1.1 Ancient Indian Arithmetic from Lilavati Samhita by Bhaskaracharya-II

Notes in English

Indian Knowledge System of Mathematics

Ancient Indian Arithmetic - Lilavati by Bhaskaracharya-I

- *Lilavati* is a famous mathematical text written by Bhaskaracharya (Bhaskaracharya II, though sometimes referred to as Bhaskaracharya I in common language).
- It was written in the 12th century CE.
- The book is named after Bhaskaracharya's daughter, Lilavati.
- It covers various arithmetic concepts in poetic form, making mathematics interesting and easy to understand.

Key Contributions from Lilavati

- Basic arithmetic operations: Addition, Subtraction, Multiplication, Division
- Fractions and their operations
- Rules for square roots and cube roots
- Simple and compound interest
- Problems based on geometry, mensuration, and algebra
- Use of real-life examples in mathematical problems
- Focus on mental calculations and logical thinking

Importance of Lilavati

- Showcased the advanced understanding of mathematics in ancient India
- Influenced scholars and mathematicians in India and abroad
- Demonstrates the integration of art (poetry) and science (mathematics)
- Encouraged education of women, as Lilavati herself was inspired by her father's work

Notes in Gujarati

ભારતીય જ્ઞાન પ્રણાલી - ગણિત

પ્રાચીન ભારતીય અંકગણિત – ભાસ્કરાયાર્થ-I ની લિલાવતી સંહિતા

• *લિલાવતી* એ પ્રસિદ્ધ ગણિત ગ્રંથ છે, જે ભાસ્કરાયાર્ય દ્વારા લખાયું હતું (અસલમાં ભાસ્કરાયાર્ય-II, પણ કેટલાક સંદર્ભમાં તેને ભાસ્કરાયાર્થ-I પણ કહેવામાં આવે છે).

- આ ગ્રંથ 12મી સદીમાં લખાયો હતો.
- પુસ્તકનું નામ ભાસ્કરાયાર્ચની દીકરી લિલાવતી પરથી રાખવામાં આવ્યું હતું.
- આ પુસ્તકમાં વિવિધ ગણિતીય મુદ્દાઓને કાવ્યરૂપમાં રજૂ કરાયા છે, જેથી ગણિત રસપ્રદ
 અને સરળ બને છે.

લિલાવતીના મુખ્ય યોગદાન

- મૂળભૂત અંકગણિત ક્રિયાઓ: જોડાણ, બાદબાકી, ગુણાકાર, ભાગાકાર
- ભાજ્યાંક અને તેના નિયમો
- વર્ગમૂળ અને ધનમૂળ વિશેની વિધિઓ
- સરળ અને ચક્રવૃદ્ધિ વ્યાજના ઉદાહરણો
- ભૂમિતિ, આયતન અને બીજગણિત આધારિત પ્રશ્નો
- જીવનમાં ઉપયોગી સમસ્યાઓ દ્વારા સમજાવટ
- માનસિક ગણતરીઓ અને તર્કશક્તિ પર ભાર

લિલાવતીનું મહત્વ

- પ્રાચીન ભારતના ઊંડા ગણિત જ્ઞાનને રજૂ કરે છે
- દેશ-વિદેશના વિદ્વાનોને પ્રેરણા આપી
- કાવ્ય અને વિજ્ઞાનનું સુંદર સંકલન
- મહિલાઓના શિક્ષણને પ્રોત્સાહન મળ્યું, લિલાવતી પણ તેના પિતાના કાર્યથી પ્રેરિત થઈ

1.1.1 Arithmetic Rule: Sutra (Verse 1) — From *Lilavati*

Sanskrit Shloka (Verse 1)

सुन्दरं लीलावत्याः परिशुद्धबुद्धेः सुखं गणितम्। गणकधुरन्धराणां ज्ञानाय प्रसृतेत्॥

Notes in English

Meaning

"O beautiful Lilavati, possessing pure intellect, listen attentively to these delightful rules of arithmetic, meant for acquiring knowledge by great mathematicians."

Explanation

- The first verse is a poetic introduction where Bhaskaracharya addresses his daughter Lilavati.
- He encourages learners to understand mathematics joyfully and attentively.
- Shows how mathematics is not merely mechanical but deeply connected with logic, knowledge, and beauty.

Example to Relate

Imagine a student learning addition for the first time: If you have **5 apples** and you get **3 more apples**, the total is:

5 + 3 = 8 apples

- Through such simple, joyful steps, complex knowledge can be gained.
- Bhaskaracharya motivates students to begin with curiosity and happiness.

Notes in Gujarati

શ્લોક

સુન્દરં લિલાવત્યાં પરિશુદ્ધબુદ્ધેઃ સુખં ગણિતમ્। ગણકધુરંધરાણાં જ્ઞાનાય પ્રસૃતેત્॥

અર્થ

"સુંદર લિલાવતી, જેણે શુદ્ધ બુદ્ધિ ધરાવે છે, તે આ ગણિતના સુખદ નિયમોને ધ્યાનપૂર્વક સાંભળ, જે મહાન ગણિતજ્ઞો માટે જ્ઞાન પ્રાપ્ત કરાવવા માટે બનાવવામાં આવ્યા છે."

વિગતવાર સમજાવટ

- ભાસ્કરાયાર્થે તેમના પુસ્તકની શરૂઆત પોતાની પુત્રી લિલાવતીને સંબોધી કરેલી છે.
- તેઓ કહે છે કે જો ગણિતને આનંદપૂર્વક શીખવામાં આવે તો તે સરળ અને રસપ્રદ બની શકે છે.
- અહીં શિક્ષણમાં આનંદ, જ્ઞાન અને તર્કને એકસાથે જોડવામાં આવ્યા છે.

ઉદાહરણ

ધારો કે વિદ્યાર્થીઓએ પ્રથમ વખત જોડાણ શીખવાનું છે:

તમારી પાસે ૫ સફરજન છે અને કોઈએ તને ૩ વધુ આપ્યા, તો કુલ કેટલી થશે?

૫ + 3 = ૮ સફરજન

- આવા સરળ ઉદાહરણોથી ગણિત શીખવું સરળ અને રસપ્રદ બને છે.
- ભાસ્કરાયાર્ચએ પણ એવો જ સંદેશ આપ્યો કે જીવનમાં ગઠન ગણિત પણ આનંદથી શીખી શકાય છે.

1.1.2 Multiplication of Large Numbers: Sutra (Verse 5) — From Lilavati

Sanskrit Shloka (Verse 5)

एकैकं संख्यानां द्विगुणितम् अन्योन्यं क्रमेण च गुणयेत्। तत्फलसंयोगात् समष्टिफलं स्यात् यथोक्तेन विधिना॥

Notes in English

Meaning

"Each digit of the numbers should be multiplied in order, one by one, with the corresponding digits of the other number. The intermediate products obtained are then summed systematically to get the final product as per the prescribed method."

Explanation

- Bhaskaracharya explains how to multiply large numbers step by step.
- The method is similar to modern long multiplication.
- Start by multiplying each digit of the multiplicand with each digit of the multiplier, aligning them properly.
- Add all partial results to get the final product.

Example

Multiply: 23×45

Step-by-Step

- 1. Multiply $3 \times 5 = 15$
- 2. Multiply $3 \times 4 = 12$, shift one place left $\rightarrow 120$
- 3. Multiply $2 \times 5 = 10$, shift one place left $\rightarrow 100$
- 4. Multiply $2 \times 4 = 8$, shift two places left $\rightarrow 800$

Sum of All Parts:

$$\rightarrow$$
 15 + 120 + 100 + 800 = **1035**

So,
$$23 \times 45 = 1035$$

Notes in Gujarati

શ્લોક (સૂત્ર ૫)

એકૈકં સંખ્યાનાં દ્વિગુણિતમન્યોન્યં ક્રમેણ ય ગુણયેત્। તત્કલસંયોગાત્ સમષ્ટિકલં સ્યાત્ યથોક્તેન વિધિના II

અર્થ

"દરેક આંકડાને ક્રમશઃ બીજા આંકડાઓ સાથે ગુણવો, પછી બધા મળેલા પરિણામોને યોગ્ય રીતે ઉમેરો અને અંતિમ જવાબ મેળવો."

વિગતવાર સમજાવટ

- ભાસ્કરાયાર્ચ મોટા આંકડાના ગુણાકાર માટે પગથિયે ગણતરી સમજાવે છે.
- આજના લાંબા ગુણાકાર જેવી રીત એટલે એક આંકડા પછી બીજાનો ગુણાકાર, પછી ઉમેરણ.
- દરેક પગલામાં યોગ્ય સ્થાન ખસેડવું અને પછી છેલ્લે બધા જવાબ જોડવાનું છે.

ઉદાહરણ

$$23 \times 45 = ?$$

પગલાંવાર ગણતરી

1.
$$3 \times 5 = 15$$

2.
$$3 \times 4 = 12$$
, એક સ્થાન ડાબે ખસેડો $\to 120$

- $3. 2 \times 5 = 10$, એક સ્થાન ડાબે ખસેડો → 100
- 4. $2 \times 4 = 8$, બે સ્થાન ડાબે ખસેડો $\rightarrow 800$

બધા જવાબનો ઉમેરો:

$$15 + 120 + 100 + 800 = 1035$$

ਘਰ: 23 × 45 = 1035

1.1.3 Division - Sutra (Verse 8) from Lilavati

Sanskrit Shloka (Verse 8)

भागहारं भागजं च ज्ञेयम् प्रथम एव निश्चितम्। भागफलस्य लब्धश्च यथावत् संप्रकथ्यते॥

Notes in English

Meaning

"First, one must clearly know the divisor and the dividend. Only then should the division process be carried out properly to obtain the correct quotient."

Explanation

- Bhaskaracharya explains that for accurate division:
 - o **Dividend (Bhagaj)** = The number to be divided
 - o **Divisor (Bhagahar)** = The number by which division occurs
- Once identified, perform systematic division to get the **Quotient** (**Labdha**).
- This mirrors today's long division method where calculations are orderly and precise.

Example

Divide 625 ÷ 25

Step-by-Step

- 1. Dividend = 625, Divisor = 25
- 2. $625 \div 25 = 25 \times 25 = 625$

3. Quotient = 25, Remainder = 0

Thus, $625 \div 25 = 25$

Notes in Gujarati

શ્લોક (સૂત્ર ૮)

ભાગફારં ભાગજં ય જ્ઞેયં પ્રથમ એવ નિશ્ચિતમ્। ભાગફલસ્ય લબ્ધશ્ચ યથાવત્ સંપ્રકથ્યતે॥

અર્થ

"પહેલાં ભાગનારું (ભાગહાર) અને જેને ભાગવાનું છે તે સંખ્યા (ભાગજ) યોગ્ય રીતે સમજવી જોઈએ. પછી નિયમ પ્રમાણે ભાગાકાર કરી સાચો જવાબ (લબ્ધ) મેળવવો."

