden. i.e. one cannot make same method name

and type signature in subclass.

Example;

class A

{

int a;

A()

{

a=10;

}

final void show()

{

System.out.println("a is:"+a);

}

}

class B extends A

{

B()

{ }

void show()

{ }

void show(int x)

{

a=x;

System.out.println("a is: "+a);

}

}

class FinalMethod

{

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 32

public static void main(String a[])

{

B ob=new B();

ob.show();

ob.show(20);

}

}

3. To prevent inheritance.

 Sometimes you want to preserve a class from being inherited, use final keyword before

the class keyword.

 Declaring class as final implicitly declares all its method as final.

Example;

final class A

{

//variable declarations;

//method;

}

Class B extends A //here cannot inherit class A as it is declared final.

{

//code;

}

INTERFACE

An interface in Java is a blueprint of a class. It has static constants and abstract methods.

The interface in Java is a mechanism to achieve abstraction. There can be only abstract

methods in the Java interface, not method body. It is used to achieve abstraction and

multiple inheritance in Java.

In other words, you can say that interfaces can have abstract methods and variables. It cannot

have a method body.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

How to declare an interface?

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 33

An interface is declared by using the interface keyword. It provides total abstraction; means all

the methods in an interface are declared with the empty body, and all the fields are public,

static and final by default. A class that implements an interface must implement all the

methods declared in the interface.

Syntax:

interface <interface_name>{

// declare constant fields

// declare methods that abstract

// by default.

}

Java Interface Example

interface printable{

void print();

}

class A6 implements printable{

public void print(){System.out.println("Hello");}

public static void main(String args[]){

A6 obj = new A6();

obj.print();

}

}

Java Interface Example: Drawable

In this example, the Drawable interface has only one method. Its implementation is provided

by Rectangle and Circle classes. In a real scenario, an interface is defined by someone else, but

its implementation is provided by different implementation providers. Moreover, it is used by

someone else. The implementation part is hidden by the user who uses the interface.

File: TestInterface1.java

//Interface declaration: by first user

interface Drawable{

void draw();

}

//Implementation: by second user

class Rectangle implements Drawable{

public void draw(){System.out.println("drawing rectangle");}

}

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 34

class Circle implements Drawable{

public void draw(){System.out.println("drawing circle");}

}

//Using interface: by third user

class TestInterface1{

public static void main(String args[]){

Drawable d=new Circle();//In real scenario, object is provided by method e.g. getDrawable()

d.draw();

}}

Output:

drawing circle

Java Interface Example: Bank

Let's see another example of java interface which provides the implementation of Bank

interface.

File: TestInterface2.java

interface Bank{

float rateOfInterest();

}

class SBI implements Bank{

public float rateOfInterest(){return 9.15f;}

}

class PNB implements Bank{

public float rateOfInterest(){return 9.7f;}

}

class TestInterface2{

public static void main(String[] args){

Bank b=new SBI();

System.out.println("ROI: "+b.rateOfInterest());

}}

Output:

ROI: 9.15

Multiple inheritance in Java by interface

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 35

If a class implements multiple interfaces, or an interface extends multiple interfaces, it is

known as multiple inheritance.

interface Printable{

void print();

}

interface Showable{

void show();

}

class A7 implements Printable,Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

A7 obj = new A7();

obj.print();

obj.show();

}

}

Output:Hello

 Welcome

Q) Multiple inheritance is not supported through class in java, but it is possible by an

interface, why?

As we have explained in the inheritance chapter, multiple inheritance is not supported in the

case of class because of ambiguity. However, it is supported in case of an interface because

there is no ambiguity. It is because its implementation is provided by the implementation class.

For example:

https://www.javatpoint.com/object-and-class-in-java

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 36

interface Printable{

void print();

}

interface Showable{

void print();

}

class TestInterface3 implements Printable, Showable{

public void print(){System.out.println("Hello");}

public static void main(String args[]){

TestInterface3 obj = new TestInterface3();

obj.print();

}

}

Output:

Hello

As you can see in the above example, Printable and Showable interface have same methods but

its implementation is provided by class TestTnterface1, so there is no ambiguity.

Interface inheritance

A class implements an interface, but one interface extends another interface.

interface Printable{

void print();

}

interface Showable extends Printable{

void show();

}

class TestInterface4 implements Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

TestInterface4 obj = new TestInterface4();

obj.print();

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 37

obj.show();

}

 }

Output:

Hello

Welcome

Nested Interface in Java

Note: An interface can have another interface which is known as a nested interface. We will

learn it in detail in the nested classes chapter. For example:

interface printable{

void print();

interface MessagePrintable{

void msg();

}

}

Difference between Class and Interface

CLASS INTERFACE

Variables declared in class may be

constant.

Variables declared in interface are

always constant.

methods declared in a class may

have body or may not have body.

methods declared in an interface

have no body.

we can make abstract methods using

abstract keyword.

Methods declared within an interface

will be abstract by default

We can use public, private, protected

or default access sprcifier in class

We can use only public or default

access specifier in an interface

We can create object of class
We can only declared reference

variable of an interface

We have to use extends keyword to

inherit the class into another class

We have to use implements keyword

to implement interface into class

We cannot inherit more than one

class in a class

We can implement more than one

interface into a class.

https://www.javatpoint.com/java-inner-class

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 38

(Ques: Explain This and Super keyword)

This keyword

 Sometimes a method needs to refer to the object that invokes it, to allow. Java defines

„This‟

keyword.

 „This‟ can be used inside any method to refer to the current object.

 „This‟ keyword is always referenced to the object on which method was invoked.

 We can use „This‟ keyword anywhere. It is one type of self referential structure.

 A reference to an object of current class is always permitted.

Example:

class Student{

int rollno;

String name;

float fee;

Student(int rollno,String name,float fee){

this.rollno=rollno;

this.name=name;

this.fee=fee;

}

void display(){System.out.println(rollno+" "+name+" "+fee);}

}

class TestThis2{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

s1.display();

s2.display();

}}

super keyword:

The super keyword in Java is a reference variable which is used to refer immediate parent

class object.

Whenever you create the instance of subclass, an instance of parent class is created implicitly

which is referred by super reference variable.

Usage of Java super Keyword

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 39

1. super can be used to refer immediate parent class instance variable.

2. super can be used to invoke immediate parent class method.

3. super() can be used to invoke immediate parent class constructor.

1) super is used to refer immediate parent class instance variable.

We can use super keyword to access the data member or field of parent class. It is used if

parent class and child class have same fields.

class Animal{

String color="white";

}

class Dog extends Animal{

String color="black";

void printColor(){

System.out.println(color);//prints color of Dog class

System.out.println(super.color);//prints color of Animal class

}

}

class TestSuper1{

public static void main(String args[]){

Dog d=new Dog();

d.printColor();

}}

Output:

black

white

In the above example, Animal and Dog both classes have a common property color. If we print

color property, it will print the color of current class by default. To access the parent property,

we need to use super keyword.

2) super can be used to invoke parent class method

The super keyword can also be used to invoke parent class method. It should be used if

subclass contains the same method as parent class. In other words, it is used if method is

overridden.

class Animal{

void eat(){System.out.println("eating...");}

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 40

}

class Dog extends Animal{

void eat(){System.out.println("eating bread...");}

void bark(){System.out.println("barking...");}

void work(){

super.eat();

bark();

}

}

class TestSuper2{

public static void main(String args[]){

Dog d=new Dog();

d.work();

}}

Output:

eating...

barking...

In the above example Animal and Dog both classes have eat() method if we call eat() method

from Dog class, it will call the eat() method of Dog class by default because priority is given to

local.

To call the parent class method, we need to use super keyword.

3) super is used to invoke parent class constructor.

The super keyword can also be used to invoke the parent class constructor. Let's see a simple

example:

class Animal{

Animal(){System.out.println("animal is created");}

}

class Dog extends Animal{

Dog(){

super();

System.out.println("dog is created");

}

}

class TestSuper3{

public static void main(String args[]){

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 41

Dog d=new Dog();

}}

Output:

animal is created

dog is created

Java Arrays

Normally, an array is a collection of similar type of elements which has contiguous memory

location.

Java array is an object which contains elements of a similar data type. Additionally, The

elements of an array are stored in a contiguous memory location. It is a data structure where we

store similar elements. We can store only a fixed set of elements in a Java array.

Array in Java is index-based, the first element of the array is stored at the 0th index, 2nd

element is stored on 1st index and so on.

Unlike C/C++, we can get the length of the array using the length member. In C/C++, we need

to use the sizeof operator.

Moreover, Java provides the feature of anonymous arrays which is not available in C/C++.

Advantages

o Code Optimization: It makes the code optimized, we can retrieve or sort the data

efficiently.

o Random access: We can get any data located at an index position.

Disadvantages

o Size Limit: We can store only the fixed size of elements in the array. It doesn't grow its

size at runtime. To solve this problem, collection framework is used in Java which grows

automatically.

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 42

Types of Array in java

There are two types of array.

o Single Dimensional Array

o Multidimensional Array

Single Dimensional Array in Java

Syntax to Declare an Array in Java

dataType[] arr; (or)

dataType []arr; (or)

dataType arr[];

Instantiation of an Array in Java

arrayRefVar=new datatype[size];

Example of Java Array

Let's see the simple example of java array, where we are going to declare, instantiate, initialize

and traverse an array.

class Testarray{

public static void main(String args[]){

int a[]=new int[5];//declaration and instantiation

a[0]=10;//initialization

a[1]=20;

a[2]=70;

a[3]=40;

a[4]=50;

//traversing array

for(int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]);

}}

Output:

10

20

70

40

50

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 43

Declaration, Instantiation and Initialization of Java Array

We can declare, instantiate and initialize the java array together by:

class Testarray1{

public static void main(String args[]){

int a[]={33,3,4,5};//declaration, instantiation and initialization

//printing array

for(int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]);

}}

Output:

33

3

4

5

Passing Array to a Method in Java

We can pass the java array to method so that we can reuse the same logic on any array.

Let's see the simple example to get the minimum number of an array using a method.

class Testarray2{

//creating a method which receives an array as a parameter

static void min(int arr[]){

int min=arr[0];

for(int i=1;i<arr.length;i++)

if(min>arr[i])

min=arr[i];

System.out.println(min);

}

public static void main(String args[]){

int a[]={33,3,4,5};//declaring and initializing an array

min(a);//passing array to method

}}

Output:

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 44

3

Multidimensional Array in Java

In such case, data is stored in row and column based index (also known as matrix form).

Syntax to Declare Multidimensional Array in Java

dataType[][] arrayRefVar; (or)

dataType [][]arrayRefVar; (or)

dataType arrayRefVar[][]; (or)

dataType []arrayRefVar[];

Example to instantiate Multidimensional Array in Java

int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in Java

arr[0][0]=1;

arr[0][1]=2;

arr[0][2]=3;

arr[1][0]=4;

arr[1][1]=5;

arr[1][2]=6;

arr[2][0]=7;

arr[2][1]=8;

arr[2][2]=9;

Example of Multidimensional Java Array

Let's see the simple example to declare, instantiate, initialize and print the 2Dimensional array.

class Testarray3{

public static void main(String args[]){

//declaring and initializing 2D array

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

//printing 2D array

for(int i=0;i<3;i++){

for(int j=0;j<3;j++){

System.out.print(arr[i][j]+" ");

}

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 45

System.out.println();

}

}}

Output:

1 2 3

2 4 5

4 4 5

Jagged Array in Java

If we are creating odd number of columns in a 2D array, it is known as a jagged array. In other

words, it is an array of arrays with different number of columns.

//Java Program to illustrate the jagged array

class TestJaggedArray{

public static void main(String[] args){

//declaring a 2D array with odd columns

int arr[][] = new int[3][];

arr[0] = new int[3];

arr[1] = new int[4];

arr[2] = new int[2];

//initializing a jagged array

int count = 0;

for (int i=0; i<arr.length; i++)

for(int j=0; j<arr[i].length; j++)

arr[i][j] = count++;

//printing the data of a jagged array

for (int i=0; i<arr.length; i++){

for (int j=0; j<arr[i].length; j++){

System.out.print(arr[i][j]+" ");

}

System.out.println();//new line

}

}

}

Output:

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 46

0 1 2

3 4 5 6

7 8

Addition of 2 Matrices in Java

class Testarray5{

public static void main(String args[]){

//creating two matrices

int a[][]={{1,3,4},{3,4,5}};

int b[][]={{1,3,4},{3,4,5}};

//creating another matrix to store the sum of two matrices

int c[][]=new int[2][3];

//adding and printing addition of 2 matrices

for(int i=0;i<2;i++){

for(int j=0;j<3;j++){

c[i][j]=a[i][j]+b[i][j];

System.out.print(c[i][j]+" ");

}

System.out.println();//new line

}

}}

Output:

2 6 8

6 8 10

Multiplication of 2 Matrices in Java

In the case of matrix multiplication, a one-row element of the first matrix is multiplied by all

the columns of the second matrix which can be understood by the image given below.

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 47

Let's see a simple example to multiply two matrices of 3 rows and 3 columns.

//Java Program to multiply two matrices

public class MatrixMultiplicationExample{

public static void main(String args[]){

//creating two matrices

int a[][]={{1,1,1},{2,2,2},{3,3,3}};

int b[][]={{1,1,1},{2,2,2},{3,3,3}};

//creating another matrix to store the multiplication of two matrices

int c[][]=new int[3][3]; //3 rows and 3 columns

//multiplying and printing multiplication of 2 matrices

for(int i=0;i<3;i++){

for(int j=0;j<3;j++){

c[i][j]=0;

for(int k=0;k<3;k++)

{

c[i][j]+=a[i][k]*b[k][j];

}//end of k loop

System.out.print(c[i][j]+" "); //printing matrix element

}//end of j loop

System.out.println();//new line

}

}}

Output:

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 48

6 6 6

12 12 12

18 18 18

Java Garbage Collection

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically. In

other words, it is a way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But, in java it is

performed automatically. So, java provides better memory management.

Advantage of Garbage Collection

o It makes java memory efficient because garbage collector removes the unreferenced

objects from heap memory.

o It is automatically done by the garbage collector(a part of JVM) so we don't need to

make extra efforts.

How can an object be unreferenced?

There are many ways:

o By nulling the reference

o By assigning a reference to another

o By anonymous object etc.

1) By nulling a reference:

Employee e=new Employee();

e=null;

2) By assigning a reference to another:

Employee e1=new Employee();

Employee e2=new Employee();

e1=e2;//now the first object referred by e1 is available for garbage collection

3) By anonymous object:

new Employee();

finalize() method

The finalize() method is invoked each time before the object is garbage collected. This method

can be used to perform cleanup processing. This method is defined in Object class as:

403 – Java Programming Language

Unit 2. Classes and Objects

RASHMI PATEL 49

protected void finalize(){}

Note: The Garbage collector of JVM collects only those objects that are created by new

keyword. So if you have created any object without new, you can use finalize method to

perform cleanup processing (destroying remaining objects).

gc() method

The gc() method is used to invoke the garbage collector to perform cleanup processing. The

gc() is found in System and Runtime classes.

public static void gc(){}

Note: Garbage collection is performed by a daemon thread called Garbage Collector(GC).

This thread calls the finalize() method before object is garbage collected.

Simple Example of garbage collection in java

public class TestGarbage1{

public void finalize(){System.out.println("object is garbage collected");}

public static void main(String args[]){

TestGarbage1 s1=new TestGarbage1();

TestGarbage1 s2=new TestGarbage1();

s1=null;

s2=null;

System.gc();

}

}

 object is garbage collected

 object is garbage collected

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 1

Java String

In java, string is basically an object that represents sequence of char values. An array of

characters works same as Java string. For example:

char[] ch={'k','i','r','t','a','n'};

String s=new String(ch);

is same as:

String s="kirtan";

Java String class provides a lot of methods to perform operations on strings such as

compare(), concat(), equals(), split(), length(), replace(), substring() etc.

The java.lang.String class implements Serializable, Comparable and CharSequence interface.

CharSequence Interface

The CharSequence interface is used to represent the sequence of characters.

String, StringBuffer and StringBuilder, classes implement it. It means, we can create strings in

Java by using these three classes.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 2

The Java String is immutable which means it cannot be changed. Whenever we change any

string, a new instance is created. For mutable strings, you can use StringBuffer and

StringBuilder classes.

What is String in Java?

Generally, String is a sequence of characters. But in Java, string is an object that represents a

sequence of characters. The java.lang.String class is used to create a string object.

How to create a string object?

There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

String s="welcome";

Each time you create a string literal, the JVM checks the "string constant pool" first. If the
string already exists in the pool, a reference to the pooled instance is returned. If the string

doesn't exist in the pool, a new string instance is created and placed in the pool. For example:

String s1="Welcome";

String s2="Welcome";//It doesn't create a new instance

In the above example, only one object will be created. Firstly, JVM will not find any string

object with the value "Welcome" in string constant pool that is why it will create a new object.

After that it will find the string with the value "Welcome" in the pool, it will not create a new

object but will return the reference to the same instance.

Note: String objects are stored in a special memory area known as the "string constant

pool".

Why Java uses the concept of String literal?

To make Java more memory efficient (because no new objects are created if it exists already

in the string constant pool).

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 3

java

strings

example

2) By new keyword

String s=new String("Welcome");//creates two objects and one reference variable

In such case, jvm will create a new string object in normal (non-pool) heap memory, and the

literal "Welcome" will be placed in the string constant pool. The variable s will refer to the

object in a heap (non-pool).

Java String Example

public class StringExample

{

public static void main(String args[])

{

String s1="java";//creating string by Java string literal

char ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating Java string by new keyword

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

}}

Output:

The above code, converts a char array into a String object. And displays the String objects s1,

s2, and s3 on console using println() method.

 Immutable String in Java

A String is an unavoidable type of variable while writing any application program. String

references are used to store various attributes like username, password, etc. In Java, String

objects are immutable. Immutable simply means unmodifiable or unchangeable.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 4

Once String object is created its data or state can't be changed but a new String object is created.

Let's try to understand the concept of immutability by the example given below:

class Testimmutablestring{

public static void main(String args[]){

String s="Sachin";

s.concat(" Tendulkar");//concat() method appends the string at the end

System.out.println(s);//will print Sachin because strings are immutable objects

} }

Output:

Sachin

Now it can be understood by the diagram given below. Here Sachin is not changed but a new

object is created with Sachin Tendulkar. That is why String is known as immutable.

As you can see in the above figure that two objects are created but s reference variable still

refers to "Sachin" not to "Sachin Tendulkar".

But if we explicitly assign it to the reference variable, it will refer to "Sachin Tendulkar" object.