વિગતવાર સમજાવટ

- ભાસ્કરાચાર્ચ કહે છે કે бөлім કરતા પહેલા નીચેનાં બંને સમજવું જરૂરી છે:
 - o **ભાગજ** = જે સંખ્યા વિભાજીત શાય છે
 - o **ભાગહાર** = જે સંખ્યાથી ભાગ થાય છે
- પછી પગલાંવાર વિભાગ કરીને અંતિમ લબ્ધ મેળવવો.
- આજના લાંબા વિભાગ જેવી નિયમિત અને ચોક્કસ રીત.

ઉદાફરણ

$$625 \div 25 = ?$$

પગલાંવાર ગણતરી

- 1. ભાગ= 625, ભાગફાર = 25
- 2. 625 ને 25 વડે ભાગો \rightarrow **25** × **25** = **625**
- 3. લબ્ધ = 25, શેષફળ = 0

અતઃ 625 ÷ 25 = 25

2.1 Ancient Algebra and Geometry Operations from Lilavati Samhita

Notes in English

Introduction

- Ancient India made significant contributions to **Algebra (Bijaganit)** and **Geometry (Rekha-ganit)**.
- *Lilavati* by Bhaskaracharya contains beautiful algebraic and geometric problems blended with poetic language.
- Bhaskaracharya's work explains solving unknowns, equations, areas, and other geometric calculations in a systematic, logical manner.

Key Algebraic Concepts from Lilavati

- 1. Use of Unknown Quantities (Bij)
 - o Ancient mathematicians called unknown quantities as Beeja (Seed).
 - Algebraic problems were often expressed poetically, yet carried exact mathematical meaning.
 - For example:
 "A number multiplied by 3, added to 5, gives 20. Find the number."

Let
$$unknown = x$$

$$\Rightarrow 3x + 5 = 20$$
$$\Rightarrow 3x = 20 - 5 = 15$$
$$\Rightarrow x = 15 \div 3 = 5$$

Geometry Operations from Lilavati

- Bhaskaracharya explained various geometry problems:
 - o Area of triangles, rectangles, circles
 - o Relationship between sides, angles, and areas
- Practical problems were used to teach concepts, for example:

Area = side² = 100

$$\Rightarrow$$
 side = $\sqrt{100}$ = 10 units

Importance

• Promoted logical thinking and mathematical reasoning.

[&]quot;A square field has an area of 100 square units. Find the length of one side."

- Connected algebra with real-world applications like land measurement, construction, etc.
- Encouraged step-by-step problem-solving techniques still relevant today.

Notes in Gujarati

પરિચય

- પ્રાચીન ભારતે અલ્જીબ્રા (બીજગણિત) અને ભૂમિતી (રેખાગણિત) ક્ષેત્રે નોંધપાત્ર યોગદાન આપ્યું.
- ભાસ્કરાયાર્ચની *લિલાવતી*માં સુંદર રીતે અલ્જીબ્રા અને ભૂમિતિના ઉદાહરણો સંકલિત છે.
- લિલાવતી ગ્રંથમાં અજ્ઞાત સંખ્યાઓ, સમીકરણો અને ક્ષેત્રફળના હિસાબ માટે સરળ અને તર્કસંગત પદ્ધતિઓ છે.

લિલાવતીમાં અલ્જીબ્રાના મુખ્ય મુદ્દા

- 1. અજ્ઞાત સંખ્યાઓનો ઉપયોગ (બીજ)
 - 。 અજ્ઞાત સંખ્યાને "બીજ" એટલે બીજ તરીકે ઓળખાય છે.
 - 。 ગણિતી પ્રશ્નો કાવ્યરૂપમાં રજૂ થાય છે પણ તેની ગણિતીય ગણતરી ચોક્કસ હોય છે.

ઉદાહરણ:

"એક સંખ્યા ને 3 થી ગુણ્યા, પછી 5 ઉમેર્યા, તો કુલ 20 મળે છે. એ સંખ્યા શોધો."

માનીએ અજ્ઞાત સંખ્યા = x

$$\Rightarrow$$
 3x + 5 = 20

$$\Rightarrow 3x = 20 - 5 = 15$$

$$\Rightarrow$$
 x = 15 \div 3 = 5

લિલાવતીમાં ભૂમિતિના ક્રિયાઓ

- ભાસ્કરાયાર્યએ વિવિધ ભૂમિતિના પ્રશ્નો સમજાવ્યા છે:
 - 。 ત્રિકોણ, યોરસ, વર્તુળનો ક્ષેત્રફળ
 - 。 બાજુઓ, કોણો અને ક્ષેત્રફળ વચ્ચેનો સંબંધ

ઉદાહરણ:

"એક યોરસ ક્ષેત્રનું ક્ષેત્રફળ 100 યોરસ એકમ છે, તો એક બાજુ શોધો."

ક્ષેત્રફળ = બાજુ
2
 = 100

$$\Rightarrow$$
 બાજુ = $\sqrt{100}$ = 10 એકમ

મહત્વ

- તર્કશક્તિ અને ગણિતીય વિચારોનો વિકાસ કરે છે.
- બીજગણિત અને ભૂમિતિનો વાસ્તવિક જીવનમાં ઉપયોગ સમજાવે છે.
- આજના સમય સુધી ઉપયોગી ગણિત શીખવાની રીત આપે છે.

2.1.1 Algebra – Sutra (Verse 13) from Lilavati

Sanskrit Shloka (Verse 13)

यद्यज्ञातद्विगुणं फलम्। तद्धागहारात फलं ज्ञेयं यत्नतः॥

Notes in English

Meaning

"If double of an unknown number produces a known result, then dividing that result by 2 gives the original unknown number."

Explanation

- Bhaskaracharya explains solving basic algebra problems using unknown numbers (**Beeja**).
- Doubling the unknown and knowing the final result allows us to reverse the process to find the unknown value.
- This concept is the basis of solving linear algebraic equations.

Example

Problem:

"Twice an unknown number gives 30. Find the number."

Solution

Let the unknown number = \mathbf{x}

Given:

 $2 \times x = 30$

Divide both sides by 2:

 $x = 30 \div 2 = 15$

Answer: The unknown number is 15

Notes in Gujarati

શ્લોક (સંસ્કૃત)

યદ્ અજ્ઞાતદ્વિગુણં ફલમ્। તત્ ભાગહારાત્ ફલં જ્ઞેયં યત્નતઃ II

અર્થ

"જો અજ્ઞાત સંખ્યાનું દ્વિગુણ ફલ મળે છે, તો એ ફલને ૨ થી ભાગીને મૂળ અજ્ઞાત સંખ્યા શોધી શકાય છે."

વિગતવાર સમજાવટ

- ભાસ્કરાયાર્થ અહીં બીજગણિતના સૂત્ર દ્વારા અજ્ઞાત સંખ્યા શોધવાની રીત સમજાવે છે.
- અજ્ઞાત સંખ્યાને દ્વિગુણ કરી પરિણામ મળે, તો એ પરિણામને ૨ થી ભાગીએ એટલે અજ્ઞાત સંખ્યા મળી જાય છે.

ઉદાહરણ

પ્રશ્ન:

"એક અજ્ઞાત સંખ્યાનું દ્વિગુણ 30 થાય છે. સંખ્યા શોધો."

ઉકેલ

અજ્ઞાત સંખ્યા = \mathbf{x} અનુસાર: $2 \times \mathbf{x} = 30$ બન્ને બાજુ 2 થી ભાગો: $\mathbf{x} = 30 \div 2 = 15$ જવાબ: અજ્ઞાત સંખ્યા 15 છે

2.1.2 Geometric Relationships – Sutra (Verse 17) from Lilavati

Sanskrit Shloka (Verse 17)

समचतुरश्रस्य क्षेत्रस्य विस्तारः समो भवेत्। विस्तारसमवर्गेण क्षेत्रं ज्ञेयं निश्चितम्॥

Notes in English

Meaning

"In a square-shaped field, all sides are equal. The area of the field is obtained by squaring one side."

Explanation

- Bhaskaracharya describes the geometric property of a **Square (Samachaturasra)**.
- All four sides are equal in length.
- The area is calculated as:
 Area = side × side = side²
- This fundamental geometric principle is still used today in calculating area for squares, land measurement, and construction.

Example

Problem:

"Find the area of a square field whose side is 12 meters."

Solution

Side = 12 meters

Area = $side^2 = 12 \times 12 = 144$ square meters

Thus, the area is 144 m²

Notes in Gujarati

શ્લોક (સૂત્ર ૧૭)

સમયતુરશ્રસ્ય ક્ષેત્રસ્ય વિસ્તારઃ સમો ભવેત્। વિસ્તારસમવર્ગેણ ક્ષેત્રં જ્ઞેયં નિશ્ચિતમ્ ॥

અર્થ

"સમયોરસ ક્ષેત્રમાં દરેક બાજુ બરાબર હોય છે. ક્ષેત્રફળ શોધવા માટે બાજુના વર્ગ (square) લો."

વિગતવાર સમજાવટ

- ભાસ્કરાયાર્થે સમયોરસ (યોરસ) ભૂમિતિના ગુણધર્મો સમજાવ્યાં છે.
- દરેક બાજુ સરખી હોય છે.
- ક્ષેત્રફળ ગણતરી માટે:
 ક્ષેત્રફળ = બાજુ × બાજુ = બાજુ²
- જમીન માપવા અને નિર્માણ કાર્ચમાં આજેય આ પદ્ધતિ વપરાય છે.

ઉદાહરણ

પ્રશ્ન:

"એક સમયોરસ ક્ષેત્રની બાજુ 12 મીટર છે, તો ક્ષેત્રફળ શોધો."

ઉકેલ

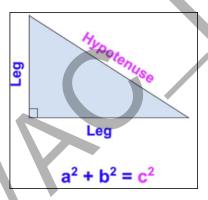
બાજુ = 12 મીટર

ક્ષેત્રફળ = બાજુ² = $12 \times 12 = 144$ ચોરસ મીટર

જવાબ: ક્ષેત્રફળ 144 મીટર²

2.1.3 Understanding Lilavati Samhita Theorem Later Known as Pythagorean Theorem (Geometry) – Sutra (Verse 23)

Sanskrit Shloka (Verse 23)


कर्णस्य वर्गः समकोणयुक्तचतुर्भुजस्य। भुजयोः वर्गयोः संयोगः भवति निश्चितम्॥

Notes in English

Meaning

"In a right-angled quadrilateral (triangle), the square of the hypotenuse is equal to the sum of the squares of the other two sides."

• This is the same theorem later popularized in the West as the **Pythagorean Theorem**, but ancient Indian texts like *Lilavati* mentioned it centuries earlier.

Explanation

- For a **Right-Angled Triangle**, sides are:
 - Base (adjacent side)
 - Perpendicular (opposite side)
 - Hypotenuse (longest side, opposite right angle)
- The relationship is: (Hypotenuse)² = (Base)² + (Perpendicular)²
- Used in geometry, construction, and navigation.

Example

Problem:

"In a right-angled triangle, the base is 9 units, and the perpendicular is 12 units. Find the hypotenuse."

Solution

Let:

Base = 9 units

Perpendicular = 12 units

Hypotenuse² = $9^2 + 12^2 = 81 + 144 = 225$

 \Rightarrow Hypotenuse = $\sqrt{225}$ = 15 units

Answer: The hypotenuse is 15 units

Notes in Gujarati

શ્લોક (સૂત્ર ૨૩)

કર્ણસ્ય વર્ગઃ સમકોણયુક્ત યતુર્લુજસ્યા

ભુજયોઃ વર્ગયોઃ સંયોગઃ ભવેત્ નિશ્ચિતમ્ ॥

અર્થ

"સમકોણવાળા ત્રિકોણમાં કર્ણનું વર્ગફળ બાજુઓના વર્ગફળના વધુsum બરાબર હોય છે."

આજનું જે "પાઈથાગોરસનું સૂત્ર" તરીકે ઓળખાય છે, તે પ્રાચીન ભારતીય ગણિતગ્રંથ *લિલાવતી*માં પહેલેથી આપવામાં આવ્યું છે.

વિગતવાર સમજાવટ

- સમકોણ ત્રિકોણ માટે, ત્રણે બાજુઓ:
 - o આધાર (Base)
 - o ઊંચાઈ (Perpendicular)
 - o ४६ (Hypotenuse)
- સંબંધ:

ભૂમિતિ, જમીન માપવું, ઈજનેરી અને દિશા શોધવા માટે ઉપયોગી.

ઉદાહરણ

นูล:

"સમકોણ ત્રિકોણમાં આધાર 9 એકમ છે અને ઊંચાઈ 12 એકમ છે. તો કર્ણ શોધો."

ઉકેલ

$$80^2 = 9^2 + 12^2 = 81 + 144 = 225$$

જવાબ: કર્ણ 15 એકમ છે

Practical Lab: Implementation of Lilavati Sutras using Python

1. Arithmetic Rule (Sutra - Verse 1): Finding an Unknown Number

Problem Example:

Twice a number plus 5 gives 25. Find the number.

Python Code:

Solving
$$2 * x + 5 = 25$$

$$result = 25$$

$$x = (result - 5) / 2$$

print(f"The unknown number is: $\{x\}$ ")

2. Multiplication of Large Numbers (Sutra - Verse 5)

Example:

Multiply 1234 × 5678

Python Code:

$$num1 = 1234$$

$$num2 = 5678$$

product = num1 * num2
print(f"The product is: {product}")

3. Division (Sutra - Verse 8)

Example:

Divide 9876 ÷ 54

Python Code:

```
dividend = 9876

divisor = 54

quotient = dividend // divisor

remainder = dividend % divisor

print(f"Quotient: {quotient}, Remainder: {remainder}")
```

4. Algebra - Finding Unknown (Sutra - Verse 13)

Example:

Twice a number gives 36, find the number.

2*x=36

Python Code:

```
result = 36

x = result / 2

print(f"The unknown number is: {x}")
```

5. Geometry - Area of a Square (Sutra - Verse 17)

Example:

Find area when side = 10 units.

Python Code:

```
side = 10

area = side ** 2

print(f''Area of the square is: {area} square units'')
```

6. Pythagorean Theorem (Sutra - Verse 23)

Example:

Base = 9 units, Perpendicular = 12 units, find Hypotenuse.

Python Code:

import math
base = 9
perpendicular = 12
hypotenuse = math.sqrt(base**2 + perpendicular**2)
print(f"The hypotenuse is: {hypotenuse} units")

3.1 Ancient Indian Astronomy from Suryasiddhanta by Aryabhata

Notes in English

Introduction to Suryasiddhanta

- **Suryasiddhanta** is one of the oldest known astronomical texts from ancient India, believed to have been compiled around 4th to 5th Century CE.
- The text outlines principles of astronomy, including planetary motion, time calculation, eclipses, and Earth's dimensions.
- Aryabhata and other scholars used this knowledge to develop accurate astronomical models much before Western science discovered similar facts.

3.1.1 Key Contributions from Suryasiddhanta

- > The concept of the Earth being spherical.
- Understanding of the Earth's rotation causing day and night.
- Accurate calculation of solar and lunar eclipses.
- Measurement of the Earth's circumference close to modern values.
- Planetary positions, eclipses, and calendrical calculations.

Example Concept

Earth's Circumference Calculation (Approximation by Aryabhata):

- Aryabhata calculated Earth's circumference as approximately **39,968 km**, remarkably close to the modern value of **40,075 km**.
- He emphasized spherical Earth and explained time zones and sunrise/sunset variations based on geography.

Astronomical Terms from Suryasiddhanta

Term	Meaning	
Bhugola	The spherical Earth	
Graha	Planets	
Nakshatra	Constellations	
Kaal	Time	
Chandra Grahan	Lunar Eclipse	
Surya Grahan	Solar Eclipse	

Notes in Gujarati

સૂર્યસિદ્ધાંત પરિચય

- **સૂર્યસિદ્ધાંત** એ પ્રાચીન ભારતનું સૌથી મહત્વપૂર્ણ ખગોળશાસ્ત્રીય ગ્રંથ છે, જેનો રચયિતા આર્યભટ તરીકે ઓળખાય છે.
- આ ગ્રંથમાં ગ્રહ્મોનું ગતિયક, સમયગણના, યંદ્ર-સૂર્ય ગ્રહ્ણની વિધિ અને પૃથ્વીનું માપ દર્શાવાયું છે.

3.1.1 સૂર્વસિદ્ધાંતના મુખ્ય યોગદાન

- 🕨 પૃથ્વીનું ગોળ આકાર હોવાનો ઉલ્લેખ.
- > પૃથ્વી પોતાની ધરી પર ફરે છે, જેના કારણે દિવસ-રાત થાય છે.
- 🕨 સૂર્ય-યંદ્ર ગ્રહણની ગણતરીની શાસ્ત્રિય પદ્ધતિ.
- > પૃથ્વીનો વ્યાસ અને પરિધની ગણતરી (આધુનિક વિજ્ઞાન જેટલી નજીક).
- 🕨 ગ્રહોની સ્થિતિ અને પંચાંગ નિર્માણ.

ઉદાહરણ - પૃથ્વીનું પરિધમાપન

- આર્ચભટે પૃથ્વીનો પરિધ આશરે **39,968 કિ.મી.** ગણાવ્યો હતો.
- આજની વિજ્ઞાન મુજબ પૃથ્વીનો પરિધ આશરે 40,075 કિ.મી. છે.
- આથી દર્શાય છે કે પ્રાચીન ભારતીયો ખગોળશાસ્ત્રમાં અત્યંત નિપુણ હતા.

પ્રમુખ ખગોળશાસ્ત્રીય સંજ્ઞાઓ

સંજ્ઞા	અર્થ
ભૂગોળ	પૃથ્વીનું ગોળ આકાર
ગ્રહ	ગ્રહ્યે
નક્ષત્ર	તારાઓ અથવા નક્ષત્રો

સંજ્ઞા	અર્થ
કાળ	સમય
યંદ્ર ગ્રહણ	યંદ્ર પર પડતું પૃથ્વીનું છાંયું
સૂર્ય ગ્રહણ	પૃથ્વી પરથી જોવાતા સૂર્ય પર છાંયું

Unit 3.1.1 – Motion of the Earth: Sutra (Verse 3.9) from Suryasiddhanta

Topic: Ancient Indian Astronomy

Sanskrit Shloka (Verse 3.9)

स्वस्थानाचलितं चक्रं न भ्राम्यति किंचन। अतो भ्रमति भूतानि गच्छन्ति इति निश्चितम्॥

Explanation in English

Meaning

"The celestial sphere does not move from its position, but all beings (on Earth) perceive motion because the Earth itself rotates."

Key Insight

This verse from **Suryasiddhanta** clearly states the revolutionary idea that:

- > The Earth rotates on its own axis
- > The movement of celestial bodies is only **apparent**, not real
- Ancient Indian astronomers had heliocentric and rotational concepts long before Copernicus

Scientific Explanation

- The Earth rotates **west to east** on its axis every 24 hours.
- Due to this motion, the Sun, Moon, and stars appear to rise in the east and set in the west.
- This ancient idea explains day and night with surprising scientific accuracy.

Example for Students

You're sitting on a rotating merry-go-round at night. Lights around you **appear to move**, but in reality, it's **you who is moving**. The same illusion happens with stars when Earth rotates!

Python Demonstration (Optional for Lab Use)

```
import time
import math

# Simulating Earth's rotation causing day-night effect
for angle in range(0, 361, 60): # rotation in degrees
    sun_position = math.cos(math.radians(angle))
    print(f''Earth rotated to {angle}°, apparent Sun position: {round(sun_position, 2)}'')
    time.sleep(1)
```

Gujarati Explanation

શ્લોક (સૂર્યસિદ્ધાંત શ્લોક 3.9)

સ્વસ્થાનાયલિતં ચક્રં ન ભ્રામ્યતિ કિંચન। અતો ભ્રમતિ ભૂતાનિ ગચ્છંતિ ઇતિ નિશ્ચિતમ्॥

અર્થ

"આકાશમંડળ પોતે હલતું નથી, પણ પૃથ્વી પોતે ભ્રમણ કરતી હોવાથી બધું ભ્રમણ કરે છે એવું લાગે છે."

વિગતવાર સમજાવટ

- પૃથ્વી પોતે ધરી પર પશ્ચિમથી પૂર્વ દિશામાં ફેરે છે.
- આ ભ્રમણને કારણે આપણે સૂર્ચ અને તારા પૂર્વમાં ઊગતા અને પશ્ચિમમાં અસ્ત પામતા જણાય છે.
- આ ખ્યાલ આધુનિક વિજ્ઞાન કરતા પણ શતાબ્દીઓ પહેલાં આપ્યો હતો આર્યભટ અને સૂર્યસિદ્ધાંતમાં.

ઉદાહરણ

તમારે રાત્રે ફેરતી રમકડાની ગાડીમાં બેઠા હોવા છતાં બહારની લાઇટ્સ ફરતી દેખાય — એવું જ પૃથ્વી સાથે પણ થાય છે.

3.1.2 - Length of the Year: Sutra (Verse 3.10) from Suryasiddhanta

Topic: Ancient Indian Astronomy

Sanskrit Shloka (Verse 3.10)

षष्ट्यंशो भूमेः प्रतिदिनगतेः संप्राप्तकालः समः। स्वल्पोऽपि व्यत्ययः संप्रदायतो न स्यात् संवत्सरस्य॥

Explanation in English

Meaning

"The Sun moves approximately 1° (sixtieth part of a circle) per day on its path. In this way, it completes one full cycle (360°) in a year. Even a slight error in this motion would disrupt the calculation of the year."