String s="Sachin";

s=s.concat(" Tendulkar");

System.out.println(s);

Sachin Tendulkar

In such a case, s points to the "Sachin Tendulkar". Please notice that still Sachin object is not

modified.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 5

S

h

Why String objects are immutable in Java?

As Java uses the concept of String literal. Suppose there are 5 reference variables, all refer to

one object "Sachin". If one reference variable changes the value of the object, it will be affected

by all the reference variables. That is why String objects are immutable in Java.

Why String class is Final in Java?

The reason behind the String class being final is because no one can override the methods of

the String class. So that it can provide the same features to the new String objects as well as to

the old ones.

Java String class methods

The java.lang.String class provides many useful methods to perform operations on sequence

of char values.

1. charAt()

The Java String class charAt() method returns a char value at the given index number.

The index number starts from 0 and goes to n-1, where n is the length of the string. It

returns StringIndexOutOfBoundsException, if the given index number is greater than or

equal to this string length or a negative number.

Syntax

public char charAt(int index)

The method accepts index as a parameter. The starting index is 0. It returns a character at a

specific index position in a string. It throws StringIndexOutOfBoundsException if the index

is a negative value or greater than this string length.

Specified by CharSequence interface, located inside java.lang package.

String s="Sachin";

System.out.println(s.charAt(0));//S

System.out.println(s.charAt(3));//h

2. concat()

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 6

The Java String class concat() method combines specified string at the end of this string. It

returns a combined string. It is like appending another string.

Signature

The signature of the string concat() method is given below:

public String concat(String anotherString)

Parameter

anotherString : another string i.e., to be combined at the end of this string.

Returns

combined string

String s1="Sachin ";

String s2="Tendulkar";

String s3=s1.concat(s2);

System.out.println(s3);//Sachin Tendulkar

Sachin Tendulkar

The above Java program, concatenates two String objects s1 and s2 using concat() method

and stores the result into s3 object.

3. equals()

The Java String class equals() method compares the two given strings based on the content

of the string. If any character is not matched, it returns false. If all characters are matched, it

returns true.

The String equals() method overrides the equals() method of the Object class.

Signature public boolean equals(Object anotherObject)

Parameter anotherObject : another object, i.e., compared with this string.

Returns

true if characters of both strings are equal otherwise false.

String s1="kirtan";

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 7

true

false

false

String s2="kirtan";

String s3="KIRTAN";

String s4="MIHIKA";

System.out.println(s1.equals(s2));//true because content and case is same

System.out.println(s1.equals(s3));//false because case is not same

System.out.println(s1.equals(s4));//false because content is not same

4. indexOf()

The Java String class indexOf() method returns the position of the first occurrence of the

specified character or string in a specified string.

Signature

There are four overloaded indexOf() method in Java. The signature of indexOf() methods are

given below:

No. Method Description

1 int indexOf(int ch) It returns the index position for the given char

value

2 int indexOf(int ch, int fromIndex) It returns the index position for the given char

value and from index

3 int indexOf(String substring) It returns the index position for the given

substring

4 int indexOf(String substring, int

fromIndex)

It returns the index position for the given

substring and from index

Parameters

ch: It is a character value, e.g. 'a'

fromIndex: The index position from where the index of the char value or substring is returned.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 8

2 8

5

3

substring: A substring to be searched in this string.

Returns

Index of the searched string or character.

String s1="this is index of example";

//passing substring

int index1=s1.indexOf("is");//returns the index of is substring

int index2=s1.indexOf("index");//returns the index of index substring

System.out.println(index1+" "+index2);//2 8

//passing substring with from index

int index3=s1.indexOf("is",4);//returns the index of is substring after 4th index

System.out.println(index3);//5 i.e. the index of another is

//passing char value

int index4=s1.indexOf('s');//returns the index of s char value

System.out.println(index4);//3

We observe that when a searched string or character is found, the method returns a non-

negative value. If the string or character is not found, -1 is returned. We can use this property

to find the total count of a character present in the given string.

5. lastIndexOf()

The Java String class lastIndexOf() method returns the last index of the given character value

or substring. If it is not found, it returns -1. The index counter starts from zero.

Signature

There are four types of lastIndexOf() method in Java. The signature of the methods are given

below:

No. Method Description

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 9

3

1 int lastIndexOf(int ch) It returns last index position for the given char

value

2 int lastIndexOf(int ch, int fromIndex) It returns last index position for the given char

value and from index

3 int lastIndexOf(String substring) It returns last index position for the given

substring

4 int lastIndexOf(String substring, int

fromIndex)

It returns last index position for the given

substring and from index

Parameters

ch: char value i.e. a single character e.g. 'a'

fromIndex: index position from where index of the char value or substring is retured

substring: substring to be searched in this string

Returns

last index of the string

Java String lastIndexOf() method example

String s1="this is index of example";//there are 2 's' characters in this sentence

int index1=s1.lastIndexOf('s');//returns last index of 's' char value

System.out.println(index1);//6

6

Java String lastIndexOf(int ch, int fromIndex) Method Example

Here, we are finding the last index from the string by specifying fromIndex.

String str = "This is index of example";

int index = str.lastIndexOf('s',5);

System.out.println(index);

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 10

19

19

-1

Java String lastIndexOf(String substring) Method Example

It returns the last index of the substring.

String str = "This is last index of example";

int index = str.lastIndexOf("of");

System.out.println(index);

Java String lastIndexOf(String substring, int fromIndex) Method Example

It returns the last index of the substring from the fromIndex.

String str = "This is last index of example";

int index = str.lastIndexOf("of", 25);

System.out.println(index);

index = str.lastIndexOf("of", 10);

System.out.println(index); // -1, if not found

6. isEmpty()

The Java String class isEmpty() method checks if the input string is empty or not. Note that

here empty means the number of characters contained in a string is zero.

Signature The signature or syntax of string isEmpty() method is given below:

public boolean isEmpty()

Returns

true if length is 0 otherwise false.

String s1="";

String s2="kirtan";

System.out.println(s1.isEmpty());

System.out.println(s2.isEmpty());

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 11

true

false

7. join()

The Java String class join() method returns a string joined with a given delimiter. In the String

join() method, the delimiter is copied for each element. The join() method is included in the

Java string since JDK 1.8.

Signature

The signature or syntax of the join() method is given below:

public static String join(CharSequence delimiter, CharSequence... elements)

Parameters

delimiter : char value to be added with each element

elements : char value to be attached with delimiter

Returns

joined string with delimiter

Exception Throws

NullPointerException if element or delimiter is null.

String joinString1=String.join("-","welcome","to","javaworld");

System.out.println(joinString1);

welcome-to-javaworld

8. length()

The Java String class length() method finds the length of a string. The length of the Java

string is the same as the Unicode code units of the string.

Signature

The signature of the string length() method is given below:

public int length()

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 12

string length is: 11

string length is: 6

Specified by

CharSequence interface

Returns

Length of characters. In other words, the total number of characters present in the string.

String s1="kirtanpatel";

String s2="python";

 System.out.println("string length is: "+s1.length());//11 is the length of kirtanpatel

string System.out.println("string length is: "+s2.length());//6 is the length of python

string

9. split()

The java string split() method splits this string against given regular expression and returns a

char array.

Signature

There are two signature for split() method in java string.

public String split(String regex)

and,

public String split(String regex, int limit)

Parameter

regex : regular expression to be applied on string.

limit : limit for the number of strings in array. If it is zero, it will returns all the strings matching

regex.

Returns
array of strings

String s1="java string split method by kirtan";

String[] words=s1.split("\\s");//splits the string based on whitespace

//using java foreach loop to print elements of string array

for(String w:words){

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 13

java

string

split

method

by

kirtan

String Str = new String("Welcome-to-java");

System.out.println("Return Value :");

for (String retval: Str.split("-")) {

System.out.println(retval);

}

}
}

Return Value :

Welcome

To

java

System.out.println(w);

}

Split With Regular Expression

Output

10. substring()

The Java String class substring() method returns a part of the string.

We pass beginIndex and endIndex number position in the Java substring method where

beginIndex is inclusive, and endIndex is exclusive. In other words, the beginIndex starts from

0, whereas the endIndex starts from 1.

There are two types of substring methods in Java string.

Signature

public String substring(int startIndex) // type - 1

and

public String substring(int startIndex, int endIndex) // type - 2

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 14

kirtan

rtan

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: begin 5, end 15,

length 6

If we don't specify endIndex, the method will return all the characters from startIndex.

Parameters

startIndex : starting index is inclusive

endIndex : ending index is exclusive

Returns

specified string

Exception Throws

StringIndexOutOfBoundsException is thrown when any one of the following conditions is

met.

o if the start index is negative value

o end index is lower than starting index.

o Either starting or ending index is greater than the total number of characters present in

the string.

String s1="kirtan";

String substr = s1.substring(0); // Starts with 0 and goes to end

System.out.println(substr);

String substr2 = s1.substring(2,5); // Starts from 2 and goes to 5

System.out.println(substr2);

String substr3 = s1.substring(5,15); // Returns Exception

11. trim()

The Java String class trim() method eliminates leading and trailing spaces. The Unicode

value of space character is '\u0020'. The trim() method in Java string checks this Unicode value

before and after the string, if it exists then the method removes the spaces and returns the

omitted string.

The string trim() method doesn't omit middle spaces.

Signature

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 15

SACHIN
sachin

Sachin

hello string kirtan

hello stringkirtan

true

true

The signature or syntax of the String class trim() method is given below:

public String trim()

Returns

string with omitted leading and trailing spaces

String s1=" hello string ";

System.out.println(s1+"kirtan");//without trim()

System.out.println(s1.trim()+"kirtan");//with trim()

12. toUpperCase() and toLowerCase()

The Java String toUpperCase() method converts this String into uppercase letter and String

toLowerCase() method into lowercase letter.

String s="Sachin";

System.out.println(s.toUpperCase());//SACHIN

System.out.println(s.toLowerCase());//sachin

System.out.println(s);//Sachin(no change in original)

13. startsWith() and endsWith()

The method startsWith() checks whether the String starts with the letters passed as arguments

and endsWith() method checks whether the String ends with the letters passed as arguments.

String s="Sachin";

System.out.println(s.startsWith("Sa"));//true

System.out.println(s.endsWith("n"));//true

14. replace()

The String class replace() method replaces all occurrence of first sequence of character with

second sequence of character.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 16

Kava is a programming language. Kava is a platform. Kava is an Island.

true

true

false

String s1="Java is a programming language. Java is a platform. Java is an Island.";

String replaceString=s1.replace("Java","Kava");//replaces all occurrences of "Java" to "Kava

"

System.out.println(replaceString);

 String comparision

We can compare String in Java on the basis of content and reference.

It is used in authentication (by equals() method), sorting (by compareTo()

method), reference matching (by == operator) etc.

There are three ways to compare String in Java:

1. By Using equals() Method

2. By Using == Operator

3. By compareTo() Method

1) By Using equals() Method

The String class equals() method compares the original content of the string. It compares

values of string for equality. String class provides the following two methods:

o public boolean equals(Object another) compares this string to the specified object.

o public boolean equalsIgnoreCase(String another) compares this string to another

string, ignoring case.

String s1="Sachin";

String s2="Sachin";

String s3=new String("Sachin");

String s4="Saurav";

System.out.println(s1.equals(s2));//true

System.out.println(s1.equals(s3));//true

System.out.println(s1.equals(s4));//false

In the above code, two strings are compared using equals() method of String class. And the

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 17

false

true

true

false

result is printed as boolean values, true or false.

String s1="Sachin";

String s2="SACHIN";

System.out.println(s1.equals(s2));//false

System.out.println(s1.equalsIgnoreCase(s2));//true

In the above program, the methods of String class are used. The equals() method returns true

if String objects are matching and both strings are of same case. equalsIgnoreCase() returns

true regardless of cases of strings.

2) By Using == operator

The == operator compares references not values.

String s1="Sachin";

String s2="Sachin";

String s3=new String("Sachin");

System.out.println(s1==s2);//true (because both refer to same instance)

System.out.println(s1==s3);//false(because s3 refers to instance created in nonpool)

3) By Using compareTo() method

The String class compareTo() method compares values lexicographically and returns an

integer value that describes if first string is less than, equal to or greater than second string.

Suppose s1 and s2 are two String objects. If:

o s1 == s2 : The method returns 0.

o s1 > s2 : The method returns a positive value.

o s1 < s2 : The method returns a negative value.

String s1="Sachin";

String s2="Sachin";

String s3="Ratan";

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 18

System.out.println(s1.compareTo(s2));//0

System.out.println(s1.compareTo(s3));//1(because s1>s3)

System.out.println(s3.compareTo(s1));//-1(because s3 < s1)

0

 String Concatenation in Java

In Java, String concatenation forms a new String that is the combination of multiple strings.

There are two ways to concatenate strings in Java:

1. By + (String concatenation) operator

2. By concat() method

1) String Concatenation by + (String concatenation) operator

String s="Sachin"+"Tendulkar";

System.out.println(s);//Sachin Tendulkar

Output:

The Java compiler transforms above code to this:

String s=(new StringBuilder()).append("Sachin").append(" Tendulkar).toString();

In Java, String concatenation is implemented through the StringBuilder (or StringBuffer) class

and it's append method. String concatenation operator produces a new String by appending the

second operand onto the end of the first operand. The String concatenation operator can

concatenate not only String but primitive values also. For Example:

String s=50+30+"Sachin"+40+40;

System.out.println(s);//80Sachin4040

1.

80Sachin4040

Note: After a string literal, all the + will be treated as string concatenation operator.

2) String Concatenation by concat() method

The String concat() method concatenates the specified string to the end of current string.

Syntax:

public String concat(String another)

1

-1

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 19

Hello World

Hello World

String s1="Sachin ";

String s2="Tendulkar";

String s3=s1.concat(s2);

System.out.println(s3);//Sachin Tendulkar

The above Java program, concatenates two String objects s1 and s2 using concat() method

and stores the result into s3 object.

There are some other possible ways to concatenate Strings in Java,

1. String concatenation using StringBuilder class

StringBuilder s1 = new StringBuilder("Hello"); //String 1

StringBuilder s2 = new StringBuilder(" World"); //String 2

StringBuilder s = s1.append(s2); //String 3 to store the result

System.out.println(s.toString()); //Displays result

In the above code snippet, s1, s2 and s are declared as objects of StringBuilder class. s stores

the result of concatenation of s1 and s2 using append() method.

2. String concatenation using format() method

String.format() method allows to concatenate multiple strings using format specifier like %s

followed by the string values or objects.

String s1 = new String("Hello"); //String 1

String s2 = new String(" World"); //String 2

String s = String.format("%s%s",s1,s2); //String 3 to store the result

System.out.println(s.toString()); //Displays result

Here, the String objects s is assigned the concatenated result of

Strings s1 and s2 using String.format() method. format() accepts parameters as format

specifier followed by String objects or values.

3. String concatenation using String.join() method (Java Version 8+)

The String.join() method is available in Java version 8 and all the above versions. String.join()

Sachin Tendulkar

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 20

class HelloWorld {

public static void main(String args[]) {

method accepts arguments first a separator and an array of String objects.

String s1 = new String("Hello"); //String 1

String s2 = new String(" World"); //String 2

String s = String.join("",s1,s2); //String 3 to store the result

System.out.println(s.toString()); //Displays result

Hello World

In the above code snippet, the String object s stores the result of String.join("",s1,s2) method.

A separator is specified inside quotation marks followed by the String objects or array of String

objects.

 toString() Method

If you want to represent any object as a string, toString() method comes into existence.

The toString() method returns the String representation of the object.

If you print any object, Java compiler internally invokes the toString() method on the object.

So overriding the toString() method, returns the desired output, it can be the state of an object

etc. depending on your implementation.

Advantage of Java toString() method

By overriding the toString() method of the Object class, we can return values of the object, so

we don't need to write much code.

How to use the toString() method

The toString() method in Java has two implementations;

 The first implementation is when it is called as a method of an object instance. The

example below shows this implementation

Output

//Creating an integer of value 10

Integer number=10;

// Calling the toString() method as a function of the Integer variable

System.out.println(number.toString());

}

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 21

class HelloWorld {

public static void main(String args[]) {

// The method is called on datatype Double

// It is passed the double value as an argument

System.out.println(Double.toString(11.0));

// Implementing this on other datatypes

//Integer

System.out.println(Integer.toString(12));

// Long

System.out.println(Long.toString(123213123));

// Booleam

System.out.println(Boolean.toString(false));

}

}

10

 The second implementation is when you call the member method of the relevant class

by passing the value as an argument. The example below shows how to do this

Output

11.0

12

123213123

false

Example 1: (write a program to count number of vowels in inputted string)

import java.io.*;

class vowel

{

public static void main(String args[])throws IOException
{

DataInputStream dis=new DataInputStream(System.in);

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 22

int cnt=0;

System.out.println("enter string");

String st=dis.readLine();

for(int i=0;i<st.length();i++)
{

char t=st.charAt(i);

if(t=='a' || t=='e' || t=='o' || t=='i' || t=='u' ||

t=='A' || t=='E' || t=='O' || t=='I' || t=='U')

cnt++;

}

System.out.println("total vowels:- "+cnt);
}

}

Example 2: (write a program to enter 5 string and sort it)

class sort1
{

public static void main(String args[])
{

String st[]={"w","p","a","k","z"};

for(int i=0;i<st.length;i++)

{

for(int j=i+1;j<st.length;j++)
{

if(st[i].compareTo(st[j])>0)

{

String t=st[i];

st[i]=st[j];

st[j]=t;

}

}

}

for(String t:st)
{

System.out.println(t);

}

}
}

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 23

Example 3: (write a program to find words beginning with ‘p’ chatacter in inputted

string)

import java.io.*;

class search1

{

public static void main(String args[])throws IOException
{

DataInputStream dis=new DataInputStream(System.in);

System.out.println("enter string");

String st=dis.readLine();

String t[]=st.split(" ");

for(int i=0;i<t.length;i++)

{

if(t[i].startsWith("p"))

System.out.println(t[i]);

}

}
}

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 24

Java StringBuffer Class

Java StringBuffer class is used to create mutable (modifiable) String objects. The StringBuffer

class in Java is the same as String class except it is mutable i.e. it can be changed.

Important Constructors of StringBuffer Class

Constructor Description

StringBuffer() It creates an empty String buffer with the initial capacity of 16.

StringBuffer(String str) It creates a String buffer with the specified string..

StringBuffer(int

capacity)

It creates an empty String buffer with the specified capacity as

length.

Important methods of StringBuffer class

Modifier and

Type

Method Description

public

synchronized

StringBuffer

append(String s) It is used to append the specified string with this

string. The append() method is overloaded like

append(char), append(boolean), append(int),

append(float), append(double) etc.

public

synchronized

StringBuffer

insert(int offset, String

s)

It is used to insert the specified string with this

string at the specified position. The insert()

method is overloaded like insert(int, char),

insert(int, boolean), insert(int, int), insert(int,

float), insert(int, double) etc.

public

synchronized

StringBuffer

replace(int startIndex,

int endIndex, String str)

It is used to replace the string from specified

startIndex and endIndex.

public

synchronized

StringBuffer

delete(int startIndex, int

endIndex)

It is used to delete the string from specified

startIndex and endIndex.

public

synchronized

StringBuffer

reverse() is used to reverse the string.

public int capacity() It is used to return the current capacity.

public void ensureCapacity(int

minimumCapacity)

It is used to ensure the capacity at least equal to

the given minimum.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 25

public char charAt(int index) It is used to return the character at the specified

position.

public int length() It is used to return the length of the string i.e.

total number of characters.

public String substring(int

beginIndex)

It is used to return the substring from the

specified beginIndex.

public String substring(int

beginIndex, int

endIndex)

It is used to return the substring from the

specified beginIndex and endIndex.

What is a mutable String?

A String that can be modified or changed is known as mutable String. StringBuffer and

StringBuilder classes are used for creating mutable strings.

1) StringBuffer Class append() Method

The append() method concatenates the given argument with this String.

StringBufferExample.java

class StringBufferExample{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

sb.append("Java");//now original string is changed

System.out.println(sb);//prints Hello Java

}

}

Output:

Hello Java

2) StringBuffer insert() Method

The insert() method inserts the given String with this string at the given position.

StringBufferExample2.java

class StringBufferExample2{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 26

sb.insert(1,"Java");//now original string is changed

System.out.println(sb);//prints HJavaello

}

}

Output:

HJavaello

3) StringBuffer replace() Method

The replace() method replaces the given String from the specified beginIndex and endIndex.

StringBufferExample3.java

class StringBufferExample3{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.replace(1,3,"Java");

System.out.println(sb);//prints HJavalo

}

}

Output:

HJavalo

4) StringBuffer delete() Method

The delete() method of the StringBuffer class deletes the String from the specified beginIndex to

endIndex.

StringBufferExample4.java

class StringBufferExample4{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.delete(1,3);

System.out.println(sb);//prints Hlo

}

}

Output:

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 27

Hlo

5) StringBuffer reverse() Method

The reverse() method of the StringBuilder class reverses the current String.

StringBufferExample5.java

class StringBufferExample5{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.reverse();

System.out.println(sb);//prints olleH

}

}

Output:

olleH

6) StringBuffer capacity() Method

The capacity() method of the StringBuffer class returns the current capacity of the buffer. The

default capacity of the buffer is 16. If the number of character increases from its current capacity,

it increases the capacity by (oldcapacity*2)+2. For example if your current capacity is 16, it will

be (16*2)+2=34.

StringBufferExample6.java

class StringBufferExample6{

public static void main(String args[]){

StringBuffer sb=new StringBuffer();

System.out.println(sb.capacity());//default 16

sb.append("Hello");

System.out.println(sb.capacity());//now 16

sb.append("java is my favourite language");

System.out.println(sb.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2

}

}

Output:

16

16

34

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 28

7) StringBuffer ensureCapacity() method

The ensureCapacity() method of the StringBuffer class ensures that the given capacity is the

minimum to the current capacity. If it is greater than the current capacity, it increases the capacity

by (oldcapacity*2)+2. For example if your current capacity is 16, it will be (16*2)+2=34.

StringBufferExample7.java

class StringBufferExample7{

public static void main(String args[]){

StringBuffer sb=new StringBuffer();

System.out.println(sb.capacity());//default 16

sb.append("Hello");

System.out.println(sb.capacity());//now 16

sb.append("java is my favourite language");

System.out.println(sb.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2

sb.ensureCapacity(10);//now no change

System.out.println(sb.capacity());//now 34

sb.ensureCapacity(50);//now (34*2)+2

System.out.println(sb.capacity());//now 70

}

}

Output:

16

16

34

34

70

Difference between String and StringBuffer

There are many differences between String and StringBuffer. A list of differences between String

and StringBuffer are given below:

No. String StringBuffer

1) The String class is immutable. The StringBuffer class is mutable.

2) String is slow and consumes more memory

when we concatenate too many strings

because every time it creates new instance.

StringBuffer is fast and consumes

less memory when we concatenate

t strings.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 29

3) String class overrides the equals() method of

Object class. So you can compare the

contents of two strings by equals() method.

StringBuffer class doesn't override

the equals() method of Object

class.

4) String class is slower while performing

concatenation operation.

StringBuffer class is faster while

performing concatenation

operation.

5) String class uses String constant pool. StringBuffer uses Heap memory

Exception Handling in Java

The Exception Handling in Java is one of the powerful mechanism to handle the runtime

errors so that the normal flow of the application can be maintained.

In this tutorial, we will learn about Java exceptions, it's types, and the difference between checked

and unchecked exceptions.

What is Exception in Java?

Dictionary Meaning: Exception is an abnormal condition.

In Java, an exception is an event that disrupts the normal flow of the program. It is an object which

is thrown at runtime.

Exception Handling is a mechanism to handle runtime errors such as ClassNotFoundException,

IOException, SQLException, RemoteException, etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application. An

exception normally disrupts the normal flow of the application; that is why we need to handle

exceptions. Let's consider a scenario:

statement 1;

statement 2;

statement 3;

statement 4;

statement 5;//exception occurs

statement 6;

statement 7;

statement 8;

statement 9;

statement 10;

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 30

Suppose there are 10 statements in a Java program and an exception occurs at statement 5; the rest

of the code will not be executed, i.e., statements 6 to 10 will not be executed. However, when we

perform exception handling, the rest of the statements will be executed. That is why we use

exception handling in Java.

Hierarchy of Java Exception classes

The java.lang.Throwable class is the root class of Java Exception hierarchy inherited by two

subclasses: Exception and Error. The hierarchy of Java Exception classes is given below:

Types of Java Exceptions

There are mainly two types of exceptions: checked and unchecked. An error is considered as the

unchecked exception. However, according to Oracle, there are three types of exceptions namely:

1. Checked Exception

2. Unchecked Exception

3. Error

https://www.javatpoint.com/java-tutorial

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 31

Difference between Checked and Unchecked Exceptions

1) Checked Exception

The classes that directly inherit the Throwable class except RuntimeException and Error are

known as checked exceptions. For example, IOException, SQLException, etc. Checked

exceptions are checked at compile-time.

2) Unchecked Exception

The classes that inherit the RuntimeException are known as unchecked exceptions. For example,

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException, etc. Unchecked

exceptions are not checked at compile-time, but they are checked at runtime.

3) Error

Error is irrecoverable. Some example of errors are OutOfMemoryError, VirtualMachineError,

AssertionError etc.

Java Exception Keywords

Java provides five keywords that are used to handle the exception. The following table describes

each.

Keyword Description

try The "try" keyword is used to specify a block where we should place

an exception code. It means we can't use try block alone. The try

block must be followed by either catch or finally.

catch The "catch" block is used to handle the exception. It must be

preceded by try block which means we can't use catch block alone.

It can be followed by finally block later.

finally The "finally" block is used to execute the necessary code of the

program. It is executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It specifies

that there may occur an exception in the method. It doesn't throw an

exception. It is always used with method signature.

Java Exception Handling Example

Let's see an example of Java Exception Handling in which we are using a try-catch statement to

handle the exception.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 32

JavaExceptionExample.java

public class JavaExceptionExample{

public static void main(String args[]){

try{

//code that may raise exception

int data=100/0;

}catch(ArithmeticException e){System.out.println(e);}

//rest code of the program

System.out.println("rest of the code...");

}

}

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

In the above example, 100/0 raises an ArithmeticException which is handled by a try-catch block.

Common Scenarios of Java Exceptions

There are given some scenarios where unchecked exceptions may occur. They are as follows:

1) A scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

int a=50/0;//ArithmeticException

2) A scenario where NullPointerException occurs

If we have a null value in any variable, performing any operation on the variable throws a

NullPointerException.

String s=null;

System.out.println(s.length());//NullPointerException

3) A scenario where NumberFormatException occurs

If the formatting of any variable or number is mismatched, it may result into

NumberFormatException. Suppose we have a string variable that has characters; converting this

variable into digit will cause NumberFormatException.

String s="abc";

int i=Integer.parseInt(s);//NumberFormatException

https://www.javatpoint.com/java-variables
https://www.javatpoint.com/java-string

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 33

4) A scenario where ArrayIndexOutOfBoundsException occurs

When an array exceeds to it's size, the ArrayIndexOutOfBoundsException occurs. there may be

other reasons to occur ArrayIndexOutOfBoundsException. Consider the following statements.

int a[]=new int[5];

a[10]=50; //ArrayIndexOutOfBoundsException

Java try-catch block

Java try block

Java try block is used to enclose the code that might throw an exception. It must be used within

the method.

If an exception occurs at the particular statement in the try block, the rest of the block code will

not execute. So, it is recommended not to keep the code in try block that will not throw an

exception.

Java try block must be followed by either catch or finally block.

Syntax of Java try-catch

try{

//code that may throw an exception

}catch(Exception_class_Name ref){}

Syntax of try-finally block

try{

//code that may throw an exception

}finally{}

Java catch block

Java catch block is used to handle the Exception by declaring the type of exception within the

parameter. The declared exception must be the parent class exception (i.e., Exception) or the

generated exception type. However, the good approach is to declare the generated type of

exception.

The catch block must be used after the try block only. You can use multiple catch block with a

single try block.

Internal Working of Java try-catch block

The JVM firstly checks whether the exception is handled or not. If exception is not handled, JVM

provides a default exception handler that performs the following tasks:

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 34

o Prints out exception description.

o Prints the stack trace (Hierarchy of methods where the exception occurred).

o Causes the program to terminate.

But if the application programmer handles the exception, the normal flow of the application is

maintained, i.e., rest of the code is executed.

Example 1

TryCatchExample1.java

public class TryCatchExample1 {

public static void main(String[] args) {

int data=50/0; //may throw exception

System.out.println("rest of the code");

}

}

Output:

Exception in thread "main" java.lang.ArithmeticException: / by zero

As displayed in the above example, the rest of the code is not executed (in such case, the rest of

the code statement is not printed).

There might be 100 lines of code after the exception. If the exception is not handled, all the code

below the exception won't be executed.

Solution by exception handling

Let's see the solution of the above problem by a java try-catch block.

Example 2

TryCatchExample2.java

public class TryCatchExample2 {

public static void main(String[] args) {

try

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 35

{

int data=50/0; //may throw exception

}

//handling the exception

catch(ArithmeticException e)

{

System.out.println(e);

}

System.out.println("rest of the code");

}

}

Output:

java.lang.ArithmeticException: / by zero

rest of the code

User-Defined Exception (Java Custom Exception)

In Java, we can create our own exceptions that are derived classes of the Exception class. Creating

our own Exception is known as custom exception or user-defined exception. Basically, Java

custom exceptions are used to customize the exception according to user need.

Consider the example 1 in which InvalidAgeException class extends the Exception class.

Using the custom exception, we can have your own exception and message. Here, we have passed

a string to the constructor of superclass i.e. Exception class that can be obtained using

getMessage() method on the object we have created.

In this section, we will learn how custom exceptions are implemented and used in Java programs.

Why use custom exceptions?

Java exceptions cover almost all the general type of exceptions that may occur in the

programming. However, we sometimes need to create custom exceptions.

Following are few of the reasons to use custom exceptions:

o To catch and provide specific treatment to a subset of existing Java exceptions.

o Business logic exceptions: These are the exceptions related to business logic and workflow.

It is useful for the application users or the developers to understand the exact problem.

In order to create custom exception, we need to extend Exception class that belongs to java.lang

package.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 36

Consider the following example, where we create a custom exception named

WrongFileNameException:

public class WrongFileNameException extends Exception {

public WrongFileNameException(String errorMessage) {

super(errorMessage);

}

}

Note: We need to write the constructor that takes the String as the error message and it is called

parent class constructor.

Example 1:

Let's see a simple example of Java custom exception. In the following code, constructor of

InvalidAgeException takes a string as an argument. This string is passed to constructor of parent

class Exception using the super() method. Also the constructor of Exception class can be called

without using a parameter and calling super() method is not mandatory.

Example 2:

TestCustomException.java

// class representing custom exception

class MyCustomException extends Exception

{

}

// class that uses custom exception MyCustomException

public class TestCustomException2

{

// main method

public static void main(String args[])

{

try

{

// throw an object of user defined exception

throw new MyCustomException();

}

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 37

catch (MyCustomException ex)

{

System.out.println("Caught the exception");

System.out.println(ex.getMessage());

}

System.out.println("rest of the code...");

}

}

Output:

Java throw Exception

In Java, exceptions allows us to write good quality codes where the errors are checked at the

compile time instead of runtime and we can create custom exceptions making the code recovery

and debugging easier.

The Java throw keyword is used to throw an exception explicitly.

We specify the exception object which is to be thrown. The Exception has some message with it

that provides the error description. These exceptions may be related to user inputs, server, etc.

We can throw either checked or unchecked exceptions in Java by throw keyword. It is mainly used

to throw a custom exception. We will discuss custom exceptions later in this section.

We can also define our own set of conditions and throw an exception explicitly using throw

keyword. For example, we can throw ArithmeticException if we divide a number by another

number. Here, we just need to set the condition and throw exception using throw keyword.

The syntax of the Java throw keyword is given below.

throw Instance i.e.,

throw new exception_class("error message");

Let's see the example of throw IOException.

throw new IOException("sorry device error");

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 38

Where the Instance must be of type Throwable or subclass of Throwable. For example, Exception

is the sub class of Throwable and the user-defined exceptions usually extend the Exception class.

Java throw keyword Example

Example 1: Throwing Unchecked Exception

In this example, we have created a method named validate() that accepts an integer as a parameter.

If the age is less than 18, we are throwing the ArithmeticException otherwise print a message

welcome to vote.

TestThrow1.java

In this example, we have created the validate method that takes integer value as a parameter. If the

age is less than 18, we are throwing the ArithmeticException otherwise print a message welcome

to vote.

public class TestThrow1 {

//function to check if person is eligible to vote or not

public static void validate(int age) {

if(age<18) {

//throw Arithmetic exception if not eligible to vote

throw new ArithmeticException("Person is not eligible to vote");

}

else {

System.out.println("Person is eligible to vote!!");

}

}

//main method

public static void main(String args[]){

//calling the function

validate(13);

System.out.println("rest of the code...");

}

}

Output:

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 39

The above code throw an unchecked exception. Similarly, we can also throw unchecked and user

defined exceptions.

Note: If we throw unchecked exception from a method, it is must to handle the exception or

declare in throws clause.

If we throw a checked exception using throw keyword, it is must to handle the exception using

catch block or the method must declare it using throws declaration.

Example 2: Throwing Checked Exception

Note: Every subclass of Error and RuntimeException is an unchecked exception in Java. A

checked exception is everything else under the Throwable class.

TestThrow2.java

import java.io.*;

public class TestThrow2 {

//function to check if person is eligible to vote or not

public static void method() throws FileNotFoundException {

FileReader file = new FileReader("C:\\Users\\Anurati\\Desktop\\abc.txt");

BufferedReader fileInput = new BufferedReader(file);

throw new FileNotFoundException();

}

//main method

public static void main(String args[]){

try

{

method();

}

catch (FileNotFoundException e)

{

e.printStackTrace();

}

System.out.println("rest of the code...");

}

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 40

}

Output:

Example 3: Throwing User-defined Exception

exception is everything else under the Throwable class.

TestThrow3.java

// class represents user-defined exception

class UserDefinedException extends Exception

{

public UserDefinedException(String str)

{

// Calling constructor of parent Exception

super(str);

}

}

// Class that uses above MyException

public class TestThrow3

{

public static void main(String args[])

{

try

{

// throw an object of user defined exception

throw new UserDefinedException("This is user-defined exception");

}

catch (UserDefinedException ude)

{

System.out.println("Caught the exception");

// Print the message from MyException object

System.out.println(ude.getMessage());

}

}

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 41

}

Output:

Java throws keyword

The Java throws keyword is used to declare an exception. It gives an information to the

programmer that there may occur an exception. So, it is better for the programmer to provide the

exception handling code so that the normal flow of the program can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any

unchecked exception such as NullPointerException, it is programmers' fault that he is not

checking the code before it being used.

Syntax of Java throws

return_type method_name() throws exception_class_name{

//method code

}

Which exception should be declared?

Ans: Checked exception only, because:

o unchecked exception: under our control so we can correct our code.

o error: beyond our control. For example, we are unable to do anything if there occurs

VirtualMachineError or StackOverflowError.

Advantage of Java throws keyword

Now Checked Exception can be propagated (forwarded in call stack).

It provides information to the caller of the method about the exception.

Java throws Example

Let's see the example of Java throws clause which describes that checked exceptions can be

propagated by throws keyword.

Testthrows1.java

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 42

import java.io.IOException;

class Testthrows1{

void m()throws IOException{

throw new IOException("device error");//checked exception

}

void n()throws IOException{

m();

}

void p(){

try{

n();

}catch(Exception e){System.out.println("exception handled");}

}

public static void main(String args[]){

Testthrows1 obj=new Testthrows1();

obj.p();

System.out.println("normal flow...");

}

}

Output:

exception handled

normal flow...

Rule: If we are calling a method that declares an exception, we must either caught or declare the

exception.

There are two cases:

1. Case 1: We have caught the exception i.e. we have handled the exception using try/catch

block.

2. Case 2: We have declared the exception i.e. specified throws keyword with the method.

Case 1: Handle Exception Using try-catch block

In case we handle the exception, the code will be executed fine whether exception occurs during

the program or not.

Testthrows2.java

import java.io.*;

class M{

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 43

void method()throws IOException{

throw new IOException("device error");

}

}

public class Testthrows2{

public static void main(String args[]){

try{

M m=new M();

m.method();

}catch(Exception e){System.out.println("exception handled");}

System.out.println("normal flow...");

}

}

Output:
exception handled

 normal flow...

Case 2: Declare Exception

o In case we declare the exception, if exception does not occur, the code will be executed fine.

o In case we declare the exception and the exception occurs, it will be thrown at runtime

because throws does not handle the exception.

Let's see examples for both the scenario.

A) If exception does not occur

Testthrows3.java

import java.io.*;

class M{

void method()throws IOException{

System.out.println("device operation performed");

}

}

class Testthrows3{

public static void main(String args[])throws IOException{//declare exception

M m=new M();

m.method();

System.out.println("normal flow...");

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 44

}

}

Output:

device operation performed

 normal flow...