Key Insight from Suryasiddhanta

- Describes sidereal year and solar movement with precision.
- Suggests that the Sun moves 1° per day, thus taking 360 days for a full revolution.
- However, ancient Indian astronomers corrected it to 365.2588 days very close to the modern value of 365.25636 days.

Modern Science vs. Ancient Calculation

Parameter Ancient Indian Value Modern Scientific Value

Sidereal Year Length ~365.2588 days 365.25636 days

Accuracy Gap Less than 3 minutes! —

This shows the high precision of ancient Indian astronomical methods using observational and mathematical models — centuries before telescopes.

Example Calculation

If the Sun moves $\sim 1^{\circ}$ per day:

 $360^{\circ} = 360 \text{ days},$

But with correction:

 $360^{\circ} \div 0.9856^{\circ}$ per day ≈ 365.25 days

(This correction factor matches sidereal calculations.)

Python Code: Simulating Solar Motion per Day

Simulate Sun's motion over a year

sun_position = 0 # degrees

days = 365.25

for day in range(1, 6): # simulate first 5 days

sun_position = (sun_position + 0.9856) % 360

print(f"Day {day}: Sun has moved to {round(sun_position, 2)}° on the ecliptic path")

Gujarati Explanation

શ્લોક (સૂર્યસિદ્ધાંત શ્લોક 3.10)

ષષ્ટયંશો ભૂમેઃ પ્રતિદિનગતેઃ સંપ્રાપ્તકાલઃ સમઃા

સ્વલ્પોપિ વ્યત્યયઃ સંપ્રદાયતો ન સ્યાત્ સંવત્સરસ્ય 🛭

અર્થ

"સૂર્ય દરરોજ લગભગ 1 અંશ (360° નો 60મો ભાગ) જેટલો આગળ વધે છે. આ રીતે તે એક વર્ષમાં 360°નો ફાળો પૂરો કરે છે. જો થોડી પણ ભૂલ થાય તો વર્ષ ગણતરીમાં ખોટ ઊભી થઈ શકે."

વિગતવાર સમજાવટ

- પ્રાચીન ભારતીયોનું માનવું હતું કે સૂર્ચ દરરોજ આશરે 1° આગળ વધી રહ્યો છે.
- વર્ષનો અંદાજ \sim 365.2588 દિવસ લીધો હતો જે આજના વૈજ્ઞાનિક ગણતરી કરતાં માત્ર થોડી મિનિટોથી દૂર છે.
- આવા ચોકસાઇભર્યા આંકડાઓ વગર કોઈ પણ પંચાંગ અથવા તહેવારની ગણતરી શક્ય ન બને.

ઉદાહરણ

1 દિવસ = ~0.9856°, તો 360° ÷ 0.9856 ≈ 365.25 દિવસ

આ રીતે પૃથ્વી સૂર્યની આસપાસ પૂર્ણ ફરો કરે છે.

3.1.3 - Lunar and Solar Eclipses: Sutra (Verse 4.5) from Suryasiddhanta

Topic: Ancient Indian Astronomy – Grahan Siddhanta (Eclipse Theory)

Sanskrit Shloka (Verse 4.5)

ग्रहणं चन्द्रसूर्ययोः सदा छायाग्रहस्य च। संयुक्ते राहुके तत्र भान्वोष्णीकृतवपुषोः॥

Explanation in English

Meaning

"An eclipse of the Moon or the Sun always occurs due to the shadow of Rahu (the shadow planet) when the Sun and Moon align with it (during full or new moon). The body of the luminary is thus obscured by shadow."

Types of Eclipses as per Suryasiddhanta

Eclipse Type	Condition	
Lunar Eclipse (चन्द्रग्रहण)	Occurs during full moon (पूर्णिमा) when Sun and the Moon	Earth comes between the
Solar Eclipse (सूर्यग्रहण)	Occurs during new moon (અ니저) when Earth and the Sun	the Moon comes between

Key Concepts from the Sutra

- Eclipse is a **shadow phenomenon**, not caused by swallowing (mythologically)
- Rahu and Ketu represent **shadow points** (nodes) in the sky
- Ancient Indian astronomy explained eclipses scientifically through precise geometrical alignment
- ➤ **Accurate prediction** of Grahans was possible using trigonometric and positional calculations

Modern Explanation - Alignment and Shadow

- A Lunar Eclipse occurs when the Earth's shadow falls on the Moon
- A Solar Eclipse occurs when the Moon's shadow falls on the Earth

The Suryasiddhanta model could compute the **timing**, **duration**, **and location** of eclipses accurately — a rare achievement in ancient times.

Python Lab Demo - Eclipse Conditions Check

def check eclipse(lunar phase, rahu aligned):

```
if lunar_phase == "Full Moon" and rahu_aligned:
    return "Lunar Eclipse likely"
    elif lunar_phase == "New Moon" and rahu_aligned:
        return "Solar Eclipse likely"
    else:
        return "No Eclipse"

# Example:
print(check_eclipse("Full Moon", True)) # Output: Lunar Eclipse likely
print(check_eclipse("New Moon", True)) # Output: Solar Eclipse likely
```

Gujarati Explanation

શ્લોક (સૂર્યસિદ્ધાંત – અધ્યાય ૪, શ્લોક ૫) ગ્રહણં ચન્દ્રસૂર્યયોઃ સદા છાયાગ્રહસ્ય યા સંયુક્તે રાહુકે તત્ર ભાન્વોષ્નીકૃતવપુષોઃ॥

અર્થ

"યંદ્ર અને સૂર્યનું ગ્રહણ ત્યારે થાય છે, જ્યારે રાહુ (છાયાગ્રહ) સાથે તેનો સંયોગ થાય છે અને યમકતા પિંડો (સૂર્ય/યંદ્ર) છાયાથી ઢંકાઈ જાય છે."

ગ્રહ્ણના પ્રકાર – પ્રાચીન ભારતીય દૃષ્ટિકોણથી

ગ્રહ્ણ પ્રકાર શરત

ચંદ્રગ્રહ્ણ પૂર્ણિમાના દિવસે પૃથ્વી વચ્ચે આવે, ચંદ્ર પાછળ હોય — પૃથ્વીનું છાંયું ચંદ્ર પર પડે સૂર્યગ્રહ્ણ અમાસના દિવસે ચંદ્ર વચ્ચે આવે, સૂર્ય પાછળ હોય — ચંદ્રનું છાંયું પૃથ્વી પર પડે મુખ્ય વિચારો

- રાહ્ અને કેતુ ખગોળીય બિંદુઓ છે (છાયાગ્રહ)
- ગ્રહ્ણ ગણિત અને ભૌગોલિક સ્થાન આધારે જ નિર્ધારિત થાય છે

• આજથી હજાર વર્ષ પહેલાં પણ ભારતીય ખગોળશાસ્ત્રીઓ ચોક્કસ ગ્રહણ સમય કહતાં હતા

ઉદાહરણ

પૂર્ણિમા
$$+$$
 રાઠ્ઠ સંચોગ \rightarrow ચંદ્રગ્રહ્ણ અમાસ $+$ રાઠ્ઠ સંચોગ \rightarrow સૂર્યગ્રહ્ણ

3.1.4 – The Motion of Planets: Sutra (Verse 1.13)

Ancient Indian Astronomy - Grahagaati (Planetary Motion)

Sanskrit Shloka (Verse 1.13)

मन्दोच्चनिचयैर्युक्तं सूर्यादिग्रहचक्रम्। भ्रमति सदा यथोक्तं गतिन्यासेन निश्चितम्॥

Explanation in English

Meaning

"The orbits of planets like the Sun and others, joined with their apogee (mandocca – farthest point) and perigee (nichaya – nearest point), revolve continuously in a fixed order, determined by prescribed rules of motion."

Key Insights

- Ancient Indian astronomers described **planetary motion** with remarkable precision.
- Planets do not move uniformly but follow orbits with **mandocca (apogee)** and **nichaya (perigee)**.
- Their motion is governed by mean motion (average speed) and true motion (observed speed).
- They also explained **retrograde motion** (Vakra gati) when planets appear to move backward.

Scientific Correlation

- This corresponds to elliptical motion of planets, later formalized by Kepler's Laws.
- Ancient Indians already recognized:
 Planets move in fixed paths (chakram)
 Variation in speed depending on position (near or far from Earth/Sun)
 Apparent retrograde motion due to relative positioning

Example

- Suppose a planet's mean daily motion = 1°.
- At perigee (closer to Earth) \rightarrow it appears to move **faster** (say 1.2° per day).
- At apogee (farther) \rightarrow it appears to move **slower** (say 0.8° per day).

This explains why planets sometimes seem to "pause" and "reverse" in the sky.

Python Lab Demo - Simulating Planetary Motion

```
import math

# Simulating planetary motion with varying speed
days = 10
mean_motion = 1 # degree per day
for day in range(1, days + 1):
    # simple model: speed oscillates between 0.8 and 1.2 degrees
    speed = 1 + 0.2 * math.sin(math.radians(day * 36))
    position = (day * speed) % 360
    print(f'Day {day}: Speed = {round(speed,2)}^o/day, Position = {round(position,2)}^o'')
```

Gujarati Explanation

શ્લોક (સૂર્ચસિદ્ધાંત 1.13) મન્દો ય્યનિયચૈર્યુક્તં સુર્યાદિગ્રહયક્રમ્! ભ્રમતિ સદા યથોક્તં ગતિન્યાસેન નિશ્ચિતમ્॥

અર્થ

"સૂર્યાદિ ગ્રહ્મેનું યક (કક્ષ) મન્દો ચ્ય (દૂરબિંદુ) અને નિકટબિંદુ સાથે જોડાયેલ છે. તે ગ્રહ્મે હંમેશા નિશ્ચિત ગતિના નિયમો અનુસાર ભ્રમણ કરે છે."

વિગતવાર સમજાવટ

- ગ્રહોની ગતિ હંમેશા સમાન નથી.
- નજીક આવતા ગતિ તેજ હોય છે, દૂર જતા ધીમી પડે છે.

- ગ્રહ્મે ક્યારેક **વક્ર ગતિ (રેટ્રોગ્રેડ)** કરે છે એટલે કે પાછા જતા દેખાય છે.
- આ જ્ઞાન **કેપલરની નિયમો** કરતા સદીઓ પફેલાં ભારતીય ઋષિઓએ આપ્યું હતું.

ઉદાહરણ

- જો ગ્રહની સરેરાશ ગતિ 1° પ્રતિ દિવસ હોય:
 - \circ નિકટબિંદુ (Perigee) \rightarrow ગતિ = 1.2°
 - \circ ફરબિંફ (Apogee) \rightarrow ગતિ = 0.8°

એથી જ ક્યારેક ગ્રહ્યે અટકતા કે પાછા જતા દેખાય છે.