B) If exception occurs

Testthrows4.java

import java.io.*;

class M{

void method()throws IOException{

throw new IOException("device error");

}

}

class Testthrows4{

public static void main(String args[])throws IOException{//declare exception

M m=new M();

m.method();

System.out.println("normal flow...");

}

}

Output:

Difference between throw and throws in Java

Sr.

no.

Basis of

Differences

throw throws

1. Definition Java throw keyword is used

throw an exception explicitly

in the code, inside the function

or the block of code.

Java throws keyword is used in

the method signature to declare an

exception which might be thrown

by the function while the

execution of the code.

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 45

2. Type of

exception

Using throw keyword, we can

only propagate unchecked

exception i.e., the checked

exception cannot be

propagated using throw only.

Using throws keyword, we can

declare both checked and

unchecked exceptions. However,

the throws keyword can be used to

propagate checked exceptions only.

3. Syntax The throw keyword is

followed by an instance of

Exception to be thrown.

The throws keyword is followed

by class names of Exceptions to

be thrown.

4. Declaration throw is used within the

method.

throws is used with the method

signature.

5. Internal

implementation

We are allowed to throw only

one exception at a time i.e. we

cannot throw multiple

exceptions.

We can declare multiple

exceptions using throws keyword

that can be thrown by the method.

For example, main() throws

IOException, SQLException.

Difference between final, finally and finalize

OR

Explain final keyword,finally block and finalized method

The final, finally, and finalize are keywords in Java that are used in exception handling. Each of

these keywords has a different functionality. The basic difference between final, finally and

finalize is that the final is an access modifier, finally is the block in Exception Handling

and finalize is the method of object class.

Along with this, there are many differences between final, finally and finalize. A list of differences

between final, finally and finalize are given below:

no Key final finally finalize

1. Definition final is the keyword and

access modifier which

is used to apply

restrictions on a class,

method or variable.

finally is the block in

Java Exception

Handling to execute

the important code

whether the exception

occurs or not.

finalize is the method

in Java which is used

to perform clean up

processing just before

object is garbage

collected.

2. Applicable to Final keyword is used

with the classes,

methods and variables.

Finally block is

always related to the

try and catch block in

exception handling.

finalize() method is

used with the objects.

https://www.javatpoint.com/final-keyword
https://www.javatpoint.com/finally-block-in-exception-handling
https://www.javatpoint.com/java-object-finalize-method

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 46

3. Functionality (1) Once declared, final

variable becomes

constant and cannot be

modified.

(2) final method cannot

be overridden by sub

class.

(3) final class cannot be

inherited.

(1) finally block runs

the important code

even if exception

occurs or not.

(2) finally block

cleans up all the

resources used in try

block

finalize method

performs the cleaning

activities with respect

to the object before its

destruction.

4. Execution Final method is

executed only when we

call it.

Finally block is

executed as soon as

the try-catch block is

executed.

It's execution is not

dependant on the

exception.

finalize method is

executed just before

the object is

destroyed.

Java final Example

Let's consider the following example where we declare final variable age. Once declared it cannot

be modified.

FinalExampleTest.java

public class FinalExampleTest {

 //declaring final variable

 final int age = 18;

 void display() {

 // reassigning value to age variable

 // gives compile time error

 age = 55;

 }

 public static void main(String[] args) {

 FinalExampleTest obj = new FinalExampleTest();

 // gives compile time error

 obj.display();

 }

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 47

}

Output:

In the above example, we have declared a variable final. Similarly, we can declare the methods

and classes final using the final keyword.

Java finally Example

Let's see the below example where the Java code throws an exception and the catch block handles

that exception. Later the finally block is executed after the try-catch block. Further, the rest of the

code is also executed normally.

FinallyExample.java

public class FinallyExample {

public static void main(String args[]){

try {

System.out.println("Inside try block");

// below code throws divide by zero exception

int data=25/0;

System.out.println(data);

}

// handles the Arithmetic Exception / Divide by zero exception

catch (ArithmeticException e){

System.out.println("Exception handled");

System.out.println(e);

}

// executes regardless of exception occurred or not

finally {

System.out.println("finally block is always executed");

}

System.out.println("rest of the code...");

}

}

Output:

Unit 3. Basic Concepts of Strings and Exceptions

RASHMI PATEL Page 48

Java finalize Example

FinalizeExample.java

public class FinalizeExample {

public static void main(String[] args)

{

FinalizeExample obj = new FinalizeExample();

// printing the hashcode

System.out.println("Hashcode is: " + obj.hashCode());

obj = null;

// calling the garbage collector using gc()

System.gc();

System.out.println("End of the garbage collection");

}

// defining the finalize method

protected void finalize()

{

System.out.println("Called the finalize() method");

}

}

Output:

Unit 4. Threads and Packages

RASHMI PATEL Page 1

Thread Concept in Java

Before introducing the thread concept, we were unable to run more than one task in parallel. It was a

drawback, and to remove that drawback, Thread Concept was introduced.

A Thread is a very light-weighted process, or we can say the smallest part of the process that allows a

program to operate more efficiently by running multiple tasks simultaneously.

In order to perform complicated tasks in the background, we used the Thread concept in Java. All the tasks

are executed without affecting the main program. In a program or process, all the threads have their own

separate path for execution, so each thread of a process is independent.

Another benefit of using thread is that if a thread gets an exception or an error at the time of its execution, it

doesn't affect the execution of the other threads. All the threads share a common memory and have their own

stack, local variables and program counter. When multiple threads are executed in parallel at the same time, this

process is known as Multithreading.

In a simple way, a Thread is a:

o Feature through which we can perform multiple activities within a single process.

o Lightweight process.

o Series of executed statements.

o Nested sequence of method calls.

Note: At a time one thread is executed only.

https://www.javatpoint.com/multithreading-in-java

Unit 4. Threads and Packages

RASHMI PATEL Page 2

Difference between Thread and Process

Process Thread

A process is an instance of a program that is

being executed or processed.

Thread is a segment of a process or a lightweight

process that is managed by the scheduler independently.

Processes are independent of each other and

hence don't share a memory or other resources.

Threads are interdependent and share memory.

Each process is treated as a new process by the

operating system.

The operating system takes all the user-level threads as a

single process.

If one process gets blocked by the operating

system, then the other process can continue the

execution.

If any user-level thread gets blocked, all of its peer

threads also get blocked because OS takes all of them as

a single process.

Context switching between two processes

takes much time as they are heavy compared to

thread.

Context switching between the threads is fast because

they are very lightweight.

The data segment and code segment of each

process are independent of the other.

Threads share data segment and code segment with their

peer threads; hence are the same for other threads also.

The operating system takes more time to

terminate a process.

Threads can be terminated in very little time.

New process creation is more time taking as

each new process takes all the resources.

A thread needs less time for creation.

Life cycle of a Thread (Thread States)

OR

Thread Model

Life Cycle of Thread in Java is basically state transitions of a thread that starts from its birth and ends

on its death.

When an instance of a thread is created and is executed by calling start() method of Thread class, the

thread goes into runnable state.

When sleep() or wait() method is called by Thread class, the thread enters into non-runnable state.

From non-runnable state, thread comes back to runnable state and continues execution of statements. When

the thread comes out of run() method, it dies. These state transitions of a thread are called Thread life cycle in

Java.

https://www.scientecheasy.com/2020/08/thread-class-in-java.html/
https://www.scientecheasy.com/2020/08/thread-class-in-java.html/

Unit 4. Threads and Packages

RASHMI PATEL Page 3

Thread States in Java

A thread is a path of execution in a program that enters in any one of the following five states during its life

cycle. The five states are as follows:

1. New

2. Runnable

3. Running

4. Blocked (Non-runnable state)

5. Dead

1. New (Newborn State): When we create a thread object using Thread class, thread is born and is known

to be in Newborn state. That is, when a thread is born, it enters into new state the start() method has not

been called yet on the instance.

In other words, Thread object exists but it cannot execute any statement because it is not an execution of thread.

Only start() method can be called on a new thread; otherwise,

an IllegalThreadStateException will be thrown.

Unit 4. Threads and Packages

RASHMI PATEL Page 4

2. Runnable state: Runnable state means a thread is ready for execution. When the start() method is

called on a new thread, thread enters into a runnable state.

In runnable state, thread is ready for execution and is waiting for availability of the processor (CPU time).

That is, thread has joined queue (line) of threads that are waiting for execution. If all threads have equal

priority, CPU allocates time slots for thread execution on the basis of first-come, first-serve manner. The

process of allocating time to threads is known as time slicing. A thread can come into runnable state from

running, waiting, or new states.

3. Running state: Running means Processor (CPU) has allocated time slot to thread for its execution.

When thread scheduler selects a thread from the runnable state for execution, it goes into running state.

Look at the above figure.

In running state, processor gives its time to the thread for execution and executes its run method. This is

the state where thread performs its actual functions. A thread can come into running state only from

runnable state.

A running thread may give up its control in any one of the following situations and can enter into the blocked

state.

 When sleep() method is invoked on a thread to sleep for specified time period, the thread is out of

queue during this time period. The thread again reenters into the runnable state as soon as this time

period is elapsed.

 When a thread is suspended using suspend() method for some time in order to satisfy some

conditions. A suspended thread can be revived by using resume() method.

 When wait() method is called on a thread to wait for some time. The thread in wait state can be run

again using notify() or notifyAll() method.

4. Blocked state: A thread is considered to be in the blocked state when it is suspended, sleeping, or

waiting for some time in order to satisfy some condition.

5. Dead state: A thread dies or moves into dead state automatically when its run() method completes the

execution of statements. That is, a thread is terminated or dead when a thread comes out of run() method. A

thread can also be dead when the stop() method is called.

During the life cycle of thread in Java, a thread moves from one state to another state in a variety of ways.

This is because in multithreading environment, when multiple threads are executing, only one thread can use

CPU at a time.

All other threads live in some other states, either waiting for their turn on CPU or waiting for satisfying some

conditions. Therefore, a thread is always in any of the five states.

How to create a thread in Java

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Unit 4. Threads and Packages

RASHMI PATEL Page 5

1. Thread class:

Thread class provide constructors and methods to create and perform operations on a thread. Thread class

extends Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

o Thread()

o Thread(String name)

o Thread(Runnable r)

o Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the run() method on the thread.

3. public void sleep(long miliseconds): Causes the currently executing thread to sleep (temporarily

cease execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the specified miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of currently executing thread.

11. public int getId(): returns the id of the thread.

12.public Thread.State getState(): returns the state of the thread.

13.public boolean isAlive(): tests if the thread is alive.

14. public void yield(): causes the currently executing thread object to temporarily pause and allow

other threads to execute.

15. public void suspend(): is used to suspend the thread(depricated).

16. public void resume(): is used to resume the suspended thread(depricated).

17. public void stop(): is used to stop the thread(depricated).

18. public boolean isDaemon(): tests if the thread is a daemon thread.

19. public void setDaemon(boolean b): marks the thread as daemon or user thread.

20. public void interrupt(): interrupts the thread.

21. public boolean isInterrupted(): tests if the thread has been interrupted.

22. public static boolean interrupted(): tests if the current thread has been interrupted.

Unit 4. Threads and Packages

RASHMI PATEL Page 6

2. Runnable interface:

The Runnable interface should be implemented by any class whose instances are intended to be executed by a

thread. Runnable interface have only one method named run().

public void run(): is used to perform action for a thread.

Starting a thread:

The start() method of Thread class is used to start a newly created thread. It performs the following tasks:

o A new thread starts(with new callstack).

o The thread moves from New state to the Runnable state.

o When the thread gets a chance to execute, its target run() method will run.

1) Java Thread Example by extending Thread class

class Multi extends Thread

{

public void run()

{

System.out.println("thread is running...");

}

public static void main(String args[])

{

Multi t1=new Multi();

t1.start();

}

}

Output:

thread is running...

2) Java Thread Example by implementing Runnable interface

class Multi3 implements Runnable

{

public void run()

{

System.out.println("thread is running...");

}

public static void main(String args[])

{

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1); // Using the constructor Thread(Runnable r)

Unit 4. Threads and Packages

RASHMI PATEL Page 7

t1.start();

}

}

Output:

thread is running...

If you are not extending the Thread class, your class object would not be treated as a thread object. So you

need to explicitly create the Thread class object. We are passing the object of your class that implements

Runnable so that your class run() method may execute.

3) Using the Thread Class: Thread(String Name)

We can directly use the Thread class to spawn new threads using the constructors defined above.

public class MyThread1

{

public static void main(String argvs[])

{

Thread t= new Thread("My first thread");

t.start();

String str = t.getName();

System.out.println(str);

}

}

My first thread

4) Using the Thread Class: Thread(Runnable r, String name)

Observe the following program.

public class MyThread2 implements Runnable

{

public void run()

{

System.out.println("Now the thread is running ...");

}

public static void main(String argvs[])

{

Runnable r1 = new MyThread2();

 Thread th1 = new Thread(r1, "My new thread");

th1.start();

String str = th1.getName();

System.out.println(str);

Unit 4. Threads and Packages

RASHMI PATEL Page 8

My new thread

}

}

Output:

Thread Scheduler in Java

A component of Java that decides which thread to run or execute and which thread to wait is called a thread

scheduler in Java. In Java, a thread is only chosen by a thread scheduler if it is in the runnable state.

However, if there is more than one thread in the runnable state, it is up to the thread scheduler to pick one of

the threads and ignore the other ones.

There are some criteria that decide which thread will execute first. There are two factors for scheduling a

thread i.e. Priority and Time of arrival.

Priority: Priority of each thread lies between 1 to 10. If a thread has a higher priority, it means that thread has

got a better chance of getting picked up by the thread scheduler.

Time of Arrival: Suppose two threads of the same priority enter the runnable state, then priority cannot be

the factor to pick a thread from these two threads. In such a case, arrival time of thread is considered by the

thread scheduler. A thread that arrived first gets the preference over the other threads.

Thread.sleep()

The Java Thread class provides the two variant of the sleep() method. First one accepts only an one

arguments, whereas the other variant accepts two arguments. The method sleep() is being used to halt the

working of a thread for a given amount of time. The time up to which the thread remains in the sleeping state

is known as the sleeping time of the thread. After the sleeping time is over, the thread starts its execution

from where it has left.

The sleep() Method Syntax:

1. public static void sleep(long mls) throws InterruptedException

2. public static void sleep(long mls, int n) throws InterruptedException

The method sleep() with the one parameter is the native method, and the implementation of the native

method is accomplished in another programming language. The other methods having the two parameters

are not the native method. That is, its implementation is

accomplished in Java. We can access the sleep() methods with the help of the Thread class, as the signature

of the sleep() methods contain the static keyword. The native, as well as the non- native method, throw a

checked Exception. Therefore, either try-catch block or the throws keyword can work here.

The Thread.sleep() method can be used with any thread. It means any other thread or the main thread can

invoke the sleep() method.

Parameters:

The following are the parameters used in the sleep() method.

Unit 4. Threads and Packages

RASHMI PATEL Page 9

mls: The time in milliseconds is represented by the parameter mls. The duration for which the thread will

sleep is given by the method sleep().

n: It shows the additional time up to which the programmer or developer wants the thread to be in the

sleeping state. The range of n is from 0 to 999999.

The method does not return anything.

Important Points to Remember About the Sleep() Method

Whenever the Thread.sleep() methods execute, it always halts the execution of the current thread.

Whenever another thread does interruption while the current thread is already in the sleep mode, then the

InterruptedException is thrown.

If the system that is executing the threads is busy, then the actual sleeping time of the thread is generally

more as compared to the time passed in arguments. However, if the system executing the sleep() method has

less load, then the actual sleeping time of the thread is almost equal to the time passed in the argument.

Example of the sleep() method in Java : on the custom thread

class TestSleepMethod1 extends Thread

{

public void run()

{

for(int i=1;i<5;i++)

{

// the thread will sleep for the 500 milli seconds

try

{

Thread.sleep(500);

}

catch(InterruptedException e)

System.out.println(i);

}

}

{

System.out.println(e);

}

public static void main(String args[])

{

TestSleepMethod1 t1=new TestSleepMethod1();

TestSleepMethod1 t2=new TestSleepMethod1();

Unit 4. Threads and Packages

RASHMI PATEL Page 10

t1.start();

t2.start();

}

}

Output:

1

1

2

2

3

3

4

4

As you know well that at a time only one thread is executed. If you sleep a thread for the specified time,

the thread scheduler picks up another thread and so on.

Example of the sleep() Method in Java : on the main thread

// important import statements

import java.lang.Thread;

 import java.io.*;

public class TestSleepMethod2

{

// main method

public static void main(String argvs[])

{

try

{

for (int j = 0; j < 5; j++)

{

// The main thread sleeps for the 1000 milliseconds, which is 1 sec

// whenever the loop runs

Thread.sleep(1000);

// displaying the value of the variable

Unit 4. Threads and Packages

RASHMI PATEL Page 11

System.out.println(j);

}

}

catch (Exception expn)

{

// catching the exception System.out.println(expn);

} } }

Output:

0

1

2

3

4

Example of the sleep() Method in Java: When the sleeping time is -ive

when the time for sleeping is negative it throws IllegalArguementException

Thread.sleep(-100);

Output : java.lang.IllegalArgumentException: timeout value is negative

Can we start a thread twice

No. After starting a thread, it can never be started again. If you does so, an

IllegalThreadStateException is thrown. In such case, thread will run once but for second time, it will throw

exception.

public class TestThreadTwice1 extends Thread

{

public void run()

{

System.out.println("running...");

}

public static void main(String args[])

{

TestThreadTwice1 t1=new TestThreadTwice1();

t1.start();

t1.start();

Unit 4. Threads and Packages

RASHMI PATEL Page 12

running

Exception in thread "main" java.lang.IllegalThreadStateException

}

}

Output:

What if we call Java run() method directly instead start() method?

o Each thread starts in a separate call stack.

o Invoking the run() method from the main thread, the run() method goes onto the current call stack

rather than at the beginning of a new call stack.

class TestCallRun1 extends Thread

{

public void run()

{

System.out.println("running...");

}

public static void main(String args[])

{

TestCallRun1 t1=new TestCallRun1();

t1.run();//fine, but does not start a separate call stack

}

}

Output:

running...

Unit 4. Threads and Packages

RASHMI PATEL Page 13

Problem if you direct call run() method

class TestCallRun2 extends Thread

{

public void run()

{

for(int i=1;i<5;i++)

{

try

 {

 Thread.sleep(500);

 }

 catch(InterruptedException e)

 {

 System.out.println(e);

 }

 System.out.println(i);

}

}

public static void main(String args[])

{

TestCallRun2 t1=new TestCallRun2();

TestCallRun2 t2=new TestCallRun2();

t1.run();

t2.run();

}

}

As we can see in the above program that there is no context-switching because here t1 and t2 will be treated as

normal object not thread object.

1

2

3

4

1

2
3

Unit 4. Threads and Packages

RASHMI PATEL Page 14

Priority of a Thread (Thread Priority)

Each has a priority. Priorities are represented thread by a number between 1 and 10. In most cases, the thread

scheduler schedules the threads according to their priority (known as preemptive scheduling). But it is not

guaranteed because it depends on JVM specification that which scheduling it chooses. Note that not only

JVM a Java programmer can also assign the priorities of a thread explicitly in a Java program.

Setter & Getter Method of Thread Priority

public final int getPriority(): The java.lang.Thread.getPriority() method returns the priority of the given

thread.

public final void setPriority(int newPriority): The java.lang.Thread.setPriority() method updates or assign

the priority of the thread to newPriority. The method throws IllegalArgumentException if the value

newPriority goes out of the range, which is 1 (minimum) to 10 (maximum).

3 constants defined in Thread class:

1. public static int MIN_PRIORITY

2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and the value of

MAX_PRIORITY is 10.

Example of priority of a Thread:

public class ThreadPriorityExample extends Thread

{

public void run()

{

System.out.println("Inside the run() method");

}

public static void main(String argvs[])

{

ThreadPriorityExample th1 = new ThreadPriorityExample();

ThreadPriorityExample th2 = new ThreadPriorityExample();

ThreadPriorityExample th3 = new ThreadPriorityExample();

System.out.println("Priority of the thread th1 is : " + th1.getPriority());

System.out.println("Priority of the thread th2 is : " + th2.getPriority());

System.out.println("Priority of the thread th2 is : " + th2.getPriority());

Unit 4. Threads and Packages

RASHMI PATEL Page 15

th1.setPriority(6);

th2.setPriority(3);

th3.setPriority(9);

System.out.println("Priority of the thread th1 is : " + th1.getPriority());

System.out.println("Priority of the thread th2 is : " + th2.getPriority());

System.out.println("Priority of the thread th3 is : " + th3.getPriority());

System.out.println("Currently Executing The Thread : " + Thread.currentThread().getNa me());

System.out.println("Priority of the main thread is : " + Thread.currentThread().getPriority());

Thread.currentThread().setPriority(10);

System.out.println("Priority of the main thread is : " + Thread.currentThread().getPriority());

}

}

Output:

Priority of the thread th1 is : 5

Priority of the thread th2 is : 5

Priority of the thread th2 is : 5

Priority of the thread th1 is : 6

Priority of the thread th2 is : 3

Priority of the thread th3 is : 9

Currently Executing The Thread : main

Priority of the main thread is : 5

Priority of the main thread is : 10

We know that a thread with high priority will get preference over lower priority threads when it comes to the

execution of threads. However, there can be other scenarios where two threads can have the same priority. All

of the processing, in order to look after the threads, is done by the Java thread scheduler.

Note: If there are two threads that have the same priority, then one can not predict which thread will get the

chance to execute first. The execution then is dependent on the thread scheduler's algorithm (First Come First

Serve, Round-Robin, etc.)

How to perform single task by multiple threads in Java?

If you have to perform a single task by many threads, have only one run() method. For example:

Program of performing single task by multiple threads

FileName: TestMultitasking1.java

class TestMultitasking1 extends Thread{

public void run(){

Unit 4. Threads and Packages

RASHMI PATEL Page 16

System.out.println("task one");

}

public static void main(String args[]){

TestMultitasking1 t1=new TestMultitasking1();

TestMultitasking1 t2=new TestMultitasking1();

TestMultitasking1 t3=new TestMultitasking1();

t1.start();

t2.start();

t3.start();

}

}

Output:

task one

task one

task one

Program of performing single task by multiple threads

FileName: TestMultitasking2.java

class TestMultitasking2 implements Runnable{

public void run(){

System.out.println("task one");

}

public static void main(String args[]){

Thread t1 =new Thread(new TestMultitasking2());//passing annonymous object of TestMultitasking2 class

Thread t2 =new Thread(new TestMultitasking2());

t1.start();

t2.start();

}

}

Output:

task one

task one

Note: Each thread run in a separate callstack.

Unit 4. Threads and Packages

RASHMI PATEL Page 17

How to perform multiple tasks by multiple threads (multitasking in

multithreading)?

If you have to perform multiple tasks by multiple threads,have multiple run() methods.For example:

Program of performing two tasks by two threads

FileName: TestMultitasking3.java

class Simple1 extends Thread{

public void run(){

System.out.println("task one");

}

}

class Simple2 extends Thread{

public void run(){

System.out.println("task two");

}

}

class TestMultitasking3{

public static void main(String args[]){

Simple1 t1=new Simple1();

Simple2 t2=new Simple2();

t1.start();

t2.start();

}

}

Output:

task one

Unit 4. Threads and Packages

RASHMI PATEL Page 18

task two

Same example as above by anonymous class that extends Thread class:

Program of performing two tasks by two threads

FileName: TestMultitasking4.java

class TestMultitasking4{

public static void main(String args[]){

Thread t1=new Thread(){

public void run(){

System.out.println("task one");

}

};

Thread t2=new Thread(){

public void run(){

System.out.println("task two");

}

};

t1.start();

t2.start();

}

}

Output:

task one

task two

Same example as above by anonymous class that implements Runnable interface:

Program of performing two tasks by two threads

FileName: TestMultitasking5.java

class TestMultitasking5{

public static void main(String args[]){

Runnable r1=new Runnable(){

public void run(){

System.out.println("task one");

Unit 4. Threads and Packages

RASHMI PATEL Page 19

}

};

Runnable r2=new Runnable(){

public void run(){

System.out.println("task two");

}

};

Thread t1=new Thread(r1);

Thread t2=new Thread(r2);

t1.start();

t2.start();

}

}

Output:

task one

task two

Printing even and odd numbers using two threads

To print the even and odd numbers using the two threads, we will use the synchronized block and the notify()

method. Observe the following program.

FileName: OddEvenExample.java

public class OddEvenExample

{

int contr = 1;

static int NUM;

public void displayOddNumber()

{

synchronized (this)

{

while (contr < NUM)

{

while (contr % 2 == 0)

{

Unit 4. Threads and Packages

RASHMI PATEL Page 20

try

{

wait();

}

catch (InterruptedException ex)

{

ex.printStackTrace();

}

}

System.out.print(contr + " ");

contr = contr + 1;

notify();

}

}

}

public void displayEvenNumber()

{

synchronized (this)

{

while (contr < NUM)

{

while (contr % 2 == 1)

{

try

{

wait();

}

catch (InterruptedException ex)

{

ex.printStackTrace();

}

}

System.out.print(contr + " ");

contr = contr +1;

notify();

}

Unit 4. Threads and Packages

RASHMI PATEL Page 21

}

}

public static void main(String[] argvs)

{

NUM = 20;

OddEvenExample oe = new OddEvenExample();

Thread th1 = new Thread(new Runnable()

{

public void run()

{

oe.displayEvenNumber();

}

});

Thread th2 = new Thread(new Runnable()

{

public void run()

{

oe.displayOddNumber();

}

});

th1.start();

th2.start();

}

}

Output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Unit 4. Threads and Packages

RASHMI PATEL Page 22

Java Package

 A java package is a group of similar types of classes, interfaces and sub-packages.

 Package in java can be categorized in two form, built-in package and user-defined package.

 There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

 Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Simple example of java package

The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple{

public static void main(String args[]){

System.out.println("Welcome to package");

}

}

Unit 4. Threads and Packages

RASHMI PATEL Page 23

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

javac -d directory javafilename

For example

javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can use any directory name

like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to keep the package within the same

directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination. The . represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible but not subpackages.

The import keyword is used to make the classes and interface of another package accessible to the current

package.

Example of package that import the packagename.*

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

Unit 4. Threads and Packages

RASHMI PATEL Page 24

}

//save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){

A obj = new A();

obj.msg();

}

}
Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be accessible.

Example of package by import package.classname

//save by A.java

 package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.A;

 class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}
Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be accessible. Now there is no need

to import. But you need to use fully qualified name every time when you are accessing the class or interface.

Unit 4. Threads and Packages

RASHMI PATEL Page 25

It is generally used when two packages have same class name e.g. java.util and java.sql packages contain Date

class.

Example of package by import fully qualified name

//save by A.java

package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

class B{

 public static void main(String args[]){

 pack.A obj = new pack.A();//using fully qualified name

 obj.msg();

 }

}
Output:Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported excluding the classes and

interfaces of the subpackages. Hence, you need to import the subpackage as well.

Note: Sequence of the program must be package then import then class.

Unit : 1 : Concepts of Mobile computing

PG. 1 [CREATED BY : HETAL PATEL]

1.1 Fundamentals of Mobile computing
Mobile Computing refers a technology that allows transmission of data, voiceand video via a computer or any other wireless enabled device.
It is free from having a connection with a fixed physical link.
It facilitates the users to move from one physical location to another duringcommunication.
Introduction of Mobile Computing
Mobile Computing is a technology that provides an environment that enablesusers to transmit data from one device to another device without the use of anyphysical link or cables.
In other words, you can say that mobile computing allows transmission of data,voice and video via a computer or any other wireless-enabled device withoutbeing connected to a fixed physical link.
In this technology, data transmission is done wirelessly with the help of wirelessdevices such as mobiles, laptops etc.
This is only because of Mobile Computing technology that you can access andtransmit data from any remote locationswithout being present there physically.
Mobile computing technology provides a vast coverage diameter forcommunication.
It is one of the fastest and most reliable sectors of the computing technologyfield.
The concept of Mobile Computing can be divided into three parts:

o Mobile Communication
o Mobile Hardware
o Mobile Software

Mobile Communication

Unit : 1 : Concepts of Mobile computing

PG. 2 [CREATED BY : HETAL PATEL]

Mobile Communication specifies a framework that is responsible for theworking of mobile computing technology.
In this case, mobile communication refers to an infrastructure that ensuresseamless and reliable communication among wireless devices.
This framework ensures the consistency and reliability of communicationbetween wireless devices.
The mobile communication framework consists of communication devices suchas protocols, services, bandwidth, and portals necessary to facilitate andsupport the stated services.
These devices are responsible for delivering a smooth communication process.
Mobile communication can be divided in the following four types:

1. Fixed and Wired
2. Fixed and Wireless
3. Mobile and Wired
4. Mobile and Wireless

1) Fixed and Wired: In Fixed and Wired configuration, the devices are fixedat a position, and they are connected through a physical link tocommunicate with other devices.
For Example, Desktop Computer.

2) Fixed and Wireless: In Fixed and Wireless configuration, the devices arefixed at a position, and they are connected through awireless link tomakecommunication with other devices.

https://www.javatpoint.com/mobile-communication-tutorial

Unit : 1 : Concepts of Mobile computing

PG. 3 [CREATED BY : HETAL PATEL]

For Example, Communication Towers, WiFi router
3) Mobile and Wired: In Mobile and Wired configuration, some devices arewired, and some are mobile. They altogether make communication withother devices.

For Example, Laptops.
4) Mobile and Wireless: In Mobile and Wireless configuration, the devicescan communicate with each other irrespective of their position.

They can also connect to any network without the use of any wireddevice.
For Example, WiFi Dongle.

Mobile Hardware
Mobile hardware consists of mobile devices or device components that can beused to receive or access the service of mobility.
Examples of mobile hardware can be smartphones, laptops, portable PCs, tabletPCs, Personal Digital Assistants, etc.

These devices are inbuilt with a receptor medium that can send and receivesignals.
These devices are capable of operating in full-duplex. It means they can sendand receive signals at the same time.

https://www.javatpoint.com/wifi-full-form

Unit : 1 : Concepts of Mobile computing

PG. 4 [CREATED BY : HETAL PATEL]

They don't have to wait until one device has finished communicating for theother device to initiate communications.
Mobile Software
Mobile software is a program that runs on mobile hardware.
This is designed to deal capably with the characteristics and requirements ofmobile applications.
This is the operating system for the appliance of mobile devices. In other words,you can say it the heart of the mobile systems.
This is an essential component that operates the mobile device.

This provides portability to mobile devices, which ensures wirelesscommunication.
Applications of Mobile Computing
Following is a list of some significant fields in which mobile computing isgenerally applied:

o Web or Internet access.
o Global Position System (GPS).
o Emergency services.
o Entertainment services.
o Educational services.

Unit : 1 : Concepts of Mobile computing

PG. 5 [CREATED BY : HETAL PATEL]

1.1.1 Concepts of fixed and wireless network
Fixed and Wireless Networks are both used in Mobile computing.
Fixed networks commonly operate on radio transmission to connectestablished, wired communications systems.
Let's see the differences between fixed and wireless networks in mobilecomputing.
Difference between Fixed and Wireless Networks
Thewireless networks do not require any cables to make a physical connectionwith the device.
On the other hand, in the case of fixed networks, a physical configuration ofdevices is mandatory to perform data transmission.

Wireless Networks Fixed Networks
There is no requirement of anyphysical configuration in thewireless network.

In Fixed Networks, a physicalconfiguration is required in anycondition.
The data loss rate is high inWireless Networks. In Fixed Networks, a perfect link is establishedbetween the devices, so; the data loss rate isvery low.
In Wireless Networks, the datatransmission rate iscomparatively low, so itprovides less speed.

In Fixed Networks, the rate of datatransmission is high, so it provides high speed.

Latency is high in WirelessNetworks, which finally resultsin more delay.
There is no issue of latency in Fixed Networksbecause there is a perfect connectionestablished between the devices that provideless delay.

Unit : 1 : Concepts of Mobile computing

PG. 6 [CREATED BY : HETAL PATEL]

The Wireless Networks may behacked; that's why the securityis always low in this type ofnetwork.

Fixed Networks connections are highlysecured.

1.1.2 Multiplexing in Mobile Computing
Multiplexing is a technique used in the area of electronics and signal processing.
In mobile computing, telecommunications and computer networks,Multiplexing is a method that can be used to combine multiple analog or digitalsignals into one signal over a shared medium.
The main aim of using this method is to share a scarce resource.
Example: You can see a real-life example of Multiplexing in thetelecommunication field where several telephone calls may be carried usingone wire.
Multiplexing is also called asmuxing.
Key points of Multiplexing

o Multiplexing is a technique that allows multiple simultaneous analogs or
digital signal transmission across a single data link.

o The main motive behind the development of Multiplexing is to provide
simple and easy communication, proper resource sharing and its
utilization.

o This is the best way to utilize and share a limited resource equally among
multiple devices.

Multiplexing can be classified into the following four types:
o Frequency Division Multiplexing (FDM)
o Time Division Multiplexing (TDM)
o Code Division Multiplexing (CDM)
o Space Division Multiplexing (SDM)

Unit : 1 : Concepts of Mobile computing

PG. 7 [CREATED BY : HETAL PATEL]

1.1.2 Introduction of Modulation
The process by which data/information is converted into electrical/digitalsignals for transferring that signal over a medium is calledmodulation.
It increases strength for maximum reach of the signals.
The process of extracting information/data from the transmitted signal iscalled demodulation.
A Modem is a device that performs both modulation and demodulationprocesses.
The various forms of modulation are designed to alter the characteristic ofcarrier waves.
The most commonly altered characteristics of modulation include amplitude,frequency, and phase.
Carrier signal: The signals which contain no information but have a certainphase, frequency, and amplitude are called carrier signals.
Modulated signals: The signals which are the combination of the carrier signalsand modulation signals are modulated signals.
The modulated signal is obtained after the modulation of the signals.

1. Amplitude modulation2. Frequency modulation3. Phase modulation
What is the need for modulation?

 Size of antenna: As we know that the size of the antenna is inverselyproportional to the frequency of the radiated signal and antenna sizemust be 1/10th of the wavelength. If the frequency signals are morethan 5KHz in that case it is quite impossible to set up an antenna of

Unit : 1 : Concepts of Mobile computing

PG. 8 [CREATED BY : HETAL PATEL]

that size. So, by using the modulation technique the size of theantenna is reduced.
 Wireless communication:Modulation provides a wirelessconnection to transmit the signals to a longer distance. Earlier weused wire systems (like the telephone) to transfer information withthe help of telephonic wires but it was not possible to spread thewires all over the world for communication. By using the modulationtechnique, the cost of wire is saved and even information can betransferred to longer distances faster.

Advantages of modulation:
 It reduces the size of the antenna.
 It reduces the cost of wires.
 It prohibits the mixing of signals.
 It increases the range of communication.
 It improves the reception quality.
 It easily multiplexes the signals.
 It also allows the adjustment of the bandwidth.

1.1.3 Fundamentals of Spread Spectrum
Spread spectrum is a technique used for wireless communications intelecommunication and radio communication.
In this technique, the frequency of the transmitted signal, i.e., an electricalsignal, electromagnetic signal, or acoustic signal, is deliberately varied andgenerates amuch greater bandwidth than the signalwould have if its frequencywere not varied.
In other words, "Spread Spectrum is a technique in which the transmitted signalsof specific frequencies are varied slightly to obtain greater bandwidth ascompared to initial bandwidth."
Now, spread spectrum technology is widely used in radio signals transmissionbecause it can easily reduce noise and other signal issues.
Example of Spread Spectrum

Unit : 1 : Concepts of Mobile computing

PG. 9 [CREATED BY : HETAL PATEL]

Let's see an example to understand the concept of spread spectrum in wirelesscommunication:
We know that a conventional wireless signal frequency is usually specified inmegahertz (MHz) or gigahertz (GHz).
It does not change with time (Sometimes it is exceptionally changed in the formof small, rapid fluctuations that generally occur due to modulation).
Suppose you want to listen to FM stereo at frequency 104.8 MHz on your radio,and then once you set the frequency, the signal stays at 104.8 MHz.
It does not go up to 105.1 MHz or down to 101.1 MHz. You see that your setdigits on the radio's frequency dial stay the same at all times.
The frequency of a conventional wireless signal is kept as constant to keepbandwidth within certain limits, and the signal can be easily located by someonewho wants to retrieve the information.
1.1.3 Bluetooth Technology in Mobile Computing
Bluetooth technology is a high speed and low powered wireless technologydesigned to connect phones or other portable equipment for communication orfile transmissions.
This is based on mobile computing technology. Following is a list of someprominent features of Bluetooth technology:

o Bluetooth is also known as IEEE 802.15 standard or specification that
uses low power radio communications to link phones, computers and
other network devices over a short distance without using any type of
connecting wires.

o As Bluetooth is an open wireless technology standard so, it is used to send
or receive data to connected devices present across a certain distance
using a band of 2.4 to 2.485 GHz.

o In Bluetooth technology, the wireless signals transmit data and files over
a short distance, typically up to 30 feet or 10 meters.

o Bluetooth technology was developed by a group of 5 companies known
as Special Interest Group [SIG] formed in 1998.

https://www.javatpoint.com/fm-full-form

Unit : 1 : Concepts of Mobile computing

PG. 10 [CREATED BY : HETAL PATEL]

o The companies are Ericsson, Intel, Nokia, IBM, and Toshiba.
o The range of Bluetooth technology for data exchange was up to 10

meters in older versions of devices, but the latest version of Bluetooth
technology i.e., Bluetooth 5.0, can exchange data in the range of about
40-400 meters.

o The average speed of data transmission in Bluetooth technology was
around 1 Mbps in the very first version. The second version was 2.0+
EDR, which provided the data rate speed of 3Mbps. The thirdwas 3.0+HS,
which provided the speed of 24 Mbps. The latest version of this
technology is 5.0.