3.1.5 - The Influence of the Sun on Planetary Motion

Suryasiddhanta (Verse 2.12)

Sanskrit Shloka (2.12)

सूर्येणैव ग्रहाणां गतयः संप्रवर्तन्ते। तस्मात् स एव प्रमुखो नित्यं ग्रहचेष्टासु॥

Explanation in English

Meaning

"It is by the Sun that the motions of the planets are regulated. Therefore, the Sun is the principal factor in determining their movements."

Key Insights

- The Sun acts as the **center of influence** for planetary motion.
- Planetary paths (grahachakra) are measured **relative to the Sun**.
- Ancient astronomers thus recognized a **heliocentric influence**, even though they used geocentric models for calculation.
- Solar force (prakasha shakti and gati shakti) was considered the **governing principle** of celestial bodies.

R Scientific Correlation

- This idea anticipates the **gravitational dominance of the Sun** (Newtonian Physics).
- Modern science: The Sun contains 99.8% of the solar system's mass → governs planetary orbits.

• Ancient Indian astronomy linked **planetary retrogression** and **orbital variations** to the Sun's reference path (Ecliptic).

Example

- Earth revolves around Sun in \sim 365.25 days.
- Mars revolves around Sun in ~687 days.
- From Earth's perspective, when Mars overtakes or lags behind → retrograde motion appears.

Thus, Sun's influence defines how planets appear to move.

Python Lab Demo - Simulating Planetary Orbit Around Sun

```
import math

# Sun at center, simulate Earth's and Mars' orbit

days = 20

earth_period = 365.25

mars_period = 687

for day in range(1, days+1):

earth_angle = (360 * day / earth_period) % 360

mars_angle = (360 * day / mars_period) % 360

print(f"Day {day}: Earth = {round(earth_angle,2)}°, Mars = {round(mars_angle,2)}°")
```

This helps visualize how **relative motion (Earth vs. Mars)** causes retrograde motion due to Sun's central influence.

Gujarati Explanation

```
શ્લોક (સૂર્યસિદ્ધાંત 2.12)
સૂર્યેણૈવ ગ્રહાણાં ગતિઃ સંપ્રવર્તતે।
તસ્માત્ સ એવ મુખ્યઃ નિત્યં ગ્રહ્યેષ્ટાસુ॥
```

અર્થ

"ગ્રહ્મેની ગતિ સૂર્ય દ્વારા નિયંત્રિત થાય છે. તેથી સૂર્ય હંમેશા ગ્રહ્ગતિનો મુખ્ય કારણ માનવામાં આવે છે."

વિગતવાર સમજાવટ

- ગ્રહ્નોનો ભ્રમણ પથ સૂર્યને કેન્દ્ર માનીને જ સમજાય છે.
- સૂર્યનો પ્રકાશ અને શક્તિ જ ગ્રહોને માર્ગ પર રાખે છે.
- આ જ્ઞાન આજે ન્યૂટનના **ગુરૃત્વાકર્ષણ સિદ્ધાંત**થી પણ સમર્થિત થાય છે.
- ભારતીય ખગોળશાસ્ત્રમાં સૂર્યને હંમેશા ગ્રહગતિનો પ્રમુખ માનવામાં આવ્યો છે.

ઉદાહરણ

- પૃથ્વી \rightarrow સૂર્યની આસપાસ 365 દિવસમાં ફરે છે.
- મંગળ \rightarrow સૂર્યની આસપાસ 687 દિવસમાં ફરે છે.
- પૃથ્વી અને મંગળની આ સૂર્યકેન્દ્રિત ગૃતિને કારણે ક્યારેક મંગળ વક ગૃતિમાં દેખાય છે.

3.1.6 – Zodiac and Signs: Sutra (Verse 1.5)

Ancient Indian Astronomy – Rāśi & Zodiac Division

Sanskrit Shloka (Verse 1.5)

भुक्तं चक्रं द्वादशधा राशिभिर्भवति निश्चितम्। प्रत्येकं तु त्रिंशद्देशैः समं राशिर्निर्दिष्टः॥

Explanation in English

Meaning

"The celestial circle (zodiac) is divided into twelve signs (rāśis). Each sign is equal in measure, consisting of thirty degrees."

Key Insights

- The **zodiac** (**Bhachakra**) is a circular belt around the Earth, used for planetary calculations.
- Divided into 12 Rāśis (signs) → Aries, Taurus, Gemini ... Pisces.
- Each $r\bar{a}\dot{s}i = 30^{\circ}$ of the celestial circle.
- Total circle = 360° = $12 \times 30^{\circ}$.
- Used in astronomy for planetary positions and in astrology for predictions.

Scientific Correlation

- Modern astronomy: The zodiac corresponds to the **ecliptic belt** where planets, Sun, and Moon appear to move.
- Division into 12 equal parts is similar to 360° system of modern trigonometry.
- This ancient system allowed precise calculations of eclipses, planetary motion, and seasons.

Example

- If the Sun is at 45° on the zodiac:
 - \circ 0°-30° \rightarrow Aries \mathbf{V}
 - \circ 30°-60° \rightarrow Taurus \heartsuit
 - → Therefore, Sun is in **Taurus**.

Python Lab Demo – Determining Zodiac Sign from Degrees

```
def zodiac_sign(degree):

signs = ["Aries \( \mathbb{N} \)", "Taurus \( \tilde{\mathbb{O}} \)", "Gemini \( \mathbb{M} \)", "Cancer \( \tilde{\mathbb{O}} \)", "Leo \( \tilde{\mathbb{O}} \)", "Virgo \( \mathbb{M} \)", "Libra \( \tilde{\mathbb{O}} \)", "Scorpio \( \mathbb{M} \)", "Sagittarius \( \mathbb{N} \)", "Capricorn \( \mathbb{D} \)", "Aquarius \( \mathbb{M} \)", "Pisces \( \mathbb{M} \)"]

index = int(degree // 30) % 12

return signs[index]
```

```
# Example:
print(zodiac_sign(45)) # Taurus
print(zodiac_sign(190)) # Libra
```

Gujarati Explanation

શ્લોક (સૂર્યસિદ્ધાંત 1.5)

ભુક્તં યક્રં દ્રાદશધા રાશિભિર્ભવતિ નિશ્ચિતમ્। પ્રત્યેકં તુ ત્રિંશદ્દેશૈઃ સમં રાશિનિર્દિષ્ટઃ॥

અર્થ

"આકાશમાંનું ભયક (રાશિયક) બાર ભાગમાં વહેંયાયેલું છે. દરેક રાશિ સમાન 30°ના ક્ષેત્રને આવરી લે છે."

વિગતવાર સમજાવટ

- આકાશમાં ગ્રહ્યે, સૂર્ય અને યંદ્રના ગતિપથને ભયક કહેવાય છે.
- તેને 12 રાશિઓમાં વહેંયવામાં આવ્યું છે.
- દરેક રાશિ = 30°.
- કુલ યક = 360° = 12 × 30°.
- ગ્રહગતિ અને ઋતુઓના હિસાબ માટે તેનો ઉપયોગ થતો હતો.

ઉદાહરણ

- જો સૂર્ચ 45° પર હોય →
 - o 0°-30° → મેષ **™**
 - 30°-60° → વૃષભ
 → એટલે સૂર્ચ વૃષભ રાશિમાં છે.

3.1.7 – Solar System: Sutra (Verse 1.15)

Ancient Indian Astronomy – Surya Mandala (Solar System)

Sanskrit Shloka (Verse 1.15)

सप्तग्रहा दिशि दिशि सूर्यं परितो भ्रमन्ति। भौमादयः क्रमशः स्थिता नक्षत्रपथेषु॥

Explanation in English

Meaning

"The seven planets revolve around the Sun in different directions, with Mars and others arranged in their respective paths among the stars."

Key Insights

- The **Suryasiddhanta** recognizes a **solar-centered system** (Surya as the reference point).
- Planets (grahas) = Mercury, Venus, Mars, Jupiter, Saturn (along with Sun & Moon) are described.
- Each planet follows a **fixed orbit** (nakshatra patha).
- Shows awareness that all planets are bound to the Sun's influence.

Scientific Correlation

- This anticipates the **heliocentric model** later formalized by Copernicus (16th century).
- Indian astronomers already described:

Planets revolve around the Sun.

Each has its unique orbital path.

Orbits are arranged in increasing order (Mercury closest, Saturn farthest visible planet).

Example

- Order of planets in Indian texts:
 - Mercury (Budha)
 - Venus (Shukra)
 - Earth (Bhauma)
 - Mars (Mangal)
 - o Jupiter (Guru)
 - o Saturn (Shani)

This matches the **modern order** of planets visible with the naked eye.

Python Lab Demo - Simple Solar System Simulation

```
import math

planets = {

"Mercury": 88, # orbital period in days
```

```
"Venus": 225,

"Earth": 365,

"Mars": 687
}

days = 50

for day in range(1, days+1, 10):

print(f"\nDay {day}:")

for planet, period in planets.items():

angle = (360 * day / period) % 360

print(f"{planet} position = {round(angle,2)}°")
```

This simulates planetary positions (approximate) around the Sun over a given time.

Gujarati Explanation

```
શ્લોક (સૂર્યસિદ્ધાંત 1.15)
સપ્તગ્રહ્મ દિશિ દિશિ સુર્યં પરિતો ભ્રમન્તિ।
ભૌમાદયઃક્રમશઃ સ્થિતા નક્ષત્રપથેજ્ઞા॥
```

અર્થ

"સાત ગ્રહ્મે સૂર્યની આસપાસ દિશા-દિશામાં ભ્રમણ કરે છે. મંગળ વગેરે પોતપોતાની કક્ષામાં સ્થિર છે."

વિગતવાર સમજાવટ

- પ્રાચીન ભારતીય ખગોળશાસ્ત્રમાં સૂર્યને કેન્દ્ર માનીને ગ્રહ્યોની ગતિ સમજાવવામાં આવી હતી.
- ગ્રહ્યે (બુધ, શુક્ર, મંગળ, ગુરૂ, શિન) સૂર્યની આસપાસ કક્ષામાં ગિત કરે છે.
- દરેક ગ્રહ્ની પોતાની નિશ્ચિત કક્ષા (નક્ષત્રમાર્ગ) છે.
- આથી ભારતીય ઋષિઓએ **સૂર્યકેન્દ્રિત ગતિ**નું જ્ઞાન આપી દીધું હતું.

ઉદાહરણ

- ગ્રહોની ક્રમવાર ગતિ:
 - $\circ \quad \text{ut} \to \text{us} \to \text{usal} \to \text{uin} \to \text{ut} \to \text{ut}$
- આ ક્રમ આજના વૈજ્ઞાનિક ક્રમ સાથે મળે છે.

3.1.8 – Speed of Planets: Sutra (Verse 6.5)

Ancient Indian Astronomy – Planetary Velocities

Sanskrit Shloka (Verse 6.5)

ग्रहाणां गतिवेगः सूर्यस्यानुग्रहेण स्यात्। निकटस्थोऽतिवेगः स्यात् दूरस्थो मन्दगतिर्भवति॥

Explanation in English

Meaning

"The speed of the planets depends on the influence of the Sun: when nearer they move faster, and when farther they move slower."

Key Insights

- Planetary speed is **not constant**.
- It changes depending on distance from the Sun.
- Near the Sun \rightarrow higher velocity.
- Far from Sun \rightarrow slower motion.
- This shows Indian astronomers observed **elliptical nature of orbits** long before Kepler's Laws.

Scientific Correlation

- This is essentially **Kepler's 2nd Law of Planetary Motion (1609 CE)**:
 - o "Planets move faster when closer to the Sun and slower when farther."
- Modern physics: explained by **gravitational force & conservation of angular momentum**.

Example

• Earth's orbit is elliptical:

- o At perihelion (closest to Sun, ~147 million km) → Earth moves ~30.3 km/s.
- o At aphelion (farthest, ~152 million km) \rightarrow Earth moves ~29.3 km/s.

This matches the ancient observation.

Python Lab Demo - Planetary Speed Approximation

```
def planet_speed(distance, constant=3000):

# Simple proportional model: speed inversely proportional to distance

return constant / distance

# Distances in million km (approx)

distances = {"Mercury": 58, "Venus": 108, "Earth": 150, "Mars": 228}

for planet, d in distances.items():

speed = planet_speed(d)

print(f"{planet}: Distance = {d} million km, Relative Speed ≈ {round(speed,2)} units")
```

This shows planets closer to the Sun (Mercury, Venus) move faster than outer ones (Mars, Jupiter).

Gujarati Explanation

શ્લોક (સૂર્યસિદ્ધાંત 6.5)

ગ્રહાણાં ગતિવેગઃ સૂર્યસ્યાનુગ્રહેણ સ્યાત્ા

નિકટસ્થોઽતિવેગઃ સ્યાત્ દૂરસ્થો મન્દગતિર્ભવતિ॥

અર્થ

"ગ્રહ્મેની ગતિનો વેગ સૂર્ય પર આધારિત છે. સૂર્યની નજીક હ્યેય ત્યારે વેગ વધારે થાય છે અને દૂર હ્યેય ત્યારે ધીમો થાય છે."

વિગતવાર સમજાવટ

• ગ્રહોની ગતિ સમાન નથી.

- સૂર્યની નજીક આવેલા ગ્રહ્યે ઝડપી ગતિ કરે છે.
- દૂર આવેલા ગ્રહ્યે ધીમા ગતિ કરે છે.
- આ વિચાર આજના કેપલરના ગ્રહ્ગતિ નિયમ સાથે મેળ ખાતો છે.

ઉદાફરણ

- પૃથ્વી:
 - \circ પેરીફેલિયન (સૂર્યના નજીક, ~147 મિલિયન કિ.મી.) \to 30.3 કિ.મી./સે.
 - એપ્ફેલિયન (સૂર્યથી દૂર, ~152 મિલિયન કિ.મી.) → 29.3 કિ.મી./સે.

3.1.9 - Planetary Distances: Earth to Moon

From Sūryasiddhānta (Verse 7.8)

Sanskrit Shloka (Verse 7.8)

पृथिव्याः पञ्चदशयोजनसहस्रं चन्द्रमण्डलम्। तत्र ग्रहणं भास्करस्य च्छायया जायते नूनम्॥

Explanation in English

Meaning

"The distance of the Moon from the Earth is about fifteen thousand yojanas, and in this region eclipses are caused by the shadow of the Sun."

Key Insights

- Ancient Indian texts used **yojana** as a unit of length (~12–13 km approx, though it varied).
- Distance Earth \rightarrow Moon = 15,000 yojanas \approx 180,000 km (approx).
- Actual modern value = 384,400 km, meaning Indian estimate was nearly half but remarkably advanced for ancient times.
- They also linked this distance with **eclipse phenomenon**, showing understanding of relative positions of Earth, Sun, and Moon.

Scientific Correlation

- The Moon's distance varies: $356,500 \text{ km (perigee)} \rightarrow 406,700 \text{ km (apogee)}$.
- Ancient value underestimated but still astonishingly close given no telescopes.

 Proves Indian astronomers applied geometry, shadow calculations, and observations.

Example

- If 1 yojana \approx 12 km, \rightarrow 15,000 yojanas \times 12 = 180,000 km.
- This is about 47% of the true modern distance.

Python Lab Demo - Convert Yojanas to Kilometers

```
def yojana_to_km(yojanas, conversion=12):
    return yojanas * conversion

moon_distance_yojanas = 15000
moon_distance_km = yojana_to_km(moon_distance_yojanas)

print(f"Ancient Moon Distance = {moon_distance_km} km")
print("Modern Average Moon Distance = 384400 km")
print(f"Error ≈ {round((384400 - moon_distance_km)/384400*100,2)} %")
```

This shows how close ancient measurements were compared to modern values.

Gujarati Explanation

શ્લોક (સૂર્યસિદ્ધાંત 7.8) 🤦

પૃથિવ્યાः पञ्च દશયોજનસહસં યન્દ્રમેંડલમ્। તત્ર ગ્રહણં ભાસ્કરనં જુ છાયયા જાયતે નૂનમ્॥

અર્થ

" યંદ્રનું પૃથ્વીથી અંતર લગભગ 15,000 યોજન છે. આ અંતરે સૂર્યની છાયાથી ગ્રહણ બને છે."

વિગતવાર સમજાવટ

- 1 યોજન ≈ 12 કિ.મી.
- યંદ્રનું અંતર ≈ 15,000 × 12 = 1,80,000 કિ.મી.

- આજનું વિજ્ઞાન કહે છે → 3,84,400 કિ.મી.
- આથી, ભારતીય ઋષિઓએ અતિ પ્રાચીન સમયમાં જ લગભગ અડધું સાયું માપ આપ્યું.
- ગ્રહણની સમજણ પણ આ અંતરે આધારિત હતી.

ઉદાફરણ

- 15,000 યોજન = 1,80,000 કિ.મી.
- આ માપ આજના સાચા અંતર કરતાં લગભગ 47% જેટલું છે.

3.1.10 - Latitude and Longitude of Planets

From Sūryasiddhānta (Verse 8.12)

Sanskrit Shloka (Verse 8.12)

देशकालगतिं ज्ञात्वा ग्रहाणां देशनिर्णयः। दीर्घांशलम्बमानं च ग्रहाणां सूच्यते यथा॥

Explanation in English

Meaning

"By knowing the motion of planets with respect to place and time, their positions can be determined through longitude and latitude."

Key Insights

- Longitude (Dīrghāmśa दीर्घाश): The planet's east—west position on the celestial sphere.
- Latitude (Lambamāna লাম্বানা): The planet's north—south deviation from the ecliptic.
- Ancient Indian astronomers used these coordinates to:
 - o Predict eclipses.
 - o Locate planetary positions in the sky.
 - o Prepare panchang (almanac) for rituals, agriculture, and navigation.

Scientific Correlation

- This is equivalent to **modern celestial coordinate systems**:
 - o Longitude = Right Ascension (RA).
 - Latitude = Declination (Dec).
- Today's astronomy uses the same concept, refined with advanced instruments.

• Shows ancient Indians understood **spherical astronomy** and applied trigonometry.

Example

- Suppose Mars is observed at:
 - o Longitude = 120° (from Aries point).
 - \circ Latitude = +2° (north of ecliptic).
- This means:
 - o Mars is eastward 120° from reference (Vernal equinox).
 - Slightly north of the zodiacal path.

Python Lab Demo - Representing Planet Coordinates

```
planets = {
   "Mars": {"longitude": 120, "latitude": 2},
   "Venus": {"longitude": 75, "latitude": -1},
   "Jupiter": {"longitude": 200, "latitude": 1}
}

for planet, coords in planets.items():
   print(f"{planet}: Longitude = {coords['longitude']}^o, Latitude = {coords['latitude']}^o")
```

This gives a table of planetary positions just like ancient almanacs (panchang).

Gujarati Explanation

```
શ્લોક (સૂર્યસિદ્ધાંત 8.12)
```

દેશકાલગતિં જ્ઞાત્વા ગ્રહ્મણાં દેશનિર્ણયઃ। દીર્ધાંશલંબમાનં ય ગ્રહ્મણાં સૂચ્યતે યથા॥

અર્થ

"ગ્રહ્મેની ગતિને સ્થાન અને સમય અનુસાર જાણીને, તેમનાં દીર્ધાંશ (longitude) અને લંબમાન (latitude) નક્કી કરી શકાય છે."

વિગતવાર સમજાવટ

• દીર્ધાંશ (Longitude): ગ્રહનો આકાશમાં પૂર્વ–પશ્ચિમ સ્થાનો.

- **લંબમાન (Latitude):** ગ્રહનો આકાશમાં ઉત્તર–દક્ષિણ ઝુકાવ.
- પ્રાચીન સમયમાં આ ગણતરીથી:
 - 。 ગ્રહણની આગાઠી,
 - 。 ગ્રહોની સ્થિતી,
 - 。 પંચાંગ રચના કરવામાં આવતી હતી.

ઉદાહરણ

- જો મંગળ ગ્રહ:
 - o દીર્ધાંશ = 120°
 - લંબમાન = **+2**º
- એટલે \to મંગળ 120° પૂર્વ દિશામાં છે અને ઝોડિયાક માર્ગથી થોડો ઉત્તર તરફ છે.

Introduction (English)

Varahamihira (505 CE – 587 CE) was one of the most celebrated astronomers, astrologers, and mathematicians of ancient India. He was one of the **Navaratnas (Nine Gems)** in the court of King Vikramaditya at Ujjain, a famous center of learning.

Major Works

- 1. **Bṛhat Saṁhitā** An encyclopedia covering astronomy, astrology, architecture, weather, omens, rituals, and natural sciences.
- 2. **Pañcasiddhāntikā** A treatise summarizing five earlier astronomical systems:
 - Sūryasiddhānta
 - o Paulīśasiddhānta
 - Romaka Siddhānta
 - Vasistha Siddhānta
 - Paitāmaha Siddhānta
- 3. **Bṛhajjātaka** A famous text on astrology and planetary positions.

Key Contributions

- Developed methods for eclipse prediction, planetary positions, and time calculation.
- Accurately described solar and lunar motions.
- Noted the relation between planetary movements and seasonal changes.
- His works combined astronomy, astrology, geography, and natural sciences.

ગુજરાતીમાં પરિચય

વેરાહિમિહિર (ઈ.સ. 505 – 587) પ્રાચીન ભારતના પ્રખ્યાત ખગોળશાસ્ત્રી, જ્યોતિષશાસ્ત્રી અને ગણિતજ્ઞ હતા. તેઓ વિક્રમાદિત્ય રાજાના નવરત્નોમાંના એક હતા અને ઉજ્જયિની (પ્રાચીન ખગોળવિદ્યાનું કેન્દ્ર) સાથે સંકળાયેલા હતા.

મુખ્ય ગ્રંથો

- 1. **બૃહત સંહિતા** ખગોળવિજ્ઞાન, જ્યોતિષ, સ્થાપત્ય, હવામાન, શુકન—અપશુકન, વિધિ— વિધાન વગેરે વિષયોનો વિશ્વકોશ.
- 2. **પંચિતકાંતિકા** પાંચ સિદ્ધાંતો (સૂર્યસિદ્ધાંત, પૌલિશસિદ્ધાંત, રોમક સિદ્ધાંત, વશિષ્ઠ સિદ્ધાંત, પીતામફ સિદ્ધાંત)નું સંકલન.
- 3. બૃહજ્જાતક ગ્રહસ્થિતિ અને જ્યોતિષ આધારિત ગ્રંથ.

મુખ્ય યોગદાન

- ગ્રહ્ણની આગાહી અને ગ્રહ્નોની ગતિનું વર્ણન.
- સૂર્ય અને યંદ્રના ગતિયકનું વિગતવાર જ્ઞાન.
- ઋતુ અને ગ્રહ્નોની ગતિનો સંબંધ સમજાવ્યો.
- તેમના ગ્રંથોમાં ખગોળશાસ્ત્ર, જ્યોતિષ, ભૂગોળ અને પ્રાકૃતિક વિજ્ઞાનનો સમન્વય જોવા મળે
 છે.

4.1.1 - On Lunar Phases

From Pañcasiddhāntikā (Verse 2.10 by Varahamihira)

Sanskrit Shloka (Verse 2.10)

चन्द्रस्य कलाः सूर्यसंयोगे वर्धन्ते, वियोगे क्षीयन्ते नूनम्। सूर्येण चन्द्रः परस्परं भास्करः, भासं प्रतिफलति लोके॥

Explanation in English

Meaning

"The phases of the Moon increase when it comes into conjunction with the Sun, and they decrease when moving away. The Moon shines by reflecting the light of the Sun."

Key Insights

- Ancient Indian astronomers understood that the **Moon does not shine by itself**, but by **reflected sunlight**.
- Waxing phase (Shukla Paksha): Moon increases in brightness as it moves away from the Sun.
- Waning phase (Krishna Paksha): Moon decreases in brightness as it approaches the
- Varahamihira explained the **cyclical pattern of lunar phases** and their dependence on the Sun–Moon relative position.

Scientific Correlation

- Modern astronomy confirms:
 - The Moon's brightness = reflection of sunlight.
 - o The cycle of 29.5 days (synodic month) determines lunar phases.

 Varahamihira's description is equivalent to today's geometry of Sun–Earth–Moon system.

Example

- When the Moon is 180° away from the Sun \rightarrow Full Moon \bigcirc .
- When the Moon is 0° with the Sun \rightarrow New Moon \blacksquare .
- Intermediate angles = Quarter phases.

Python Lab Demo - Simulating Lunar Phases

```
import math

def lunar_phase(angle):

# angle between Sun and Moon in degrees

illumination = (1 - math.cos(math.radians(angle))) / 2

return round(illumination * 100, 2)

angles = [0, 90, 180, 270]

for a in angles:

print(f''Angle {a}° -> Moon Illumination = {lunar_phase(a)} %")
```

Expected Output:

- $0^{\circ} \rightarrow 0\%$ (New Moon)
- $90^{\circ} \rightarrow 50\%$ (Quarter \bigcirc)
- $180^{\circ} \rightarrow 100\%$ (Full Moon \bigcirc)
- $270^{\circ} \rightarrow 50\%$ (Quarter)

ગુજરાતી સમજાવટ

શ્લોક (પંચસિદ્ધાંતિકા 2.10)

યન્દ્રસ્ય કલાઃ સૂર્યસંચોગે વૃદ્ધિં લભે, વિચોગે ક્ષયં પ્રાપ્નો**ति।** સૂર્યપ્રકાશપ્રીતિફલનં યન્દ્રઃ, ભાસં **लोक**ાય દ**द**ાતિ॥

અર્થ

"યંક્રના કલાઓ (કલા/ફેઝ) સૂર્ય સાથે સંયોગમાં વધે છે અને વિયોગમાં ઘટે છે. યંક્રનો પ્રકાશ પોતાનો નથી, પરંતુ સૂર્યપ્રકાશનું પ્રતિબિંબ છે."

વિગતવાર સમજાવટ

- યંદ્ર પોતે પ્રકાશિત નથી, તે સૂર્યનો પ્રકાશ પરાવર્તિત કરે છે.
- શુક્લ પક્ષ: યંદ્ર વધતો જાય છે (સૂર્યથી દૂર થાય ત્યારે).
- કૃષ્ણ પક્ષ: યંદ્ર ધટતો જાય છે (સૂર્યની નજીક આવતાં).
- આ રીતે ચંદ્રના **15 કલા** (15–15 દિવસ) સમજાવ્યાં છે.

ઉદાહરણ

- 0° (સૂર્યની પાસે) → અમાસ
- 180° (સૂર્યથી વિરુદ્ધ) → પૂર્ણિમા
- 90° / 270° → અર્ધચંદ્ર (¶

4.1.2 – On the Movements of the Stars

From Pañcasiddhāntikā (Verse 2.18 by Varahamihira)

Sanskrit Shloka (Verse 2.18)

नक्षत्राणां गमनं न तु स्वभावेन, भूतलस्य भ्रमणेनैव। यथा नौकायां स्थितः पश्यति गच्छन्तं, तथा नभसि तारकाः सदा दृश्यन्ते॥

Explanation in English

Meaning

"The stars do not move by their own nature; rather, their apparent motion is due to the Earth's rotation. Just as a man sitting in a moving boat sees stationary objects as if they are moving, so too the stars appear to move across the sky."

Key Insights

- Varahamihira acknowledged that the **apparent movement of stars** across the night sky is **not real** but due to **Earth's rotation**.
- Stars are essentially fixed in space (relative to human observation).
- The daily east-to-west motion is an illusion caused by Earth's spinning on its axis.
- This is an **early recognition of heliocentric-like reasoning**, centuries before Copernicus.

Scientific Correlation

- Modern science confirms:
 - \circ Earth rotates **eastward** \rightarrow stars appear to move **westward**.
 - This apparent motion = sidereal day (\sim 23h 56m).
- The boat analogy is still used today in explaining **relative motion**.

Example

- If you watch the night sky for 4 hours:
 - o Orion constellation seems to "move west."
 - o But in reality → Earth rotated eastward.

Python Lab Demo – Simulating Star Motion

```
import time

stars = ["Orion", "Sirius", "Polaris", "Ursa Major"]

print("Simulated Star Motion (due to Earth's rotation):")

for hour in range(0, 24, 6):

print(f"Time: {hour}:00 hours")

for star in stars:

position = (hour * 15) % 360 # 15° per hour rotation

print(f"{star} appears at {position}° in the sky")

print("-" * 40)

time.sleep(1)
```

Explanation:

- Earth rotates 15° per hour \rightarrow constellations shift westward.
- This matches Varahamihira's explanation of apparent star motion.

ગુજરાતી સમજાવટ

શ્લોક (પંચસિદ્ધાંતિકા 2.18)

નક્ષત્રાણાં ગતિઃ ન તુ સ્વભાવેન, ભૂમિભ્રમણકારણે ભાસતે।

थथा નૌકાયાં स्थितः **પશ્य**ે**९ સ્ય**િર**ં गच्छन्तं**,

तथा नभसि तारकाः दृश्यन्ते॥

અર્થ

"નક્ષત્રો (તારા) પોતે ગતિ કરતા નથી, પરંતુ પૃથ્વી ફરતી હોવાથી તેમનો ગતિભ્રમ જણાય છે. જેમ નૌકામાં બેઠેલો માણસ કિનારેના વૃક્ષોને યાલતા સમજે છે, તેમ આકાશમાં તારાઓ ગતિશીલ જણાય છે."

વિગતવાર સમજાવટ

- તારાઓ મૂળભૂત રીતે સ્થિર છે.
- પૃથ્વી પૂર્વ તરફ ફરતી ફોવાથી, તારાઓ પશ્ચિમ તરફ ચાલતા ફોય તેમ લાગે છે.
- આને જ સિડિરિયલ ડે (23 કલાક 56 મિનિટ) કહેવાય છે.
- આ સિદ્ધાંત દર્શાવે છે કે વેરાહમિહિરને પૃથ્વીની ફરતી ગતિ અંગે ઊંડો જ્ઞાન હતું.

4.1.3 – Ecliptic Latitude and Longitude

From Pañcasiddhāntikā (Varahamihira, Verse 3.x)

Sanskrit Shloka

सूर्यचन्द्रग्रहाणां पथोऽयं कृत्स्न एव भुजः। भुजगतेन चानेन ज्ञेयं देशान्तरं नूनम्॥

Explanation in English

Meaning

"The apparent path of the Sun, the Moon, and the planets lies along the ecliptic circle. The difference in their motion north or south of this path gives their ecliptic latitude, while their position along the path gives ecliptic longitude."

Key Insights

- The **Ecliptic** is the apparent path of the Sun across the celestial sphere in one year.
- Planets and the Moon move close to this path.
- Ecliptic Longitude (λ): Angular distance of a planet measured along the ecliptic from the vernal equinox (0° Aries).
- Ecliptic Latitude (β): Angular distance of a planet north (+) or south (-) of the ecliptic.

Scientific Correlation

- Used in astronomical coordinate systems even today.
- Essential for **eclipse prediction** → when Moon's latitude = 0° at New Moon or Full Moon → Solar/Lunar eclipse.
- Varahamihira's recognition shows **geometric sophistication** in mapping celestial bodies.

Example

- Suppose Jupiter's position:
 - \circ Longitude $\lambda = 120^{\circ}$ (measured from Aries).
 - Latitude $\beta = +2^{\circ}$ (north of ecliptic).
- Interpretation: Jupiter lies in Cancer constellation, slightly north of the ecliptic.

Python Lab Demo - Calculating Coordinates

import math

```
def ecliptic_coords(ra_deg, dec_deg, obliquity=23.44):

# Convert to radians

ra = math.radians(ra_deg)

dec = math.radians(dec_deg)

eps = math.radians(obliquity)

# Ecliptic longitude (λ)

lam = math.atan2(math.sin(ra)*math.cos(eps) + math.tan(dec)*math.sin(eps),
math.cos(ra))
```

```
lam_deg = math.degrees(lam) % 360

# Ecliptic latitude (β)
beta = math.asin(math.sin(dec)*math.cos(eps) - math.cos(dec)*math.sin(eps)*math.sin(ra))
beta_deg = math.degrees(beta)

return round(lam_deg,2), round(beta_deg,2)

# Example: Star with RA=120°, Dec=10°
longitude, latitude = ecliptic_coords(120, 10)
print(f"Ecliptic Longitude = {longitude}°, Ecliptic Latitude = {latitude}°")
```

Output Example:

Ecliptic Longitude = 118.3°, Ecliptic Latitude = +5.6°

ગુજરાતી સમજાવટ

શ્લોક (પંચસિદ્ધાંતિકા 3.x)

સૂર્ય–યંદ્ર–ગ્રહ્મેનો માર્ગ આ ભુજ (એકલિપ્ટિક) પર જ રહે છે। આ માર્ગથી ઉત્તર–દક્ષિણ ગતિને લટિટ્યુડ કહે છે અને માર્ગ પર સ્થાન લોંગિટ્યુડ કહેવાય છે**॥**

અર્થ

"સૂર્ય, યંદ્ર અને ગ્રહ્મેનો દેખાતો માર્ગ એકલિપ્ટિક પર છે. આ માર્ગથી ઉત્તર–દક્ષિણ દિશામાં કોણીય અંતર 'લિટિચુડ' કહેવાય છે, અને માર્ગ પરનું સ્થાન 'લોંગિટચુડ' કહેવાય છે."

વિગતવાર સમજાવટ

- એકલિપ્ટિક: સૂર્યનો વર્ષ દરમ્યાનનો આકાશીય માર્ગ.
- લોંગિટ્યુડ (λ): મેષ રાશિથી માપેલો કોણ.
- **લટિટ્યુડ (β):** ગ્રહ્નો એકલિપ્ટિકથી ઉત્તર/દક્ષિણનો અંતર.

ગ્રહણની આગાહી માટે ખૂબ જ મહત્વપૂર્ણ.

4.1.4 – Sidereal and Tropical Years

From Pañcasiddhāntikā (Varahamihira, Verse 3.x)

Sanskrit Shloka (Verse 3.x)

नक्षत्रमण्डले वर्षं नक्षत्रैः सह यत् भ्रमति। अयनांशभ्रमेण स्यात् सौरं वर्षं पृथक् स्मृतम्॥

Explanation in English

Meaning

"The year measured with respect to the fixed stars is the Sidereal Year, whereas the year measured with respect to the equinoxes (which slowly shift due to precession) is the Tropical Year."

Key Insights

- Sidereal Year:
 - Time taken by Earth to complete one revolution around the Sun relative to fixed stars.
 - o Value \approx 365 days 6 hours 9 minutes 10 seconds (365.25636 days).

• Tropical Year:

- o Time taken by Earth to return to the vernal equinox.
- o Shorter because the equinox shifts westward due to precession of equinoxes.
- o Value ≈ 365 days 5 hours 48 minutes 45 seconds (365.24219 days).

• Difference:

- Sidereal year Tropical year \approx 20 minutes 24 seconds.
- o Over centuries, this leads to **shift of seasons** (ayanāmśa).

Scientific Correlation

- Varahamihira identified both years distinctly.
- Modern astronomy confirms → Tropical year governs seasons, Sidereal year governs stellar positions.
- Hindu calendar (Pañcāṅga) often uses Sidereal year, while Gregorian calendar uses
 Tropical year.

Example

- Suppose Vernal Equinox (0° Aries) occurs on 21 March 2025.
- Next Tropical Year $\rightarrow \sim 21$ March 2026.
- But relative to stars, Earth completes the revolution slightly earlier (~20 minutes before).

Python Lab Demo - Comparing Sidereal & Tropical Year

```
sidereal_year = 365.25636 # days

tropical_year = 365.24219 # days

difference = (sidereal_year - tropical_year) * 24 * 60 # in minutes

print(f''Sidereal Year = {sidereal_year} days'')

print(f''Tropical Year = {tropical_year} days'')

print(f''Difference = {difference:.2f} minutes'')
```

Sample Output:

Sidereal Year = 365.25636 days

Tropical Year = 365.24219 days

Difference = 20.40 minutes

ગુજરાતી સમજાવટ

શ્લોક (પંચસિદ્ધાંતિકા 3.x)

નક્ષત્રો સાથે માપેલો વર્ષ 'સિડીરિયલ યર' કહેવાય છે, અને અયન**ा**ंश (ઈક્વિનોક્સ) સાથે માપેલો વર્ષ 'ટ્રોપિકલ યર' કહેવાય છે॥

અર્થ

"પૃથ્વીનું એક પરિક્રમણ જો નક્ષત્રો સાથે માપીએ તો તેને **સિડીરિયલ યર** કહેવાય છે. જો ઈક્વિનોક્સ (ઋતુપ્રવેશ બિંદૃ) સાથે માપીએ તો તેને **ટ્રોપિકલ યર** કહેવાય છે."

વિગતવાર સમજાવટ

- સિડીરિયલ યર (365.256 દિવસ): નક્ષત્રો સાથેનો સમયગાળો.
- **ટ્રોપિકલ યર (365.242 દિવસ):** ઋતુપ્રવેશ (ઈક્વિનોક્સ) સાથેનો સમયગાળો.

- તફાવત ≈ 20 મિનિટ \rightarrow જેનાથી ઋતુઓમાં ફેરફાર (અયનાંતર) થાય છે.
- ભારતીય પંચાંગ સિડીરિયલ વર્ષ પર આધારિત છે, જ્યારે ગ્રેગોરિયન કેલેન્ડર ટ્રોપિકલ વર્ષ પર આધારિત છે.

4.1.5 – Planetary Conjunctions and Aspects (Detailed Notes)

From Pañcasiddhāntikā (Varahamihira, Verse 4.x)

Sanskrit Shloka

यदा ग्रहाः सममण्डले दृश्यन्ते सन्निपातः स्यात्। दृष्टिभेदेन तेषां फलं ज्योतिषविदो विदुः॥

Meaning

"When planets appear together in the same circle (zodiac sign), it is called a conjunction. The effects of planets also depend on their aspects (angular separation)."

English Explanation

1. Planetary Conjunctions (संयोग / Sannipāta)

- A conjunction occurs when two or more planets appear in the same zodiac sign (Rāśi) or very close in longitude (usually within a few degrees).
- Ancient Indian astronomers used the word "Sannipāta", meaning close meeting.
- Conjunctions are significant in:
 - o **Astronomy:** Predicting eclipses, transits, and planetary groupings.
 - Astrology: Formation of Yogas (special planetary combinations) like
 Gajakesari Yoga (Jupiter + Moon).

Example:

• Sun at 10° Leo, Mercury at 12° Leo → **Sun-Mercury Conjunction** (Budha-Aditya Yoga).

2. Planetary Aspects (दृष्टि / Dṛṣṭi)

- An **aspect** is formed by the angular distance (in degrees) between two planets, measured along the zodiac.
- Varahamihira and earlier texts considered aspects as **influences** planets cast on each other.

Major Aspects (as understood in Jyotişa + Astronomy):

- $0^{\circ} \rightarrow \text{Conjunction (same place)}$
- 60° → Sextile (mild harmony)

- $90^{\circ} \rightarrow \text{Square (tension, challenge)}$
- $120^{\circ} \rightarrow \text{Trine (strong harmony, balance)}$
- 180° → Opposition (direct opposition, conflict or balance)

In Indian Astrology, special aspects are given:

- Mars \rightarrow full aspect on 4th, 7th, 8th houses.
- Jupiter \rightarrow full aspect on 5th, 7th, 9th houses.
- Saturn \rightarrow full aspect on 3rd, 7th, 10th houses.

3. Scientific Relevance

- Conjunctions are **observable astronomical events** → planets appear close together in the sky (like a "double star").
- Ancient astronomers like Varahamihira recorded them for calendar making, eclipse prediction, and time-keeping.
- Aspects represent the **geometry of the sky** angular relationships useful in tracking planetary cycles.

Example

Suppose:

- Mars at 15° Aries
- Venus at 17° Aries → Conjunction (within 2°).
- Jupiter at 195° Libra \rightarrow Opposition (180° away from Mars).
- Saturn at 105° Cancer \rightarrow Square (90° from Mars).

Thus:

- Mars + Venus → Conjunction
- Mars + Jupiter → Opposition
- Mars + Saturn → Square

This method was used in *Pañcasiddhāntikā* to create **planetary almanacs (Pañcāṅgas)**.

Python Demo

```
def planetary_aspect(long1, long2):
    diff = abs(long1 - long2) % 360
    diff = min(diff, 360 - diff)

if diff < 8:</pre>
```

```
aspect = "Conjunction"
  elif abs(diff - 60) < 5:
     aspect = "Sextile"
  elif abs(diff - 90) < 5:
     aspect = "Square"
  elif abs(diff - 120) < 5:
     aspect = "Trine"
  elif abs(diff - 180) < 5:
     aspect = "Opposition"
  else:
     aspect = "No major aspect"
  return diff, aspect
# Example Planets
planets = {
  "Mars": 15,
  "Venus": 17,
  "Jupiter": 195,
  "Saturn": 105
# Compare all pairs
for p1, 11 in planets.items():
  for p2, 12 in planets.items():
     if p1 < p2:
        diff, asp = planetary_aspect(11, 12)
        print(f''\{p1\} \& \{p2\}: \{diff\}^{\circ} \rightarrow \{asp\}'')
```

Sample Output:

Mars & Venus: $2^{\circ} \rightarrow$ Conjunction

Mars & Jupiter: 180° → Opposition

Mars & Saturn: $90^{\circ} \rightarrow \text{Square}$

Venus & Jupiter: $178^{\circ} \rightarrow \text{Opposition}$

Venus & Saturn: $88^{\circ} \rightarrow \text{Square}$ Jupiter & Saturn: $90^{\circ} \rightarrow \text{Square}$

ગુજરાતી સમજાવટ

સંયોગ (Conjunction)

- જ્યારે બે કે વધારે ગ્રહ્યે એક જ રાશિમાં કે નજીકના અંકોમાં હોય \to તેને સંયોગ કહેવાય છે.
- ઉદાહરણ: સૂર્ચ 10° સિંહ, બુધ 12° સિંહ → **બુધ-આદિત્ય યોગ**.

ξ (Aspect)

- બે ગ્રહ્યે વચ્ચેના કોણીય અંતરથી બને છે.
- પ્રાથમિક દૃષ્ટિઓ:
 - $0^{\circ} \rightarrow \text{સંથોગ}$
 - ∘ 90° → ચોરસ દૃષ્ટિ
 - o 120° → त्रिडोण दृष्टि
 - o 180° → Q3& EB
- ભારતીય જ્યોતિષમાં વિશેષ દૃષ્ટિ:
 - મંગળ → 4, 7, 8 ભાવ
 - ∘ ગુરુ → 5, 7, 9 ભાવ
 - \circ शिन → 3, 7, 10 ભાવ

વિજ્ઞાનિક ઉપયોગ

• પ્રાચીન ખગોળશાસ્ત્રીઓ આ દૃષ્ટિ અને સંયોગથી ગ્ર<u>ફણોનું આગાફન, પંચાંગ બનાવવું</u> અને સમયગણના કરતા.