Applications of Bluetooth Technology:
Bluetooth technology is used in many communicational and entertainment
devices.
The following are some most used applications of the Bluetooth technology:
• Bluetooth technology is used in cordless desktop. It means the peripheral
devices such as a mouse, keyboard, printer, speakers,etc. are connected to the
desktop without a wire.
• It is used in the multimedia transfer, such as exchanging multimedia data like
songs, videos, pictures etc. that can be transferred among devices using
Bluetooth.
• This technology is also used in the following devices: i.e.

• Bluetooth Speakers.
• Bluetooth Headphones.
• Bluetooth Headsets for calling purposes.
• Bluetooth gaming consoles etc.

Unit : 1 : Concepts of Mobile computing

PG. 11 [CREATED BY : HETAL PATEL]

1.1.4 Concepts of Wireless Application Protocol
(WAP)

Wireless Application Protocol or WAP is a programming model or an applicationenvironment and set of communication protocols based on the concept ofthe World WideWeb (WWW), and its hierarchical design is very much similar toTCP/IP protocol stack design.
See the most prominent features of Wireless Application Protocol or WAP inMobile Computing:

o WAP is a De-Facto standard or a protocol designed for micro-browsers,
and it enables the mobile devices to interact, exchange and transmit
information over the Internet.

o WAP is based upon the concept of theWorldWideWeb (WWW), and the
backend functioning also remains similar toWWW, but it uses themarkup
languageWireless Markup Language (WML) to access the WAP services
while WWW uses HTML as a markup language. WML is defined as XML
1.0 application.

o In 1998, some giant IT companies such as Ericson, Motorola, Nokia and
Unwired Planet founded the WAP Forum to standardize the various
wireless technologies via protocols.

o After developing the WAP model, it was accepted as a wireless protocol
globally capable of working on multiple wireless technologies such as
mobile, printers, pagers, etc.

o In 2002, by the joint efforts of the various members of the WAP Forum, it
was merged with various other forums of the industry and formed an
alliance known as Open Mobile Alliance (OMA).

o WAP was opted as a De-Facto standard because of its ability to create
web applications for mobile devices.

https://www.javatpoint.com/what-is-world-wide-web

Unit : 1 : Concepts of Mobile computing

PG. 12 [CREATED BY : HETAL PATEL]

Working of Wireless Application Protocol or WAP Model
The following steps define the working of Wireless Application Protocol or WAPModel:

o TheWAPmodel consists of 3 levels known as Client, Gateway and Origin
Server.

o When a user opens the browser in his/her mobile device and selects a
website that he/she wants to view, the mobile device sends the URL
encoded request via a network to a WAP gateway using WAP protocol.

o The request he/she sends viamobile toWAP gateway is called as encoding
request.

o The sent encoding request is translated through WAP gateway and then
forwarded in the form of a conventional HTTP URL request over the
Internet.

o When the request reaches a specified Web server, the server processes
the request just as it would handle any other request and sends the
response back to the mobile device through WAP gateway.

o Now, the WML file's final response can be seen in the browser of the
mobile users.

Unit : 1 : Concepts of Mobile computing

PG. 13 [CREATED BY : HETAL PATEL]

Applications of Wireless Application Protocol (WAP)
The following are some most used applications of Wireless Application Protocolor WAP:

o WAP facilitates you to access the Internet from your mobile devices.
o You can play games on mobile devices over wireless devices.
o It facilitates you to access E-mails over the mobile Internet.
o Mobile hand-sets can be used to access timesheets and fill expenses

claims.
o Onlinemobile banking is very popular nowadays.
o It can also be used in multiple Internet-based services such as

geographical location, Weather forecasting, Flight information, Movie
& cinema information, Traffic updates etc. All are possible due to WAP
technology.

1.2 Introduction Of Android
Android is a complete set of software for mobile devices such as tablet computers,notebooks, smartphones, electronic book readers, set-top boxes etc.
It contains a linux-based Operating System,middleware and key mobile applications.
It can be thought of as amobile operating system.
But it is not limited to mobile only. It is currently used in various devices such as mobiles,tablets, televisions etc.

Unit : 1 : Concepts of Mobile computing

PG. 14 [CREATED BY : HETAL PATEL]

What is Android?
Android is a software package and linux based operating systemfor mobile devices such as tablet computers and smartphones.
It is developed by Google and later the OHA (Open HandsetAlliance). Java language is mainly used to write the android code eventhoughother languages can be used.
The goal of android project is to create a successful real-worldproduct that improves the mobile experience for end users.
What is Open Handset Alliance (OHA)?
It's a consortium of 84 companies such as google, samsung, AKM,synaptics, KDDI, Garmin, Teleca, Ebay, Intel etc.
It was established on 5th November, 2007, led by Google.
It is committed to advance open standards, provide services and deployhandsets using the Android Plateform.
History and its Different Version List
The code names of android ranges from A to J currently, suchas Aestro, Blender, Cupcake, Donut, Eclair, Froyo, Gingerbread, Honeycomb, Ice CreamSandwitch, Jelly Bean, KitKat and Lollipop. Let's understand the android history in asequence.
1) Initially, Andy Rubin founded Android Incorporation in Palo Alto, California, United Statesin October, 2003.
2) In 17th August 2005, Google acquired android Incorporation. Since then, it is in thesubsidiary of Google Incorporation.
3) The key employees of Android Incorporation are Andy Rubin, Rich Miner, ChrisWhite and Nick Sears.
4) Originally intended for camera but shifted to smart phones later because of lowmarket forcamera only.
5) Android is the nick name of Andy Rubin given by coworkers because of his love to robots.

Unit : 1 : Concepts of Mobile computing

PG. 15 [CREATED BY : HETAL PATEL]

6) In 2007, Google announces the development of android OS.
7) In 2008, HTC launched the first android mobile.
What is API level?
API Level is an integer value that uniquely identifies the framework API revision offered by aversion of the Android platform.

Android Versions, Codename and API
Let's see the android versions, codenames and API Level provided by Google.

Version Code name API Level
1.5 Cupcake 3
1.6 Donut 4
2.1 Éclair 7

2.2 Froyo 8
2.3 Gingerbread 9 and 10

3.1 and 3.3 Honeycomb 12 and 13
4.0 Ice Cream Sandwich 15
4.1, 4.2 and 4.3 Jelly Bean 16, 17 and 18
4.4 KitKat 19
5.0 Lollipop 21
6.0 Marshmallow 23
7.0 Nougat 24-25
8.0 Oreo 26-27

Unit : 1 : Concepts of Mobile computing

PG. 16 [CREATED BY : HETAL PATEL]

Why Android ?

Features of Android
Android is a powerful operating system competing with Apple 4GS and supports greatfeatures. Few of them are listed below −
Sr.No. Feature & Description
1 Beautiful UI

Android OS basic screen provides a beautiful and intuitive user interface.
2 Connectivity

GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE, NFC and WiMAX.
3 Storage

SQLite, a lightweight relational database, is used for data storage purposes.
4 Media support

H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC, HE-AAC, AAC 5.1, MP3, MIDI, OggVorbis, WAV, JPEG, PNG, GIF, and BMP.
5 Messaging

SMS and MMS

Unit : 1 : Concepts of Mobile computing

PG. 17 [CREATED BY : HETAL PATEL]

6 Web browser
Based on the open-source WebKit layout engine, coupled with Chrome's V8JavaScript engine supporting HTML5 and CSS3.

7 Multi-touch
Android has native support for multi-touch which was initially made available inhandsets such as the HTC Hero.

8 Multi-tasking
User can jump from one task to another and same time various application can runsimultaneously.

9 Resizable widgets
Widgets are resizable, so users can expand them to show more content or shrinkthem to save space.

10 Multi-Language
Supports single direction and bi-directional text.

11 GCM
Google Cloud Messaging (GCM) is a service that lets developers send short messagedata to their users on Android devices, without needing a proprietary sync solution.

12 Wi-Fi Direct
A technology that lets apps discover and pair directly, over a high-bandwidth peer-to-peer connection.

13 Android Beam
A popular NFC-based technology that lets users instantly share, just by touching twoNFC-enabled phones together.

Unit : 1 : Concepts of Mobile computing

PG. 18 [CREATED BY : HETAL PATEL]

1.2 Introduction of Android Architecture
OR

Software Stack
Android operating system is a stack of software components which is roughlydivided into five sections and four main layers as shown below in thearchitecture diagram.

Linux kernel
At the bottom of the layers is Linux - Linux 3.6 with approximately 115 patches.
This provides a level of abstraction between the device hardware and it containsall the essential hardware drivers like camera, keypad, display etc.
Also, the kernel handles all the things that Linux is really good at such asnetworking and a vast array of device drivers, which take the pain out ofinterfacing to peripheral hardware.
Libraries
On top of Linux kernel there is a set of libraries including open-source Webbrowser engine WebKit, well known library libc, SQLite database which is a

Unit : 1 : Concepts of Mobile computing

PG. 19 [CREATED BY : HETAL PATEL]

useful repository for storage and sharing of application data, libraries to playand record audio and video, SSL libraries responsible for Internet security etc.
Android Libraries
This category encompasses those Java-based libraries that are specific toAndroid development.
Examples of libraries in this category include the application framework librariesin addition to those that facilitate user interface building, graphics drawing anddatabase access.
A summary of some key core Android libraries available to the Androiddeveloper is as follows −

 android.app − Provides access to the application model and is thecornerstone of all Android applications.
 android.content − Facilitates content access, publishing andmessaging between applications and application components.
 android.database − Used to access data published by contentproviders and includes SQLite database management classes.
 android.opengl − A Java interface to the OpenGL ES 3D graphicsrendering API.
 android.os − Provides applications with access to standardoperating system services including messages, system services andinter-process communication.
 android.text − Used to render and manipulate text on a devicedisplay.
 android.view − The fundamental building blocks of application userinterfaces.
 android.widget − A rich collection of pre-built user interfacecomponents such as buttons, labels, list views, layout managers,radio buttons etc.
 android.webkit − A set of classes intended to allow web-browsingcapabilities to be built into applications.

Having covered the Java-based core libraries in the Android runtime, it is nowtime to turn our attention to the C/C++ based libraries contained in this layer ofthe Android software stack.
Android Runtime
This is the third section of the architecture and available on the second layerfrom the bottom.

Unit : 1 : Concepts of Mobile computing

PG. 20 [CREATED BY : HETAL PATEL]

This section provides a key component called Dalvik Virtual Machine which is akind of Java Virtual Machine specially designed and optimized for Android.
The Dalvik VM makes use of Linux core features like memory management andmulti-threading, which is intrinsic in the Java language.
The Dalvik VM enables every Android application to run in its own process, withits own instance of the Dalvik virtual machine.
The Android runtime also provides a set of core libraries which enable Androidapplication developers to write Android applications using standard Javaprogramming language.
Application Framework
The Application Framework layer provides many higher-level services toapplications in the form of Java classes.
Application developers are allowed to make use of these services in theirapplications.
The Android framework includes the following key services −

 Activity Manager − Controls all aspects of the application lifecycleand activity stack.
 Content Providers − Allows applications to publish and share datawith other applications.
 Resource Manager − Provides access to non-code embeddedresources such as strings, color settings and user interface layouts.
 Notifications Manager − Allows applications to display alerts andnotifications to the user.
 View System − An extensible set of views used to create applicationuser interfaces.Applications

You will find all the Android application at the top layer. You will write yourapplication to be installed on this layer only. Examples of such applications areContacts Books, Browser, Games etc.

Unit : 1 : Concepts of Mobile computing

PG. 21 [CREATED BY : HETAL PATEL]

Unit-2: Setting up Android Environment

2.1 Android Emulator
The Android emulator is an Android Virtual Device (AVD), which
represents a specific Android device.

We can use the Android emulator as a target device to execute and test our
Android application on our PC.

The Android emulator provides almost all the functionality of a real device.

We can get the incoming phone calls and text messages.

It also gives the location of the device and simulates different network
speeds.

Android emulator simulates rotation and other hardware sensors.

It accesses the Google Play store, and much more

Unit-2: Setting up Android Environment

Testing Android applications on emulator are sometimes faster and easier
than doing on a real device.

For example, we can transfer data faster to the emulator than to a real
device connected through USB.

The Android emulator comes with predefined configurations for several
Android phones, Wear OS, tablet, Android TV devices.

Requirement and recommendations for Android
Application:
The Android emulator takes additional requirements beyond the basic
system requirement for Android Studio.

These requirements are given below:

o SDK Tools 26.1.1 or higher
o 64-bit processor
o Windows: CPU with UG (unrestricted guest) support
o HAXM 6.2.1 or later (recommended HAXM 7.2.0 or later)

2.1.1 Setting up JDK and Android Studio
JDK stands for Java Development Kit.

1 HETAL PATEL

3.1 Characteristic and Use of XML
What is xml?

o Xml (eXtensible Markup Language) is a mark up language.
o XML is designed to store and transport data.
o Xml was released in late 90’s. it was created to provide an easy to use and store self

describing data.
o XML became a W3C Recommendation on February 10, 1998.
o XML is not a replacement for HTML.
o XML is designed to be self-descriptive.
o XML is designed to carry data, not to display data.
o XML tags are not predefined. You must define your own tags.
o XML is platform independent and language independent.

Note: Self-describing data is the data that describes both its content and structure.

What is mark-up language?
A mark up language is a modern system for highlight or underline a document.

Students often underline or highlight a passage to revise easily, same in the sense of modern
mark up language highlighting or underlining is replaced by tags.

Why xml?
Platform Independent and Language Independent:

The main benefit of xml is that you can use it to take data from a program like Microsoft SQL,
convert it into XML then share that XML with other programs and platforms.

You can communicate between two platforms which are generally very difficult.

The main thing which makes XML truly powerful is its international acceptance.

Many corporation use XML interfaces for databases, programming, office application mobile
phones and more.

It is due to its platform independent feature.

Features and Advantages of XML:
XML is widely used in the era of web development. It is also used to simplify data storage and
data sharing.

The main features or advantages of XML are given below.

1) XML separates data from HTML

1 HETAL PATEL

If you need to display dynamic data in your HTML document, it will take a lot of work to edit the
HTML each time the data changes.

With XML, data can be stored in separate XML files. This way you can focus on using HTML/CSS
for display and layout, and be sure that changes in the underlying data will not require any
changes to the HTML.

With a few lines of JavaScript code, you can read an external XML file and update the data
content of your web page.

2) XML simplifies data sharing

In the real world, computer systems and databases contain data in incompatible formats.

XML data is stored in plain text format. This provides a software- and hardware-independent
way of storing data.

This makes it much easier to create data that can be shared by different applications.

3) XML simplifies data transport

One of the most time-consuming challenges for developers is to exchange data between
incompatible systems over the Internet.

Exchanging data as XML greatly reduces this complexity, since the data can be read by different
incompatible applications.

4) XML simplifies Platform change

Upgrading to new systems (hardware or software platforms), is always time consuming. Large
amounts of data must be converted and incompatible data is often lost.

XML data is stored in text format. This makes it easier to expand or upgrade to new operating
systems, new applications, or new browsers, without losing data.

5) XML increases data availability

Different applications can access your data, not only in HTML pages, but also from XML data
sources.

With XML, your data can be available to all kinds of "reading machines" (Handheld computers,
voice machines, news feeds, etc), and make it more available for blind people, or people with
other disabilities.

6) XML can be used to create new internet languages

A lot of new Internet languages are created with XML.

Here are some examples:

o XHTML
o WSDL for describing available web services
o WAP andWML as markup languages for handheld devices
o RSS languages for news feeds

1 HETAL PATEL

o RDF and OWL for describing resources and ontology
o SMIL for describing multimedia for the web

HTML vs XML
There are many differences between HTML (Hyper Text Markup Language) and XML (eXtensible
Markup Language). The important differences are given below:

No. HTML XML

1) HTML is used to display data and
focuses on how data looks.

XML is a software and hardware independent tool used to
transport and store data. It focuses on what data is.

2) HTML is a markup
language itself.

XML provides a framework to define markup
languages.

3) HTML is not case sensitive. XML is case sensitive.

4) HTML is a presentation language. XML is neither a presentation language nor a
programming language.

5) HTML has its own predefined
tags.

You can define tags according to your need.

6) In HTML, it is not necessary to
use a closing tag.

XML makes it mandatory to use a closing tag.

7) HTML is static because it is used
to display data.

XML is dynamic because it is used to transport data.

8) HTML does not preserve
whitespaces.

XML preserve whitespaces.

XML Attributes
XML elements can have attributes. By the use of attributes we can add the information about
the element.

XML attributes enhance the properties of the elements.

Note: XML attributes must always be quoted. We can use single or double quote.

Let us take an example of a book publisher. Here, book is the element and publisher is the
attribute.

1. <book publisher="Tata McGraw Hill"></book>

1 HETAL PATEL

1. <book publisher='Tata McGraw Hill'></book>

Metadata should be stored as attribute and data should be stored as element.

1. <book>
2. <book category="computer">
3. <author> A & B </author>
4. </book>

Data can be stored in attributes or in child elements. But there are some limitations in using
attributes, over child elements.

Why should we avoid XML attributes
o Attributes cannot contain multiple values but child elements can have multiple values.
o Attributes cannot contain tree structure but child element can.
o Attributes are not easily expandable. If you want to change in attribute's vales in future,

it may be complicated.
o Attributes cannot describe structure but child elements can.
o Attributes are more difficult to be manipulated by program code.
o Attributes values are not easy to test against a DTD, which is used to define the legal

elements of an XML document.

Difference between attribute and sub-element
In the context of documents, attributes are part of markup, while sub elements are part of the
basic document contents.

In the context of data representation, the difference is unclear and may be confusing.

Same information can be represented in two ways:

1st way:

1. <book publisher="Tata McGraw Hill"> </book>

2nd way:

1. <book>
2. <publisher> Tata McGraw Hill </publisher>

1 HETAL PATEL

3. </book>

In the first example publisher is used as an attribute and in the second example publisher is an
element.

Both examples provide the same information but it is good practice to avoid attribute in XML
and use elements instead of attributes.

XML Example
XML documents create a hierarchical structure looks like a tree so it is known as XML Tree that
starts at "the root" and branches to "the leaves".

Example of XML Document

XML documents uses a self-describing and simple syntax:

1. <?xml version="1.0" encoding="ISO-8859-1"?>
2. <note>
3. <to>Tove</to>
4. <from>Jani</from>
5. <heading>Reminder</heading>
6. <body>Don't forget me this weekend!</body>
7. </note>

The first line is the XML declaration. It defines the XML version (1.0) and the encoding used
(ISO-8859-1 = Latin-1/West European character set).

The next line describes the root element of the document (like saying: "this document is a
note"):

1. <note>

The next 4 lines describe 4 child elements of the root (to, from, heading, and body).

1. <to>Tove</to>
2. <from>Jani</from>
3. <heading>Reminder</heading>
4. <body>Don't forget me this weekend!</body>

And finally the last line defines the end of the root element.

1. </note>

1 HETAL PATEL

XML documents must contain a root element. This element is "the parent" of all other
elements.

The elements in an XML document form a document tree. The tree starts at the root and
branches to the lowest level of the tree.

All elements can have sub elements (child elements).

1. <root>
2. <child>
3. <subchild>.....</subchild>
4. </child>
5. </root>

The terms parent, child, and sibling are used to describe the relationships between elements.
Parent elements have children. Children on the same level are called siblings (brothers or
sisters).

All elements can have text content and attributes (just like in HTML).

Another Example of XML: Books
File: books.xml

1. <bookstore>
2. <book category="COOKING">
3. <title lang="en">Everyday Italian</title>
4. <author>Giada De Laurentiis</author>
5. <year>2005</year>
6. <price>30.00</price>
7. </book>
8. <book category="CHILDREN">
9. <title lang="en">Harry Potter</title>
10. <author>J K. Rowling</author>
11. <year>2005</year>
12. <price>29.99</price>
13. </book>
14. <book category="WEB">
15. <title lang="en">Learning XML</title>
16. <author>Erik T. Ray</author>
17. <year>2003</year>
18. <price>39.95</price>
19. </book>

1 HETAL PATEL

20. </bookstore>
Test it Now

The root element in the example is <bookstore>. All elements in the document are contained
within <bookstore>.

The <book> element has 4 children: <title>,< author>, <year> and <price>.

Another Example of XML: Emails
File: emails.xml

1. <?xml version="1.0" encoding="UTF-8"?>
2. <emails>
3. <email>
4. <to>Vimal</to>
5. <from>Sonoo</from>
6. <heading>Hello</heading>
7. <body>Hello brother, how are you!</body>
8. </email>
9. <email>
10. <to>Peter</to>
11. <from>Jack</from>
12. <heading>Birth day wish</heading>
13. <body>Happy birth day Tom!</body>
14. </email>
15. <email>
16. <to>James</to>
17. <from>Jaclin</from>
18. <heading>Morning walk</heading>
19. <body>Please start morning walk to stay fit!</body>
20. </email>
21. <email>
22. <to>Kartik</to>
23. <from>Kumar</from>
24. <heading>Health Tips</heading>
25. <body>Smoking is injurious to health!</body>
26. </email>
27. </emails>

XML Comments

https://www.javatpoint.com/xmlpages/books.xml

1 HETAL PATEL

XML comments are just like HTML comments. We know that the comments are used to make
codes more understandable other developers.

XML Comments add notes or lines for understanding the purpose of an XML code. Although
XML is known as self-describing data but sometimes XML comments are necessary.

Syntax

An XML comment should be written as:

1. <!-- Write your comment-->

You cannot nest one XML comment inside the another.

XML Comments Example
Let's take an example to show the use of comment in an XML example:

1. <?xml version="1.0" encoding="UTF-8" ?>
2. <!--Students marks are uploaded by months-->
3. <students>
4. <student>
5. <name>Ratan</name>
6. <marks>70</marks>
7. </student>
8. <student>
9. <name>Aryan</name>
10. <marks>60</marks>
11. </student>
12. </students>
Rules for adding XML comments

o Don't use a comment before an XML declaration.
o You can use a comment anywhere in XML document except within attribute value.
o Don't nest a comment inside the other comment.

3.4 XML document:
3.4.1 Document Prolog Section
3.4.2 Document element section

1 HETAL PATEL

XML – Documents
XML Document forms the full struture of xml formatted data composed with prolog and
root element nested with other elements.
There would be only one root element, where root element encloses many other
elements inside the final inner element holds the data.
XML Document can be divided as three components. They are:
1. Prolog
2. Elements (Root or Other)
3. Data
Below is the example of Customers XML document with the root element
“customer_list”
<?xml version="1.0" encoding="UTF-8"?>

<customer_list>

<customer>

<name> Sanjay</name>

<location> Mumbai</location>

</customer>

<customer>

<name> Micheal</name>

<location> Washington</location>

</customer>

</customer_list>

In the above example,
Document Prolog — <?xml version=”1.0″ encoding=”UTF-8″?>
Root Element — <customer_list>
Other Elements — <customer> , <name> , <location>
Data — Sanjay, Mumbai, Washington, Micheal

1 HETAL PATEL

PROF. HETAL PATEL 1

Unit-5: Android Widgets(UI)
5.1 Hiding Title bar and Full Screen

In this example, we are going to explain how to hide the title bar and how
to display content in full screen mode.

The requestWindowFeature(Window.FEATURE_NO_TITLE) method of
Activity must be called to hide the title. But, it must be coded before the
setContentView method.

Code that hides title bar of activity
The getSupportActionBar() method is used to retrieve the instance of
ActionBar class. Calling the hide() method of ActionBar class hides the title
bar.

1. requestWindowFeature(Window.FEATURE_NO_TITLE);//will hide the ti
tle

2. getSupportActionBar().hide(); //hide the title bar

Code that enables full screen mode of activity
The setFlags() method of Window class is used to display content in full
screen mode. You need to pass
the WindowManager.LayoutParams.FLAG_FULLSCREEN constant in
the setFlags method.

1. this.getWindow().setFlags(WindowManager.LayoutParams.FLAG_FU
LLSCREEN,

2. WindowManager.LayoutParams.FLAG_FULLSCREEN); //sho
w the activity in full screen

Android Hide Title Bar and Full Screen Example
Let's see the full code to hide the title bar in android.

activity_main.xml

File: activity_main.xml
1. <?xml version="1.0" encoding="utf-8"?>
2. <android.support.constraint.ConstraintLayout xmlns:android=

"http://schemas.android.com/apk/res/android"
3. xmlns:app="http://schemas.android.com/apk/res-auto"
4. xmlns:tools="http://schemas.android.com/tools"

PROF. HETAL PATEL 2

Unit-5: Android Widgets(UI)
5. android:layout_width="match_parent"
6. android:layout_height="match_parent"
7. tools:context="first.javatpoint.com.hidetitlebar.MainActivity">
8.
9. <TextView
10. android:layout_width="wrap_content"
11. android:layout_height="wrap_content"
12. android:text="Hello World!"
13. app:layout_constraintBottom_toBottomOf="parent"
14. app:layout_constraintLeft_toLeftOf="parent"
15. app:layout_constraintRight_toRightOf="parent"
16. app:layout_constraintTop_toTopOf="parent" />
17.
18. </android.support.constraint.ConstraintLayout>

Activity class

File: MainActivity.java
1. package first.javatpoint.com.hidetitlebar;
2.
3. import android.support.v7.app.AppCompatActivity;
4. import android.os.Bundle;
5. import android.view.Window;
6. import android.view.WindowManager;
7.
8. public class MainActivity extends AppCompatActivity {
9.
10. @Override
11. protected void onCreate(Bundle savedInstanceState) {
12. super.onCreate(savedInstanceState);
13. requestWindowFeature(Window.FEATURE_NO_TITLE); //wi

ll hide the title
14. getSupportActionBar().hide(); // hide the title bar
15. this.getWindow().setFlags(WindowManager.LayoutParam

s.FLAG_FULLSCREEN,
16. WindowManager.LayoutParams.FLAG_FULLSCREEN); //e

nable full screen

PROF. HETAL PATEL 3

Unit-5: Android Widgets(UI)
17. setContentView(R.layout.activity_main);
18.
19.
20. }
21. }

Output: Hiding the Title Only

Output: Hiding the TitleBar and enabling FullScreen

PROF. HETAL PATEL 4

Unit-5: Android Widgets(UI)

5.2 screen Orientation (Portrait, Landscape)
The screenOrientation is the attribute of activity element.

The orientation of android activity can be portrait, landscape, sensor,
unspecified etc.

You need to define it in the AndroidManifest.xml file.

Syntax:

1. <activity android:name="package_name.Your_ActivityName"
2. android:screenOrientation="orirntation_type">
3. </activity>

Example:

PROF. HETAL PATEL 5

Unit-5: Android Widgets(UI)
1. <activity android:name=" example.javatpoint.com.screenorientatio

n.MainActivity"
2. android:screenOrientation="portrait">
3. </activity>
1. <activity android:name=".SecondActivity"
2. android:screenOrientation="landscape">
3. </activity>

The common values for screenOrientation attribute are as follows:

Backward Skip 10sPlay VideoForward Skip 10s

Value Description
unspecified It is the default value. In such case, system chooses the orientation.

portrait taller not wider

landscape wider not taller

sensor orientation is determined by the device orientation sensor.

Android Portrait and Landscape mode screen
orientation example
In this example, we will create two activities of different screen orientation.
The first activity (MainActivity) will be as "portrait" orientation and second
activity (SecondActivity) as "landscape" orientation type.

activity_main.xml

File: activity_main.xml

1. <?xml version="1.0" encoding="utf-8"?>
2. <android.support.constraint.ConstraintLayout xmlns:android="http:/

/schemas.android.com/apk/res/android"
3. xmlns:app="http://schemas.android.com/apk/res-auto"
4. xmlns:tools="http://schemas.android.com/tools"
5. android:layout_width="match_parent"
6. android:layout_height="match_parent"

PROF. HETAL PATEL 6

Unit-5: Android Widgets(UI)
7. tools:context="example.javatpoint.com.screenorientation.MainAc

tivity">
8.
9.
10. <Button
11. android:id="@+id/button1"
12. android:layout_width="wrap_content"
13. android:layout_height="wrap_content"
14. android:layout_marginBottom="8dp"
15. android:layout_marginTop="112dp"
16. android:onClick="onClick"
17. android:text="Launch next activity"
18. app:layout_constraintBottom_toBottomOf="parent"
19. app:layout_constraintEnd_toEndOf="parent"
20. app:layout_constraintHorizontal_bias="0.612"
21. app:layout_constraintStart_toStartOf="parent"
22. app:layout_constraintTop_toBottomOf="@+id/editText1"
23. app:layout_constraintVertical_bias="0.613" />
24.
25. <TextView
26. android:id="@+id/editText1"
27. android:layout_width="wrap_content"
28. android:layout_height="wrap_content"
29. android:layout_centerHorizontal="true"
30. android:layout_marginEnd="8dp"
31. android:layout_marginStart="8dp"
32. android:layout_marginTop="124dp"
33. android:ems="10"
34. android:textSize="22dp"
35. android:text="This activity is portrait orientation"
36. app:layout_constraintEnd_toEndOf="parent"
37. app:layout_constraintHorizontal_bias="0.502"
38. app:layout_constraintStart_toStartOf="parent"
39. app:layout_constraintTop_toTopOf="parent" />
40.</android.support.constraint.ConstraintLayout>

PROF. HETAL PATEL 7

Unit-5: Android Widgets(UI)
Activity class

File: MainActivity.java

1. package example.javatpoint.com.screenorientation;
2.
3. import android.content.Intent;
4. import android.support.v7.app.AppCompatActivity;
5. import android.os.Bundle;
6. import android.view.View;
7. import android.widget.Button;
8.
9. public class MainActivity extends AppCompatActivity {
10.
11. Button button1;
12. @Override
13. protected void onCreate(Bundle savedInstanceState) {
14. super.onCreate(savedInstanceState);
15. setContentView(R.layout.activity_main);
16.
17. button1=(Button)findViewById(R.id.button1);
18. }
19. public void onClick(View v) {
20. Intent intent = new Intent(MainActivity.this,SecondActivity.class);
21. startActivity(intent);
22. }
23. }

activity_second.xml

File: activity_second.xml

1. <?xml version="1.0" encoding="utf-8"?>
2. <android.support.constraint.ConstraintLayout xmlns:android="http:/

/schemas.android.com/apk/res/android"
3. xmlns:app="http://schemas.android.com/apk/res-auto"
4. xmlns:tools="http://schemas.android.com/tools"
5. android:layout_width="match_parent"
6. android:layout_height="match_parent"

PROF. HETAL PATEL 8

Unit-5: Android Widgets(UI)
7. tools:context="example.javatpoint.com.screenorientation.Second

Activity">
8.
9. <TextView
10. android:id="@+id/textView"
11. android:layout_width="wrap_content"
12. android:layout_height="wrap_content"
13. android:layout_marginEnd="8dp"
14. android:layout_marginStart="8dp"
15. android:layout_marginTop="180dp"
16. android:text="this is landscape orientation"
17. android:textSize="22dp"
18. app:layout_constraintEnd_toEndOf="parent"
19. app:layout_constraintHorizontal_bias="0.502"
20. app:layout_constraintStart_toStartOf="parent"
21. app:layout_constraintTop_toTopOf="parent" />
22.</android.support.constraint.ConstraintLayout>

SecondActivity class

File: SecondActivity.java

1. package example.javatpoint.com.screenorientation;
2.
3. import android.support.v7.app.AppCompatActivity;
4. import android.os.Bundle;
5.
6. public class SecondActivity extends AppCompatActivity {
7.
8. @Override
9. protected void onCreate(Bundle savedInstanceState) {
10. super.onCreate(savedInstanceState);
11. setContentView(R.layout.activity_second);
12.
13. }
14.}

AndroidManifest.xml

PROF. HETAL PATEL 9

Unit-5: Android Widgets(UI)
File: AndroidManifest.xml

In AndroidManifest.xml file add the screenOrientation attribute in activity
and provides its orientation. In this example, we provide "portrait"
orientation for MainActivity and "landscape" for SecondActivity.

1. <?xml version="1.0" encoding="utf-8"?>
2. <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3. package="example.javatpoint.com.screenorientation">
4.
5. <application
6. android:allowBackup="true"
7. android:icon="@mipmap/ic_launcher"
8. android:label="@string/app_name"
9. android:roundIcon="@mipmap/ic_launcher_round"
10. android:supportsRtl="true"
11. android:theme="@style/AppTheme">
12. <activity
13. android:name="example.javatpoint.com.screenorienta

tion.MainActivity"
14. android:screenOrientation="portrait">
15. <intent-filter>
16. <action android:name="android.intent.action.MAIN" />
17.
18. <category android:name="android.intent.category.LAUNCHER"

/>
19. </intent-filter>
20. </activity>
21. <activity android:name=".SecondActivity"
22. android:screenOrientation="landscape">
23. </activity>
24. </application>
25.
26.</manifest>

Output:

PROF. HETAL PATEL 10

Unit-5: Android Widgets(UI)

5.3 Form Widget Palette

5.3.1 Placing text fields
Widget refers to the elements of the UI (User Interface) that helps user
interacts with the Android App.

https://www.geeksforgeeks.org/user-interface-ui/

PROF. HETAL PATEL 11

Unit-5: Android Widgets(UI)
TextView is one of many such widgets which can be used to improve the UI
of the app.

TextView refers to the widget which displays some text on the screen based
on the layout, size, colour, etc set for that particular TextView. It optionally
allows us to modify or edit itself as well.

Class Syntax:public class TextView
extends View
implements ViewTreeObserver.OnPreDrawListener
Class Hierarchy:java.lang.Object
↳ android.view.View
↳ android.widget.TextView

Syntax:<SomeLayout>
.
.
<TextView>

android:SomeAttribute1 = "Value of attribute1"
android:SomeAttribute2 = "Value of attribute2"
.
.
android:SomeAttributeN = "Value of attributeN"

</TextView>
.
.

</SomeLayout>
Here the layout can be any layout like Relative, Linear, etc (Refer this article
to learn more about layouts). And the attributes can be many among the
table given below in this article.
Example:<LinearLayout

https://www.geeksforgeeks.org/android-ui-layouts/
https://www.geeksforgeeks.org/android-ui-layouts/

PROF. HETAL PATEL 12

Unit-5: Android Widgets(UI)
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">

<TextView
android:id="@+id/text_view_id"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:text="GeeksforGeeks" />

</LinearLayout>

How to include a TextView in an Android App:
1. First of all, create a new Android app, or take an existing app to edit

it. In both the case, there must be an XML layout activity file and
a Java class file linked to this activity.

2. Open the Activity file and include a TextView in this file. The code
for the TextView will be:3.

4. Now in the Java file, link this layout file with the below code:5. @Override

https://www.geeksforgeeks.org/android-how-to-create-start-a-new-project-in-android-studio/
https://www.geeksforgeeks.org/android-ui-layouts/
https://www.geeksforgeeks.org/java-class-file/

PROF. HETAL PATEL 13

Unit-5: Android Widgets(UI)
6. protected void onCreate(Bundle savedInstanceState)
7. {
8. super.onCreate(savedInstanceState);
9. setContentView(R.layout.activity_main);
10.}

where activity_main is the name of the layout file to be attached.
11. In the Java file, we will try to change the Text displayed on the

TextView upon touching along with a Toast message.
12. The complete code of the layout file and the Java file is given

below.
Below is the implementation of the above approach:

 activity_main.xml
 MainActivity.java

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity"
android:gravity="center">

<TextView
android:id="@+id/textview"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Welcome To"
android:textSize="26sp"

https://www.geeksforgeeks.org/android-what-is-toast-and-how-to-use-it-with-examples/
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools

PROF. HETAL PATEL 14

Unit-5: Android Widgets(UI)
android:textStyle="bold"
android:textColor="@color/colorPrimary"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

</RelativeLayout>
Output:

XML Attributes of TextView in Android

Attributes Description

android:text Sets text of the Textview

android:id Gives a unique ID to the Textview

PROF. HETAL PATEL 15

Unit-5: Android Widgets(UI)
Attributes Description

android:cursorVisible Use this attribute to make cursor visible or invisible. Default value
is visible.

android:drawableBottom Sets images or other graphic assets to below of the Textview.

android:drawableEnd Sets images or other graphic assets to end of Textview.

android:drawableLeft Sets images or other graphic assets to left of Textview.

android:drawablePadding Sets padding to the drawable(images or other graphic assets) in
the Textview.

android:autoLink This attribute is used to automatically detect url or emails and
show it as clickable link.

android:autoText Automatically correct spelling errors in text of the Textview.

android:capitalize It automatically capitalize whatever the user types in the
Textview.

android:drawableRight Sets drawables to right of text in the Textview.

android:drawableStart Sets drawables to start of text in the Textview.

android:drawableTop Sets drawables to top of text in the Textview.

android:ellipsize Use this attribute when you want text to be ellipsized if it is
longer than the Textview width.

PROF. HETAL PATEL 16

Unit-5: Android Widgets(UI)
Attributes Description

android:ems Sets width of the Textview in ems.

android:gravity We can align text of the Textview vertically or horizontally or
both.

android:height Use to set height of the Textview.

android:hint Use to show hint when there is no text.

android:inputType Use to set input type of the Textview. It can be Number,
Password, Phone etc.

android:lines Use to set height of the Textview by number of lines.

android:maxHeight Sets maximum height of the Textview.

android:minHeight Sets minimum height of the Textview.

android:maxLength Sets maximum character length of the Textview.

android:maxLines Sets maximum lines Textview can have.

android:minLines Sets minimum lines Textview can have.

android:maxWidth Sets maximum width Textview can have.

android:minWidth Sets minimum lines Textview can have.

PROF. HETAL PATEL 17

Unit-5: Android Widgets(UI)
Attributes Description

android:textAllCaps Show all texts of the Textview in capital letters.

android:textColor Sets color of the text.

android:textSize Sets font size of the text.

android:textStyle Sets style of the text. For example, bold, italic, bolditalic.

android:typeface Sets typeface or font of the text. For example, normal, sans, serif
etc

android:width Sets width of the TextView.

5.3.2 Button and its onClick event

Android Button represents a push-button. The android.widget.Button is
subclass of TextView class and CompoundButton is the subclass of Button
class.

PROF. HETAL PATEL 18

Unit-5: Android Widgets(UI)
There are different types of buttons in android such as RadioButton,
ToggleButton, CompoundButton etc.

Android Button Example with Listener
Here, we are going to create two textfields and one button for sum of two
numbers. If user clicks button, sum of two input values is displayed on the
Toast.

We can perform action on button using different types such as calling
listener on button or adding onClick property of button in activity's xml file.

1. button.setOnClickListener(new View.OnClickListener() {
2. @Override
3. public void onClick(View view) {
4. //code
5. }
6. });
1. <Button
2. android:onClick="methodName"
3. />

Drag the component or write the code for UI in activity_main.xml
First of all, drag 2 textfields from the Text Fields palette and one button
from the Form Widgets palette as shown in the following figure.

PROF. HETAL PATEL 19

Unit-5: Android Widgets(UI)

The generated code for the ui components will be like this:

File: activity_main.xml

1. <?xml version="1.0" encoding="utf-8"?>
2. <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/a

ndroid"
3. xmlns:app="http://schemas.android.com/apk/res-auto"
4. xmlns:tools="http://schemas.android.com/tools"
5. android:layout_width="match_parent"
6. android:layout_height="match_parent"
7. tools:context="example.javatpoint.com.sumoftwonumber.MainAc

tivity">
8.
9. <EditText
10. android:id="@+id/editText1"
11. android:layout_width="wrap_content"
12. android:layout_height="wrap_content"

PROF. HETAL PATEL 20

Unit-5: Android Widgets(UI)
13. android:layout_alignParentTop="true"
14. android:layout_centerHorizontal="true"
15. android:layout_marginTop="61dp"
16. android:ems="10"
17. android:inputType="number"
18. tools:layout_editor_absoluteX="84dp"
19. tools:layout_editor_absoluteY="53dp" />
20.
21. <EditText
22. android:id="@+id/editText2"
23. android:layout_width="wrap_content"
24. android:layout_height="wrap_content"
25. android:layout_below="@+id/editText1"
26. android:layout_centerHorizontal="true"
27. android:layout_marginTop="32dp"
28. android:ems="10"
29. android:inputType="number"
30. tools:layout_editor_absoluteX="84dp"
31. tools:layout_editor_absoluteY="127dp" />
32.
33. <Button
34. android:id="@+id/button"
35. android:layout_width="wrap_content"
36. android:layout_height="wrap_content"
37. android:layout_below="@+id/editText2"
38. android:layout_centerHorizontal="true"
39. android:layout_marginTop="109dp"
40. android:text="ADD"
41. tools:layout_editor_absoluteX="148dp"
42. tools:layout_editor_absoluteY="266dp" />
43. </RelativeLayout>

Activity class
Now write the code to display the sum of two numbers.

File: MainActivity.java

PROF. HETAL PATEL 21

Unit-5: Android Widgets(UI)
1. package example.javatpoint.com.sumoftwonumber;
2.
3. import android.support.v7.app.AppCompatActivity;
4. import android.os.Bundle;
5. import android.view.View;
6. import android.widget.Button;
7. import android.widget.EditText;
8. import android.widget.Toast;
9.
10.public class MainActivity extends AppCompatActivity {
11. private EditText edittext1, edittext2;
12. private Button buttonSum;
13.
14. @Override
15. protected void onCreate(Bundle savedInstanceState) {
16. super.onCreate(savedInstanceState);
17. setContentView(R.layout.activity_main);
18.
19. addListenerOnButton();
20. }
21.
22. public void addListenerOnButton() {
23. edittext1 = (EditText) findViewById(R.id.editText1);
24. edittext2 = (EditText) findViewById(R.id.editText2);
25. buttonSum = (Button) findViewById(R.id.button);
26.
27. buttonSum.setOnClickListener(new View.OnClickListener

() {
28. @Override
29. public void onClick(View view) {
30. String value1=edittext1.getText().toString();
31. String value2=edittext2.getText().toString();
32. int a=Integer.parseInt(value1);
33. int b=Integer.parseInt(value2);
34. int sum=a+b;
35. Toast.makeText(getApplicationContext(),String.valu

eOf(sum), Toast.LENGTH_LONG).show();

PROF. HETAL PATEL 22

Unit-5: Android Widgets(UI)
36. }
37. });
38. }
39. }

Output:

5.4 Displaying Notification:
5.4.1 Toast Class
5.4.2 Displaying message on Toast

Andorid Toast can be used to display information for the short period of
time.

A toast contains message to be displayed quickly and disappears after
sometime.

The android.widget.Toast class is the subclass of java.lang.Object
class.

PROF. HETAL PATEL 23

Unit-5: Android Widgets(UI)
Toast class
Toast class is used to show notification for a particular interval of time. After
sometime it disappears. It doesn't block the user interaction.

Constants of Toast class

There are only 2 constants of Toast class which are given below.

Constant Description
public static final int LENGTH_LONG displays view for the long duration of time.

public static final int LENGTH_SHORT displays view for the short duration of time.

Methods of Toast class

The widely used methods of Toast class are given below.

Method Description
public static Toast makeText(Context context, CharSequence
text, int duration)

makes the toast containing text and
duration.

public void show() displays toast.

public void setMargin (float horizontalMargin, float
verticalMargin)

changes the horizontal and vertical margin
difference.

Android Toast Example
1. Toast.makeText(getApplicationContext(),"Hello Javatpoint",Toast.LE

NGTH_SHORT).show();

Another code:

1. Toast toast=Toast.makeText(getApplicationContext(),"Hello Javatpoi
nt",Toast.LENGTH_SHORT);

2. toast.setMargin(50,50);
3. toast.show();

PROF. HETAL PATEL 24

Unit-5: Android Widgets(UI)
Here, getApplicationContext() method returns the instance of
Context.

Full code of activity class displaying Toast
Let's see the code to display the toast.

File: MainActivity.java

1. package example.javatpoint.com.toast;
2.
3. import android.support.v7.app.AppCompatActivity;
4. import android.os.Bundle;
5. import android.widget.Toast;
6.
7. public class MainActivity extends AppCompatActivity {
8.
9. @Override
10. protected void onCreate(Bundle savedInstanceState) {
11. super.onCreate(savedInstanceState);
12. setContentView(R.layout.activity_main);
13.
14. //Displaying Toast with Hello Javatpoint message
15. Toast.makeText(getApplicationContext(),"Hello Javatpoin

t",Toast.LENGTH_SHORT).show();
16. }
17. }

Output:

PROF. HETAL PATEL 25

Unit-5: Android Widgets(UI)

5.5 ToggleButton

5.5.1 ToggleButton Attributes:(textOff, textOn)
5.5.2 Event methods : getTextOff(), getTextOn(), setChecked()

Android Toggle Button can be used to display checked/unchecked
(On/Off) state on the button.

It is beneficial if user have to change the setting between two states.

It can be used to On/Off Sound, Wifi, Bluetooth etc.

Since Android 4.0, there is another type of toggle button
called switch that provides slider control.

Android ToggleButton and Switch both are the subclasses of
CompoundButton class.

Android ToggleButton class
ToggleButton class provides the facility of creating the toggle button.

XML Attributes of ToggleButton class
The 3 XML attributes of ToggleButton class.

XML Attribute Description

PROF. HETAL PATEL 26

Unit-5: Android Widgets(UI)
android:disabledAlpha The alpha to apply to the indicator when disabled.

android:textOff The text for the button when it is not checked.

android:textOn The text for the button when it is checked.

Methods of ToggleButton class
The widely used methods of ToggleButton class are given below.

Method Description
CharSequence getTextOff() Returns the text when button is not in the checked state.

CharSequence getTextOn() Returns the text for when button is in the checked state.

void setChecked(boolean checked) Changes the checked state of this button.

Android ToggleButton Example
activity_main.xml

Drag two toggle button and one button for the layout. Now the
activity_main.xml file will look like this:

File: activity_main.xml

1. <?xml version="1.0" encoding="utf-8"?>
2. <android.support.constraint.ConstraintLayout xmlns:android="http:/

/schemas.android.com/apk/res/android"
3. xmlns:app="http://schemas.android.com/apk/res-auto"
4. xmlns:tools="http://schemas.android.com/tools"
5. android:layout_width="match_parent"
6. android:layout_height="match_parent"
7. tools:context="example.javatpoint.com.togglebutton.MainActivity

">
8.
9. <ToggleButton

PROF. HETAL PATEL 27

Unit-5: Android Widgets(UI)
10. android:id="@+id/toggleButton"
11. android:layout_width="wrap_content"
12. android:layout_height="wrap_content"
13. android:layout_marginLeft="8dp"
14. android:layout_marginTop="80dp"
15. android:text="ToggleButton"
16. android:textOff="Off"
17. android:textOn="On"
18. app:layout_constraintEnd_toStartOf="@+id/toggleButton2"
19. app:layout_constraintStart_toStartOf="parent"
20. app:layout_constraintTop_toTopOf="parent" />
21.
22. <ToggleButton
23. android:id="@+id/toggleButton2"
24. android:layout_width="wrap_content"
25. android:layout_height="wrap_content"
26. android:layout_marginRight="60dp"
27. android:layout_marginTop="80dp"
28. android:text="ToggleButton"
29. android:textOff="Off"
30. android:textOn="On"
31. app:layout_constraintEnd_toEndOf="parent"
32. app:layout_constraintTop_toTopOf="parent" />
33.
34. <Button
35. android:id="@+id/button"
36. android:layout_width="wrap_content"
37. android:layout_height="wrap_content"
38. android:layout_marginBottom="144dp"
39. android:layout_marginLeft="148dp"
40. android:text="Submit"
41. app:layout_constraintBottom_toBottomOf="parent"
42. app:layout_constraintStart_toStartOf="parent" />
43. </android.support.constraint.ConstraintLayout>

Activity class

PROF. HETAL PATEL 28

Unit-5: Android Widgets(UI)
Let's write the code to check which toggle button is ON/OFF.

File: MainActivity.java

1. package example.javatpoint.com.togglebutton;
2.
3. import android.support.v7.app.AppCompatActivity;
4. import android.os.Bundle;
5. import android.view.View;
6. import android.widget.Button;
7. import android.widget.Toast;
8. import android.widget.ToggleButton;
9.
10.public class MainActivity extends AppCompatActivity {
11. private ToggleButton toggleButton1, toggleButton2;
12. private Button buttonSubmit;
13. @Override
14. protected void onCreate(Bundle savedInstanceState) {
15. super.onCreate(savedInstanceState);
16. setContentView(R.layout.activity_main);
17.
18. addListenerOnButtonClick();
19. }
20.
21. public void addListenerOnButtonClick(){
22. //Getting the ToggleButton and Button instance from the layout xml fi

le
23. toggleButton1=(ToggleButton)findViewById(R.id.toggleB

utton);
24. toggleButton2=(ToggleButton)findViewById(R.id.toggleButton2);
25. buttonSubmit=(Button)findViewById(R.id.button);
26.
27. //Performing action on button click
28. buttonSubmit.setOnClickListener(new View.OnClickListener(){
29.
30. @Override
31. public void onClick(View view) {
32. StringBuilder result = new StringBuilder();

PROF. HETAL PATEL 29

Unit-5: Android Widgets(UI)
33. result.append("ToggleButton1 : ").append(toggleBut

ton1.getText());
34. result.append("\nToggleButton2 : ").append(toggleButton2.getT

ext());
35. //Displaying the message in toast
36. Toast.makeText(getApplicationContext(), result.toString(),Toast.

LENGTH_LONG).show();
37. }
38.
39. });
40.
41. }
42.}

Output:

5.6 CheckBox

5.6.1 Event methods: isChecked(), setChecked()

PROF. HETAL PATEL 30

Unit-5: Android Widgets(UI)

Android CheckBox is a type of two state button either checked or
unchecked.

There can be a lot of usage of checkboxes. For example, it can be used to
know the hobby of the user, activate/deactivate the specific action etc.

Android CheckBox class is the subclass of CompoundButton class.

Android CheckBox class

The android.widget.CheckBox class provides the facility of creating the
CheckBoxes.

Methods of CheckBox class

There are many inherited methods of View, TextView, and Button classes
in the CheckBox class. Some of them are as follows:

Method Description
public boolean isChecked() Returns true if it is checked otherwise false.

public void setChecked(boolean status) Changes the state of the CheckBox.

Android CheckBox Example

activity_main.xml

Drag the three checkboxes and one button for the layout. Now the
activity_main.xml file will look like this:

File: activity_main.xml

PROF. HETAL PATEL 31

Unit-5: Android Widgets(UI)
1. <?xml version="1.0" encoding="utf-8"?>
2. <android.support.constraint.ConstraintLayout xmlns:android="http:/

/schemas.android.com/apk/res/android"
3. xmlns:app="http://schemas.android.com/apk/res-auto"
4. xmlns:tools="http://schemas.android.com/tools"
5. android:layout_width="match_parent"
6. android:layout_height="match_parent"
7. tools:context="example.javatpoint.com.checkbox.MainActivity">

8.
9.
10. <CheckBox
11. android:id="@+id/checkBox"
12. android:layout_width="wrap_content"
13. android:layout_height="wrap_content"
14. android:layout_marginLeft="144dp"
15. android:layout_marginTop="68dp"
16. android:text="Pizza"
17. app:layout_constraintStart_toStartOf="parent"
18. app:layout_constraintTop_toTopOf="parent" />
19.
20. <CheckBox
21. android:id="@+id/checkBox2"
22. android:layout_width="wrap_content"
23. android:layout_height="wrap_content"
24. android:layout_marginLeft="144dp"
25. android:layout_marginTop="28dp"
26. android:text="Coffee"
27. app:layout_constraintStart_toStartOf="parent"
28. app:layout_constraintTop_toBottomOf="@+id/checkBox" />
29.
30. <CheckBox
31. android:id="@+id/checkBox3"
32. android:layout_width="wrap_content"
33. android:layout_height="wrap_content"
34. android:layout_marginLeft="144dp"
35. android:layout_marginTop="28dp"

PROF. HETAL PATEL 32

Unit-5: Android Widgets(UI)
36. android:text="Burger"
37. app:layout_constraintStart_toStartOf="parent"
38. app:layout_constraintTop_toBottomOf="@+id/checkBox2" />
39.
40. <Button
41. android:id="@+id/button"
42. android:layout_width="wrap_content"
43. android:layout_height="wrap_content"
44. android:layout_marginLeft="144dp"
45. android:layout_marginTop="184dp"
46. android:text="Order"
47. app:layout_constraintStart_toStartOf="parent"
48. app:layout_constraintTop_toBottomOf="@+id/checkBox3" />
49.
50.</android.support.constraint.ConstraintLayout>

Activity class

Let's write the code to check which toggle button is ON/OFF.

File: MainActivity.java

1. package example.javatpoint.com.checkbox;
2.
3. import android.support.v7.app.AppCompatActivity;
4. import android.os.Bundle;
5. import android.view.View;
6. import android.widget.Button;
7. import android.widget.CheckBox;
8. import android.widget.Toast;
9.
10.public class MainActivity extends AppCompatActivity {
11. CheckBox pizza,coffe,burger;
12. Button buttonOrder;
13. @Override
14. protected void onCreate(Bundle savedInstanceState) {
15. super.onCreate(savedInstanceState);
16. setContentView(R.layout.activity_main);

PROF. HETAL PATEL 33

Unit-5: Android Widgets(UI)
17. addListenerOnButtonClick();
18. }
19. public void addListenerOnButtonClick(){
20. //Getting instance of CheckBoxes and Button from the activty_main.x

ml file
21. pizza=(CheckBox)findViewById(R.id.checkBox);
22. coffe=(CheckBox)findViewById(R.id.checkBox2);
23. burger=(CheckBox)findViewById(R.id.checkBox3);
24. buttonOrder=(Button)findViewById(R.id.button);
25.
26. //Applying the Listener on the Button click
27. buttonOrder.setOnClickListener(new View.OnClickListene

r(){
28.
29. @Override
30. public void onClick(View view) {
31. int totalamount=0;
32. StringBuilder result=new StringBuilder();
33. result.append("Selected Items:");
34. if(pizza.isChecked()){
35. result.append("\nPizza 100Rs");
36. totalamount+=100;
37. }
38. if(coffe.isChecked()){
39. result.append("\nCoffe 50Rs");
40. totalamount+=50;
41. }
42. if(burger.isChecked()){
43. result.append("\nBurger 120Rs");
44. totalamount+=120;
45. }
46. result.append("\nTotal: "+totalamount+"Rs");
47. //Displaying the message on the toast
48. Toast.makeText(getApplicationContext(), result.toString(), Toast.

LENGTH_LONG).show();
49. }
50.

PROF. HETAL PATEL 34

Unit-5: Android Widgets(UI)
51. });
52. }
53. }

Output:

