

Course: 501

Advanced Web Designing

Unit-1: Concepts of NoSQL: MongoDB

Unit-1: Concepts of NoSQL: MongoDB

 1.1 Concepts of NoSQL. Advantages and features.

1.1.1 MongoDB Datatypes (String, Integer, Boolean, Double,

Arrays, Objects)

1.1.2 Database creation and dropping database

1.2 Create and Drop collections

1.3 CRUD operations (Insert, update, delete, find, Query and

Projection operators)

 1.4 Operators (Projection, update, limit (), sort ()) and

Aggregation commands

•

In 2013, 10gen changed its name to MongoDB Inc. to better

reflect its focus on the development of the MongoDB database.

•

In 2017, MongoDB Inc. went public, and the company has

continued to grow and expand its offerings, including the

introduction of a cloud-based database service called MongoDB

Atlas.

•

Today, MongoDB is used by a wide range of companies and

organizations,

•

The name "MongoDB" is derived from the word "humongous,"

reflecting the database's ability to store and manage large

amounts of data.

 What is MongoDb?

• MongoDB is a popular open-source, NoSQL database that stores

data in a document-oriented format.

• Unlike traditional relational databases, which store data in tables,

MongoDB stores data as JSON-like documents, making it more

flexible and scalable.

• It was developed by MongoDB Inc. and first released in 2009.

Concepts of NoSQL

• NoSQL, also referred to as “not only SQL”,

“nonSQL”, is an approach to database design that

enables the storage and querying of data outside the

traditional structures found in relational databases.

• NoSQL databases are non-tabular databases and

store data differently than relational tables.

• NoSQL databases come in a variety of types based

on their data model. The main types are document,

key-value, wide-column, and graph.

 NoSQL databases are generally classified into four main

categories:

1. Document databases: These databases store data as semi-structured

documents, such as JSON or XML, and can be queried using

documentoriented query languages.

2. Key-value stores: These databases store data as key-value pairs, and are

optimized for simple and fast read/write operations.

3. Column-family stores: These databases store data as column families, which

are sets of columns that are treated as a single entity. They are optimized for

fast and efficient querying of large amounts of data.

4. Graph databases: These databases store data as nodes and edges, and are

designed to handle complex relationships between data.



Advantages of
 NoSQL

 :

•
 There are many great features inbuilt with

 MongoDB
 . As compared to RDBMS,

so let’s
 discuss

 MongoDB
 Benefits.


 Flexible Database

•
 We know that

 MongoDB
 is a schema

 -
 less database.

•
 That

 means we can have any type of data in a separate document.

•
 This

 thing gives us flexibility and a freedom to store data of different types.

 Sharding

• We can store a large data by distributing it to several servers connected to the

application. If a server cannot handle such a big data then there will be no

failure condition. The term we can use here is “auto -sharding ”.


 High Speed

•
 MongoDB

 is a document
 -
 oriented database. It is easy to access documents by

indexing. Hence, it provides fast query response. The speed of
 MongoDB

 is

100
 times faster than the relational database.


 High Availability

•
 MongoDB

 has features like replication and
 gridFS

 . These features help to

increase data availability in
 MongoDB

 . Hence the performance is very high.

AWD

 Scalability

• A great advantage of MongoDB is that it is a horizontally scalable database.

When you have to handle a large data, you can distribute it to several

machines.

 Easy Environment Setup

• It is easier to setup MongoDB then RDBMS. It also provides JavaScript client for

queries.

 Full Technical Support

• MongoDB Inc. provides professional support to its clients. If there is any problem,

you can directly reacha MongoDB client support system.

AWD

AWD

 Disadvantages of NoSQL:

 Joins not Supported

• MongoDB doesn’t support joins like a relational database. Yet one can use joins

functionality by adding by coding it manually. But it may slow execution and

affect performance.

 High Memory Usage

• MongoDB stores key names for each value pairs. Also, due to no functionality of

joins, there is data redundancy. This results in increasing unnecessary usage of

memory.

 Limited Data Size
• You can have document size, not more than 16MB.

AWD

 GUI is not available :

• GUI mode tools to access the database are not flexibly available in the market.

 Backup :

• Backup is a great weak point for some NoSQL databases like MongoDB.

MongoDB has no approach for the backup of data in a consistent manner.

 Large document size :

• Some database systems like MongoDB and CouchDB store data in JSON

format.

• This means that documents are quite large (BigData, network bandwidth,

speed), and having descriptive key names actually hurts since they increase

the document size.

AWD

 MongoDB is used in a wide variety of applications and

industries, including:

 Web and mobile applications:

• MongoDB is often used as the primary database for web and mobile

applications, where it provides high performance and scalability, as well as

support for flexible data models.

 E-commerce:

• MongoDB is used by many e-commerce sites to store product catalogs, customer

data, and order information, as well as to provide real-time analytics and

personalized recommendations.

 Social networking:

• MongoDB is used by social networking sites to store user profiles, activity feeds,

and social graphs, as well as to provide real-time analytics and

recommendations.

 Gaming:

• MongoDB is used in the gaming industry to store user data, game progress, and

other game-related information, as well as to provide real-time analytics and

recommendations.

 Financial services:

• MongoDB is used in the financial services industry to store and analyze large

volumes of data, such as transaction data, customer data, and market data.

AWD

 Healthcare:

• MongoDB is used in the healthcare industry to store and manage patient data,

medical records, and other healthcare-related information, as well as to provide

real-time analytics and insights.

 Government:

• MongoDB is used by many government agencies to store and manage large

volumes of data, such as census data, weather data, and traffic data, as well as

to provide real-time analytics and insights.

 How to Install MongoDB on Windows

Step 1: Go to the Official MongoDB website

[https://www.mongodb.com/try/download/community-kubernetes-operator]

Step 2: Navigate to Products > Community Edition

Step 3: Select the appropriate installer file from the dropdown menus

on the Community Edition page.

– In the version dropdown, select the latest version, 6.0.1(current)

– In the Platform dropdown, select Windows

– In the Package dropdown, select msi

Step 4: Click the green "Download" button. Wait for 2-5 minutes for the

https://www.mongodb.com/
https://www.mongodb.com/

file to download. (Depending on your internet speed)

AWD

.

AWD

 After the installer file has been downloaded, it's time to run the installer file.

 Procedure

Step: 1: Go to the downloaded directory in your system (by default, it should be in the

`Downloads` directory).

Step 2: Double-click on the .msi file. It will open the MongoDB setup windows.

AWD



Step 3:
 It will open the MongoDB Community Edition installation wizard. This

setup wizard guides you through the installation of MongoDB in your
 system

 . To continue

the process, click "Next."

AWD



Step 4:
 Read the End

 -
 User License Agreement, accept the terms and

conditions, and then click the "Next" button to continue.

AWD


 Step 5:

 Next, you can choose either the Complete setup or Custom

setup
 type to proceed. But for a beginner, we'd

 recommend using
 the

Complete setup option. It installs MongoDB in
 the default

 location
 .

Select the Complete setup, and click "Next."

AWD


 Step 6:

 Select the "Install
 MongoD

 as a Service" option on the next

page. Keep all other parameters as default. Click on the "Next"
 button.

AWD



Step 7:
 In the next step, you will get an option to install MongoDB

compass. Uncheck it if you don't want MongoDB compass to

be
 installed on your device, and then click the "Next" button.

AWD


 Step 8:

 In the "Ready to install MongoDB" page, click the "Install"

button, give administrator access, and wait for the installation
 to finish.

Once installation is complete, you can click on the
 "

 Finish" button to

finalize your installation.

AWD

How to Install MongoDB Shell on Windows

Step 1: Download MongoDB Shell

• To begin with Windows MongoDB Shell Installation process, go to the download

page at https://www.mongodb.com/try/download/shell.

• Choose your OS and your desired MongoDB version.

• Click Download.

AWD

.

AWD

 MongoDB Data Types

• MongoDB data types refer to the different types of data that can be stored in a

MongoDB database.

• MongoDB supports a wide range of MongoDB data types, including strings,

integers, doubles, booleans, dates, arrays, object IDs, regular expressions, and

binary data.

AWD

 String

• In MongoDB, the string data type is used to store a sequence of UTF-8 characters.

• Strings are one of the most commonly used MongoDB data types, as they can be

used to represent a wide range of text-based data, such as names, addresses,

descriptions, and more.

 Integer:

• In MongoDB, the integer data type is used to store an integer value. We can store

integer data type in two forms 32 -bit signed integer and 64 – bit signed integer.

AWD

 Double

• The Double data type in MongoDB is used to store floating-point numbers that

require higher precision than the standard 32-bit float data type.

• Double data types are used to represent decimal values and are commonly used

in financial applications or scientific calculations.

 Boolean

• The boolean data type in MongoDB represents a logical value that can be either true

or false.

 Arrays

• This type is used to store arrays or list or multiple values into one key.

AWD

 Object

• In MongoDB, the Object data type is used to represent complex and nested

data structures, such as documents within a collection. The Object data type is also

known as the BSON document data type, where BSON stands for Binary JSON.

 Null

• This type is used to store a Null value.

 Date

• This datatype is used to store the current date or time in UNIX time format.

• You can specify your own date time by creating object of Date and passing day,

month, year into it.

 Object ID

• This datatype is used to store the document’s ID.

AWD

 Binary Data

• In MongoDB, the binary data type is used to store binary data as a sequence of

bytes.

• This data type is commonly used to store images, videos, audio files, and other

non-textual data.

 Regular Expression

• In MongoDB, the regular expression (regex) data type is used to store and search

for text patterns in strings.

• Regular expressions are a powerful tool for string manipulation and pattern

matching, and MongoDB provides several operators for working with them.

AWD

 Date

• This datatype is used to store the current date or time in UNIX time format.

• You can specify your own date time by creating object of Date and passing day,

month, year into it.

 Code

• This datatype is used to store JavaScript code into the document.

AWD



Database:

•
 The

 MongoDB
 databa s

 e
 is a container for collections and it can store one or more

collections.

•
 It

 is not necessary to create a database before you work on it.

•
 The

 show
 dbs

 command gives the list of all the databases.

https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/

AWD


 Creating a

 Database


 The

 use
 Command

•
 MongoDB

 use DATABASE_NAME
 is used to create database. The

command will create a new database if it doesn't exist, otherwise it

will return the existing database.

•
 Syntax

•
 Example

AWD


 To check your currently selected database, use the command

 db


 If you want to check your databases list, use the command

 show

dbs
 .

AWD


 Your created database (

 mydb
)

is not present in list. To display

database, you need to insert at least one document into it.

AWD


 The

 dropDatabase
 ()

Method

•
 MongoDB

 db.dropDatabase
 ()

 command is used to drop a existing database.

•
 Syntax

AWD

AWD



Collection:

•
 It

 is used to store a varied number of documents inside the database.

•
 As

 MongoDB
 is a Schema

 -
 free database, it can store the documents that are not

the same in structure. Also, there is no need to define the columns and their

datatype
 .

AWD

 There are 2 ways to create a collection.

 Method 1

• You can create a collection using the createCollection() database

method.

• Example

db.createCollection(“student")

 Method 2

• You can also create a collection during the insert process.

AWD

• Example

AWD

db. student.insertOne({“name": "Alex",age:21,state:“Gujarat"})

AWD

 Display Collections(Tables)

• Example

show collections

 Exit The Mongosh Terminal

• Example

Ctrl + C [Pressed Two Times]

or

AWD

quit()

AWD

•
 The drop() Method

•
 MongoDB's

 db.collection.drop
 ()

 is used to drop a collection from

the database.

•
 Syntax

AWD

AWD

Insert Documents

• There are 2 methods to insert documents into a MongoDB

database.

insertOne()

• To insert a single document, use the insertOne() method.

• This method inserts a single object into the database.

AWD



Example

AWD

Note: If you try to insert documents into a collection that does not exist, MongoDB

will create the collection automatically.

AWD

Note: When typing in the shell, after opening an object with curly braces "{" you

can press enter to start a new line in the editor without executing the

command.

The command will execute when you press enter after closing the braces.

 insertMany ()

• To insert multiple documents at once use the insertMany ()

method.

• This method inserts an array of objects into the database.

AWD

AWD

• Example

 Find Data [Dipslay Data from Collection(Table)]

• There are 2 methods to find and select data from a MongoDB

collection, find() and findOne().

 find()

• To select data from a collection in MongoDB, we can use the

find() method.

• This method accepts a query object. If left empty, all documents

will be returned.

AWD

• Example db.posts.find()

Collection (Table) Name

AWD

 findOne()

•
 To select only one document, we can use the findOne() method.

•
 This method accepts a query object. If left empty, it will return the

first document it finds.

•
 Note: This method only returns the first match it finds.

•
 Example

db.posts.findOne()

Collection (Table) Name

AWD

 Delete Documents

• We can delete documents by using the methods deleteOne() or

deleteMany().

• These methods accept a query object. The matching documents

will be deleted.

AWD


 deleteOne

 ()

•
 The

 deleteOne
 ()

 method will delete the first document that

matches the query provided
 .


 Example

db.posts.deleteOne
 ({

title: "Post Title 5" })

AWD


 deleteMany

 ()

•
 The

 deleteMany
 ()

 method will delete all documents that match the

query provided.


 Example

db.posts.deleteMany
 ({

category: "

 Technology
 "

 })

AWD

 Update Document

• To update an existing document we can use the updateOne() or

updateMany() methods.

• The first parameter is a query object to define which document or

documents should be updated.

• The second parameter is an object defining the updated data.

 updateOne()

• The updateOne() method will update the first document that is

found matching the provided query.

AWD


 Syntax:

AWD

 Parameters:

• The first parameter is the Older value in the form of Documents.

Documents are a structure created of file and value pairs, similar to

JSON objects.

• The second parameter must contain a $set keyword to update the

following specify document value.

• The third parameter is optional.

AWD


 Example [First we can see all records(documents) from table]

AWD


 MongoDB

 updateOne
 ()

method

•
 This methods updates a single document which matches the given

filter.

AWD

 Examples:

• In the following examples, we are working with:

• Database: gfg

• Collections: student

• Document: Three documents contains name and the age of the

students

AWD

•
 Update

 the name of the document whose name key has
 avi

 value

to hello world
 .

AWD

•
 Here, the

 first parameter
 is the document whose value to be

changed
 {
 name:”

 avi
 ”}

 and the
 second parameter

 is
 set keyword

means to
 set(update)

 the following matched key value with the

older key value
 .

•
 Note:

 The value of the key must be of the same
 datatype

 that was

defined in the collection.

AWD


 Output

AWD


 Example

•
 Update

 the age of the document whose name is
 prachi

 to 20
 .

•
 Here, the first parameter is the document whose value to be

changed {name:”
 prachi

 ”} and the second parameter is set keyword

means to set(update) the value of the age field to 20.

AWD


 Output

AWD

 updateMany()

• The updateMany() method will update all documents that match

the provided query.

• When you update your document, the value of the _id field remains

unchanged.

• This method can also add new fields in the document. Specify an

empty document({}) in the selection criteria to update all collection

documents.

AWD


 Examples:

•
 In the following examples, we are working with:

•
 Database:

 gfg

•
 Collection:

 student

•
 Document:

 Three documents contains name and age of the students

AWD


 Update single document

AWD


 Update multiple

 documents


 Here

 , we update all the matched documents whose age is 18 to

eligible: true


 Output

AWD

AWD

 MongoDB Comparison Operators

• $eq • $gt

• $gte • $in • $lt

• $lte • $ne

• $nin



$
 eq

•
 The $

 eq
 specifies the equality condition. It matches documents where the value

of a field equals the specified value
 .

•
 The

 above example queries the books collection to select all documents where



$
 gt

•
 The $

 gt
 chooses a document where the value of the field is greater than the

specified value.

AWD



$
 gte

•
 The $

 gte
 choose the documents where the field value is greater than or equal to

a specified value.



$
 in

•
 The $in operator choose the documents where the value of a field equals any

value in the specified array.



$
 lt

•
 The $

 lt
 operator chooses the documents where the value of the field is less than

the specified value.

AWD



$
 lte

•
 The $

 lte
 operator chooses the documents where the field value is less than or

equal to a specified value.

AWD



$
 ne

•
 The $ne operator chooses the documents where the field value is not equal to

the specified value.

AWD



$
 nin

•
 The $

 nin
 operator chooses the documents where the field value is not in the

specified array or does not exist.

AWD

 What is MongoDB Projection?

• MongoDB Projection is a special feature allowing you to select only

the necessary data rather than selecting the whole set of data from

the document.

• For Example, If a Document contains 10 fields and only 5 fields are

to be shown the same can be achieved using the Projections.

 This will enable us to:

• Project concise yet transparent data

• Filter data without impacting the overall database performance

AWD

 MongoDB Projection Operators

• MongoDB projection method positively impacts database performance as

it reduces the workload of the find query when trying to retrieve specific

data from a document, minimizing resource usage.

• To enhance the querying and reduce the workload, multiple operators can

be used within a projection query like the ones below:

 Operators

• $

• $elemMatch

AWD

• $slice

• $meta

AWD


 $

 Operator

•
 The $ operator limits the contents of an array from the query

results to contain only the first element matching the query

document.

AWD


 $

 elemMatch

•
 The content of the array field made limited using this operator from

the query result to contain only the first element matching the

element $
 elemMatch

 condition.

AWD


 $meta

•
 The meta operator returns the result for each matching document

where the metadata associated with the query.

AWD


 $slice

•
 It controls the number of values in an array that a query returns.

AWD

 Update Operators

Operator Description

$currentDate
This operator is used to set the value of a field to current date, either as a Date or

a Timestamp.

$inc This operator is used to increment the value of the field by the specified amount.

$min
This operator is used only to update the field if the specified value is less than the

existing field value

$max
This operator is used only to update the field if the specified value is greater than

the existing field value.

$mul This operator is used to multiply the value of the field by the specified amount.

AWD

$rename This operator is used to rename a field.

$setOnInsert
This operator is used to set the value of a field if an update results in an insert of a

document. It has no effect on update operations that modify existing documents.

AWD

 Increment the value of the field using $inc operator:

db.Employee.update({"name.first": "Sumit"},

{$inc: {"personalDetails.salary": 3000}})

 Comparing values (or numbers) using $max operator:

db.Employee.update({"name.first": "Sumit"},

{$max: {"personalDetails.salary": 40000}})

 Multiplying the value of a field using $mul operator:

db.Employee.update({"name.first": "Sumit"},

{$mul: {"personalDetails.salary": 2}})

AWD

 Updating the value of date field using $currentDate operator:

db.Employee.updateOne({"name.first": "Om"},

{$currentDate: {joiningDate: true}})

 Comparing values (or numbers) using $min operator:

db.Employee.update({"name.first": "Sumit"},

{$min: {"personalDetails.salary": 5000}})

 Renaming a field using $rename operator:

db.Employee.update({"name.first": "Om"},

{$rename: {"department": "unit"}})

AWD


 MongoDB

 limit() Method

•
 In

 MongoDB
 , limit() method is used to limit the fields of document

that you want to show. Sometimes, you have a lot of fields in

collection of your database and have to retrieve only 1 or 2. In such

case, limit() method is used.

•
 The

 MongoDB
 limit() method is used with find() method

 .


 Example

db.tybca.find
 ()

 .limit
 (1)

AWD


 skip() method

•
 In

 MongoDB
 , skip() method is used to skip the document. It is used

with find() and limit() methods
 .

•
 Execute

 the following query to retrieve only one document and skip

2

documents.


 Example

db.tybca.find
 ()

 .limit(1).skip
 (2)

AWD


 MongoDB

 sort() method

•
 In

 MongoDB
 , sort() method is used to sort the documents in the

collection. This method accepts a document containing list of fields

along with their sorting order.


 The sorting order is specified as 1 or

 -
 1.

•
 1

is used for ascending order sorting.

•
 -

 1

is used for descending order sorting.

AWD

 Example

• Execute the following query to display the documents in descending
order.

db.tybca.find().sort({"Course":-1})

AWD

 Aggregation Commands

Name Description

aggregate Performs aggregation tasks such as $group using an aggregation

pipeline.

count Counts the number of documents in a collection or a view.

distinct Displays the distinct values found for a specified key in a

collection or a view.

https://www.mongodb.com/docs/v6.2/reference/command/aggregate/#mongodb-dbcommand-dbcmd.aggregate
https://www.mongodb.com/docs/v6.2/reference/command/aggregate/#mongodb-dbcommand-dbcmd.aggregate
https://www.mongodb.com/docs/v6.2/core/aggregation-pipeline/#std-label-aggregation-pipeline
https://www.mongodb.com/docs/v6.2/core/aggregation-pipeline/#std-label-aggregation-pipeline
https://www.mongodb.com/docs/v6.2/core/aggregation-pipeline/#std-label-aggregation-pipeline
https://www.mongodb.com/docs/v6.2/core/aggregation-pipeline/#std-label-aggregation-pipeline
https://www.mongodb.com/docs/v6.2/reference/operator/aggregation/group/#mongodb-pipeline-pipe.-group
https://www.mongodb.com/docs/v6.2/reference/operator/aggregation/group/#mongodb-pipeline-pipe.-group
https://www.mongodb.com/docs/v6.2/reference/operator/aggregation/group/#mongodb-pipeline-pipe.-group
https://www.mongodb.com/docs/v6.2/reference/command/count/#mongodb-dbcommand-dbcmd.count
https://www.mongodb.com/docs/v6.2/reference/command/count/#mongodb-dbcommand-dbcmd.count
https://www.mongodb.com/docs/v6.2/reference/command/distinct/#mongodb-dbcommand-dbcmd.distinct
https://www.mongodb.com/docs/v6.2/reference/command/distinct/#mongodb-dbcommand-dbcmd.distinct

AWD

mapReduce Performs map-reduce aggregation for large data sets.

pipeline The array that transforms the list of documents as a part of the

aggregation pipeline.

https://www.mongodb.com/docs/v6.2/reference/command/mapReduce/#mongodb-dbcommand-dbcmd.mapReduce
https://www.mongodb.com/docs/v6.2/reference/command/mapReduce/#mongodb-dbcommand-dbcmd.mapReduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/reference/command/mapReduce/#mongodb-dbcommand-dbcmd.mapReduce
https://www.mongodb.com/docs/v6.2/reference/command/mapReduce/#mongodb-dbcommand-dbcmd.mapReduce

 Syntax

• Basic syntax of aggregate() method is as follows −

• Now from the above collection, if you want to display a list stating how

many WFS books are written by each user, then you will use the following

aggregate() method −

> db.mycol.aggregate([{$group : {_id : "$by_user", num_books : {$sum : 1}}}])

{ "_id" : “wfs_books", "num_books" : 2 } { "_id" : "Neo4j", "num_books" : 1 }

>

AWD

•

The aggregate command does the aggregation operation using the

aggregation pipeline.

• The aggregation pipeline allows the user to perform data

processing from a record or other source using a stage-based

application sequence.

AWD

 Aggregation Pipelines

• Aggregation operations allow you to group, sort, perform

calculations, analyze data, and much more.

• Aggregation pipelines can have one or more "stages". The order of

these stages are important. Each stage acts upon the results of the

previous stage.


 Example

AWD

Unit-2: Fundamentals of React.js

Unit-2: Fundamentals of React.js

2.1 Overview of React

2.1.1 Concepts of React.

2.1.2 Using React with HTML

2.1.3 React Interactive components: Components within components and

Files

2.1.4 Passing data through Props

2.2 Class components

2.2.1 React class and class components

2.2.2 Conditional statements, Operators, Lists

2.2.3 React Events: Adding events, Passing arguments, Event object

 History of React

• It was created by Jordan Walke, who was a software engineer at Facebook.

• It was initially developed and maintained by Facebook and was later used in its

products like WhatsApp & Instagram.

• Facebook developed ReactJS in 2011 in its newsfeed section, but it was released to

the public in the month of May 2013.

Jordan Walke

 What is React

• React is an open-source component-based front-end JavaScript

library.

• It is used to create fast and interactive user interfaces for web and

mobile applications.

• It is easy to create a dynamic application in React because it

requires less coding and offer more functionality.

• It is used by big MNC and fresh new startups

• ReactJS is a declarative, efficient, and flexible JavaScript library for

building reusable UI components.

• It is an open-source, component-based front end library

responsible only for the view layer of the application.

• A JavaScript library for building user interfaces

• The user interface(UI) is the point of human-computer interaction

and communication in a device.

• This can include dipslay screens,keyboards a mouse and the

appearance of a desktop.

Is React JS Library or Framework

• React is not framework.

• React is a JavaScript library for building user interfaces.

• It is also known as ReactJS and React.js so don’t confused if you

read different notation in different places.

• React knows only one thing that is to create an awesome UI.

 What Should you Know before Learning ReactJS

• Basic knowledge of HTML,CSS and JavaScript

• Basic understanding of how to use npm.

 Where to Write ReactJS

 Text Editor/Source Code Editor

• Visual Studio Code

• Notepad++

• Atom

 Web Browser

• Google Chrome,Firefox

• React Developer Tools

 Why Learn React

• The main objective of ReactJS is to develop User Interfaces (UI)

that improves the speed of the apps.

• It uses virtual DOM (JavaScript object), which improves the

performance of the app.

• The JavaScript virtual DOM is faster than the regular DOM. We can

use ReactJS on the client and server-side as well as with other

frameworks.

• It uses component and data patterns that improve readability and

helps to maintain larger apps.

Installation Reactjs on Windows:

 Step 1:

• Install Node.js installer for windows. Click on this link. Here install

the LTS version (the one present on the left).

• Once downloaded open NodeJS without disturbing other settings,

click on the Next button until it’s completely installed.

https://nodejs.org/en/

Download the installer for windows by clicking on LTS or Current version button. Here, we

will install the latest version LTS for windows that has long time support. However, you can

also install the Current version which will have the latest features.

• After you download the MSI, double-click on it to start the installation as
shown below.

• Accept the terms of license agreement.

• Choose the location where you want to install.

• Ready to install:

 Verify Installation

• Once you install Node.js on your computer, you can

verify it by opening the command prompt and typing

node -v.

• If Node.js is installed successfully then it will display the

version of the Node.js installed on your machine, as

shown below.

• Step 3: Now in the terminal run the below
command:

npm install -g create-react-app

• It will globally install react app for you. To check
everything went well run the command

create-react-app –version

• If everything went well it will give you the
installed version of react app

• Step 4: Now Create a new folder where you want to make your
react app using the below command:

mkdir newfolder

• Note: The newfolder in the above command is the name of the
folder and can be anything.

• Move inside the same folder using the below command:

cd newfolder (your folder name)

• Step 5: Now inside this folder run the command –>

create-react-app reactfirst YOUR_APP_NAME

• It will take some time to install the required dependencies

Create a new React project

• Once the React installation is successful, we can create a new

React project using create-react-app command.

• Here, I choose "reactproject" name for my project.

C:\Users\myproject> create-react-app reactproject

• NPM is a package manager which starts the server and access the
application at default server http://localhost:3000. Now, we will
get the following screen.

http://localhost:3000/

 Next, open the project on Code editor. Here, I am using Visual
Studio Code. Our project's default structure looks like as below
image.

 In React application, there are several files and folders in the root

directory. Some of them are as follows:

 node_modules:

• It contains the React library and any other third party libraries needed.

 public:

• It holds the public assets of the application. It contains the index.

• html where React will mount the application by default on the <div

id="root"></div> element.

 src:

• It contains the App.css, App.js, App.test.js, index.css, index.js, and

serviceWorker.js files.

• Here, the App.js file always responsible for displaying the output screen

in React.

 package-lock.json:

• It is generated automatically for any operations where npm

package modifies either the node_modules tree or package.json.

• It cannot be published. It will be ignored if it finds any other place

rather than the top-level package.

 package.json:

• It holds various metadata required for the project.

• It gives information to npm, which allows to identify the project as

well as handle the project?s dependencies.

 README.md:

• It provides the documentation to read about React topics.

 React Features

• ReactJS gaining quick popularity as the best JavaScript framework among web

developers.

• It is playing an essential role in the front-end ecosystem. The important features

of ReactJS are as following.

 JSX

 Components

 One-way Data Binding

 Virtual DOM

 Simplicity

 Performance

 JSX

• JSX stands for JavaScript XML.

• It is a JavaScript syntax extension.

• Its an XML or HTML like syntax used by ReactJS.

• This syntax is processed into JavaScript calls of React Framework.

• It extends the ES6 so that HTML like text can co-exist with JavaScript react code.

• It is not necessary to use JSX, but it is recommended to use in ReactJS.

 Components

• ReactJS is all about components.

• ReactJS application is made up of multiple components, and each component has its

own logic and controls.

• These components can be reusable which help you to maintain the code when

working on larger scale projects.

 One-way Data Binding

• ReactJS is designed in such a manner that follows unidirectional data flow or one-

way data binding.

• The benefits of one-way data binding give you better control throughout the

application.

• If the data flow is in another direction, then it requires additional features. It is

because components are supposed to be immutable and the data within them

cannot be changed.

 Virtual DOM

• A virtual DOM object is a representation of the original DOM object.

• It works like a one-way data binding.

• Whenever any modifications happen in the web application, the entire UI is re-

rendered in virtual DOM representation.

• Then it checks the difference between the previous DOM representation and

new DOM.

• Once it has done, the real DOM will update only the things that have actually

changed. This makes the application faster, and there is no wastage of memory.

 Simplicity

• ReactJS uses JSX file which makes the application simple and to code as well as

understand.

• We know that ReactJS is a component-based approach which makes the code

reusable as your need.

• This makes it simple to use and learn.

 Performance

• ReactJS is known to be a great performer. This feature makes it much better

than other frameworks out there today.

• The reason behind this is that it manages a virtual DOM.

• The DOM is a cross-platform and programming API which deals with HTML,

XML or XHTML.

• The DOM exists entirely in memory. Due to this, when we create a component,

we did not write directly to the DOM.

• Instead, we are writing virtual components that will turn into the DOM leading

to smoother and faster performance.

 Adding React to an HTML Page

<!DOCTYPE html>

<html lang="en">

<title>Test React</title>

<!-- Load React API -->

<script src= "https://unpkg.com/react@16/umd/react.production.min.js"></script>

<!-- Load React DOM-->

<script src= "https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>

<!-- Load Babel Compiler -->

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<body>

<script type="text/babel">

// JSX Babel code goes here

</script>

</body>

</html>

 What is Babel?

• Babel is a JavaScript compiler that can translate markup or programming

languages into JavaScript.

• With Babel, you can use the newest features of JavaScript (ES6 - ECMAScript

2015).

• Babel is available for different conversions. React uses Babel to convert JSX into

JavaScript.

 What is JSX?

• JSX stands for JavaScript XML.

• JSX is an XML/HTML like extension to JavaScript.

• JSX is a combination of HTML and JavaScript.

• You can embed JavaScript objects inside the HTML elements.

• JSX is not supported by the browsers, as a result Babel compiler transcompile

the code into JavaScript code.

• JSX makes codes easy and understandable.

• It is easy to learn if you know HTML and JavaScript.

https://www.geeksforgeeks.org/reactjs-introduction-jsx/
https://www.geeksforgeeks.org/reactjs-using-babel/

 Example

• Here, we will write JSX syntax in JSX file and see the corresponding JavaScript

code which transforms by preprocessor(babel).

 JSX File

<div>Hello ReactJS</div>

 Corresponding Output

React.createElement("div", null, "Hello ReactJS ");

• The above line creates a react element and passing three arguments inside

where the first is the name of the element which is div, second is

the attributes passed in the div tag, and last is the content you pass which is

the "Hello ReactJS."

 React DOM Render

• The method ReactDom.render() is used to render (display) HTML elements:

 Example

<!DOCTYPE html>

<html lang="en">

<title>Test React</title>

<script src=

"https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@16/umd/react-

dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<body>

<div id="id01">Hello World!</div>

<script type="text/babel">

ReactDOM.render(

<h1>Hello React!</h1>,

document.getElementById('id01'));

</script>

</body>

</html>

• Output

 JSX Expressions

• Expressions can be used in JSX by wrapping them in curly {} braces.

<!DOCTYPE html>

<html lang="en">

<title>Test React</title>

<script src=
"https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@16/umd/react-
dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<body>

<div id="id01">Hello World!</div>

<script type="text/babel">

const name = 'John Doe';

ReactDOM.render(

<h1>Hello {name}</h1>,

document.getElementById('id01'));

</script>

</body>

</html>

• Output

 React Elements

• React applications are usually built around a single HTML element.

• React developers often call this the root node (root element):

 Example

<!DOCTYPE html>

<html lang="en">

<title>Test React</title>

<script src= "https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@16/umd/react-
dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<body>

<div id="root"></div>

<script type="text/babel">

ReactDOM.render(<h1>Hello React!</h1>, document.getElementById('root'));

</script>

Output

</body>

</html>

 Example

<!DOCTYPE html>

<html lang="en">

<title>Test React</title>

<script src=

"https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@16/umd/react-

dom.production.min.js"></script>

<script src="https://unpkg.com/babel-

standalone@6.15.0/babel.min.js"></script>

<body>

<div id="root"></div>

<script type="text/babel">

function tick() {

const element = (<h1>{new Date().toLocaleTimeString()}</h1>);

ReactDOM.render(element, document.getElementById('root'));

}

setInterval(tick, 1000);

</script>

</body>

</html>

Output

 Advantage of ReactJS

 Easy to Learn and Use

• ReactJS is much easier to learn and use. It comes with a good

supply of documentation, and training resources.

• Any developer who comes from a JavaScript background can easily

understand and start creating web apps using React.

• It is not fully featured but has the advantage of open-source

JavaScript User Interface(UI) library, which helps to execute the

task in a better manner.

 Creating Dynamic Web Applications Becomes Easier

• To create a dynamic web application specifically with HTML strings

was tricky because it requires a complex coding, but React JS

solved that issue and makes it easier.

• It provides less coding and gives more functionality. It makes use

of the JSX(JavaScript Extension), which is a particular syntax letting

HTML quotes and HTML tag syntax to render particular

subcomponents.

• It also supports the building of machine-readable codes.

 Reusable Components

• A ReactJS web application is made up of multiple components, and each

component has its own logic and controls.

• These components are responsible for outputting a small, reusable piece

of HTML code which can be reused wherever you need them.

• The reusable code helps to make your apps easier to develop and

maintain.

• These Components can be nested with other components to allow

complex applications to be built of simple building blocks.

• ReactJS uses virtual DOM based mechanism to fill data in HTML DOM.

The virtual DOM works fast as it only changes individual DOM elements

instead of reloading complete DOM every time.

 Performance Enhancement

• ReactJS improves performance due to virtual DOM. The DOM is a cross-

platform and programming API which deals with HTML, XML or XHTML.

• Most of the developers faced the problem when the DOM was updated,

which slowed down the performance of the application. ReactJS solved

this problem by introducing virtual DOM.

• The React Virtual DOM exists entirely in memory and is a representation

of the web browser's DOM.

• Due to this, when we write a React component, we did not write directly

to the DOM.

• Instead, we are writing virtual components that react will turn into the

DOM, leading to smoother and faster performance.

 The Support of Handy Tools

• React JS has also gained popularity due to the presence of a handy

set of tools.

• These tools make the task of the developers understandable and

easier.

• The React Developer Tools have been designed as Chrome and

Firefox dev extension and allow you to inspect the React

component hierarchies in the virtual DOM.

• It also allows you to select particular components and examine

and edit their current props and state.

 Known to be SEO Friendly

• Traditional JavaScript frameworks have an issue in dealing with

SEO. The search engines generally having trouble in reading

JavaScript-heavy applications.

• Many web developers have often complained about this problem.

• ReactJS overcomes this problem that helps developers to be easily

navigated on various search engines.

• It is because React.js applications can run on the server, and the

virtual DOM will be rendering and returning to the browser as a

regular web page.

 The Benefit of Having JavaScript Library

• Today, ReactJS is choosing by most of the web developers.

• It is because it is offering a very rich JavaScript library.

• The JavaScript library provides more flexibility to the web

developers to choose the way they want.

 Scope for Testing the Codes

• ReactJS applications are extremely easy to test.

• It offers a scope where the developer can test and debug their

codes with the help of native tools.

 Disadvantage of ReactJS

 The high pace of development

• The high pace of development has an advantage and disadvantage

both.

• In case of disadvantage, since the environment continually

changes so fast, some of the developers not feeling comfortable to

relearn the new ways of doing things regularly.

• It may be hard for them to adopt all these changes with all the

continuous updates.

• They need to be always updated with their skills and learn new

ways of doing things.

 Poor Documentation

• It is another cons which are common for constantly updating

technologies.

• React technologies updating and accelerating so fast that there is

no time to make proper documentation.

• To overcome this, developers write instructions on their own with

the evolving of new releases and tools in their current projects.

 View Part

• ReactJS Covers only the UI Layers of the app and nothing else.

• So you still need to choose some other technologies to get a

complete tooling set for development in the project.

 JSX as a barrier

• ReactJS uses JSX. It's a syntax extension that allows HTML with

JavaScript mixed together.

• This approach has its own benefits, but some members of the

development community consider JSX as a barrier, especially for

new developers.

• Developers complain about its complexity in the learning curve.

 Example 1

JSX:

 Output

 Example 2

Without JSX:

 Output

 React Components

• Components are independent and reusable bits of code.

• They serve the same purpose as JavaScript functions, but work in

isolation and return HTML.

• A Component is considered as the core building blocks of a React

application.

• It makes the task of building UIs much easier. Each component

exists in the same space, but they work independently from one

another and merge all in a parent component, which will be the

final UI of your application.

• Every React component have their own structure, methods as well
as APIs.

• They can be reusable as per your need. For better understanding,
consider the entire UI as a tree.

• Here, the root is the starting component, and each of the other
pieces becomes branches, which are further divided into sub-
branches

.

 In ReactJS, we have mainly two types of components. They are

• Functional Components

• Class Components

 Functional Components

• In React, function components are a way to write components that

only contain a render method and don't have their own state.

• They are simply JavaScript functions that may or may not receive

data as parameters.

• We can create a function that takes props(properties) as input and

returns what should be rendered.

• A Function component also returns HTML, and behaves much the same way as

a Class component, but Function components can be written using much less

code, are easier to understand

 Create Your First Component

• When creating a React component, the component's name MUST start with an

upper case letter.

 A valid functional component can be shown in the below example.

.

 Class Component

• A class component must include the extends

React.Component statement.

• This statement creates an inheritance to React.Component, and

gives your component access to React.Component's functions.

• The component also requires a render() method, this method

returns HTML.

• Class components are more complex than functional components.

• It requires you to extend from React.

• Component and create a render function which returns a React

element.

• You can pass data from one class to other class components.

• You can create a class by defining a class that extends Component

and has a render function.

 Valid class component is shown in the below example.

class MyComponent extends React.Component {

render() {

return (

<div>This is main component.</div>

);

}

}

 Rendering a Component

• Now your React application has a component called Car, which

returns an <h2> element.

• To use this component in your application, use similar syntax as

normal HTML: <Car />

 Example

 Display the Car component in the "root" element:

import React from 'react';

import ReactDOM from 'react-dom/client';

function Car() { Output

return <h2>Hi, I am a Car!</h2>;

}

const root =

ReactDOM.createRoot(document.getElementById('root'));

root.render(<Car />);

 Props

• Components can be passed as props, which stands for properties.

• Props are like function arguments, and you send them into the

component as attributes.

• They are read-only components.

• It is an object which stores the value of attributes of a tag and work

similar to the HTML attributes.

• It gives a way to pass data from one component to other components.

• It is similar to function arguments.

• Props are passed to the component in the same way as arguments

passed in a function.

 Example

• Use an attribute to pass a color to the Car component, and use it
in the render() function:

• Output

 Example

• App.js

• Main.js

 Components in Components

• We can refer to components inside other components:

 Example

• Use the Car component inside the Garage component:

• Output

 Components in Files

• React is all about re-using code, and it is recommended to split your

components into separate files.

• To do that, create a new file with a .js file extension and put the code inside it:

 To be able to use the Car component, you have to import the file in your

application.

• Example

• Now we import the "Car.js" file in the application, and we can use

the Car component as if it was created here.

• Output

 React Conditional Rendering

• In React, conditional rendering works the same way as the conditions work in

JavaScript.

• We use JavaScript operators to create elements representing the current state, and

then React Component update the UI to match them.

• From the given scenario, we can understand how conditional rendering works.

Consider an example of handling a login/logout button.

• The login and logout buttons will be separate components.

• If a user logged in, render the logout component to display the logout button.

• If a user not logged in, render the login component to display the login button. In

React, this situation is called as conditional rendering.

 There is more than one way to do conditional rendering in React.

They are given below.

• if

• ternary operator

• logical && operator

• switch case operator

• Conditional Rendering with enums

 if

• It is the easiest way to have a conditional rendering in React in the render

method.

• It is restricted to the total block of the component.

• IF the condition is true, it will return the element to be rendered.

• if JavaScript operator to decide which component to render.

 It can be understood in the below example.

 Logical && operator

• This operator is used for checking the condition. If the condition is true, it will

return the element right after &&, and if it is false, React will ignore and skip it.

 Syntax

{

condition &&

// whatever written after && will be a part of output.

}

• We can understand the behavior of this concept from the below example.

• If you run the below code, you will not see the alert message because the

condition is not matching.

(' reactjs' == ' reactjs ') && alert('This alert will never be shown!')

• If you run the below code, you will see the alert message because the condition
is matching.

(10 > 5) && alert('This alert will be shown!')

 Example

• You can see in the above output that as the condition (10 > 5) evaluates to true,

the alert message is successfully rendered on the screen.

 Ternary operator

• The ternary operator is used in cases where two blocks alternate given a certain

condition.

• This operator makes your if-else statement more concise.

• It takes three operands and used as a shortcut for the if statement.

 Example

render() {

const isLoggedIn = this.state.isLoggedIn;

return (

<div>

Welcome {isLoggedIn ? 'Back' : 'Please login first'}.

</div>

);

}

 Switch case operator

• Sometimes it is possible to have multiple conditional renderings.

• In the switch case, conditional rendering is applied based on a different state.

 Example

Conditional Rendering with enums

• In JavaScript, an object can be used as an enum when it is used as a map of key-
value pairs.

• An enum is a great way to have a multiple conditional rendering.

• It is more readable as compared to switch case operator.

• It is perfect for mapping between different state.

• It is also perfect for mapping in more than one condition.

• It can be understood in the below example.

 Example

const ENUMOBJECT = {

a: '1',

b: '2',

c: '3',

};

 Example

• We want to create three different components Foo, Bar and Default. We want

to show these components based on a certain state.

const Foo = () => {

return <button>FOO</button>;

};

const Bar = () => {

return <button>BAR</button>;

};

const Default = () => {

return <button>DEFAULT</button>;

};

 We’ll now be creating an object that can be used as an enum.

const ENUM_STATES = {

foo: <Foo />,

bar: <Bar />,

default: <Default />

};

 Let’s now create a function that will take state as a parameter and return

components based on “state”. The “EnumState” function below is quite self-

explanatory.

function EnumState({ state }) {

return <div>{ENUM_STATES[state]}</div>;

}

• The state property key above helps us to retrieve the value from the object.
You can see that it is much more readable compared to the switch case
operator.

• Let’s create an Enum component, which will pass the values of “state” to the
function “EnumState”.

class Enum extends React.Component {

render() {

return (

<div>

<h1>Conditional Rendering with enums</h1>

<EnumState state="default"></EnumState>

<EnumState state="bar"></EnumState>

<EnumState state="foo"></EnumState>

</div>

);

}

}

ReactDOM.render(<Enum />, document.getElementById("app"));

 React Lists

• Lists are very useful when it comes to developing the UI of any website.

• Lists are mainly used for displaying menus on a website, for example, the

navbar menu.

• In regular JavaScript, we can use arrays for creating lists.

• you will render lists with some type of loop.

• The JavaScript map() array method is generally the preferred method.

 Example

import React from 'react';

import ReactDOM from 'react-dom';

const numbers = [1,2,3,4,5];

const updatedNums = numbers.map((number)=>{

return {number};

});

ReactDOM.render(

 Output

{updatedNums}

,

document.getElementById('root')

);

 React Events

• An event is an action that could be triggered as a result of the user action or

system generated event.

• For example, a mouse click, loading of a web page, pressing a key, window

resizes, and other interactions are called events.

• React has its own event handling system which is very similar to handling events

on DOM elements.

• The react event handling system is known as Synthetic Events. The synthetic

event is a cross-browser wrapper of the browser's native event.

• Handling events with react have some syntactic differences from handling

events on DOM. These are:

• React events are named as camelCase instead of lowercase.

• With JSX, a function is passed as the event handler instead of a string. For

example:

 Event declaration in plain HTML:

 Event declaration in React:

 Example

 Output

 Passing Arguments

• To pass an argument to an event handler, use an arrow function.

 Example:

• Send "Goal!" as a parameter to the shoot function, using arrow function:

 Output

 React Event Object

• Event handlers have access to the React event that triggered the function.

• In our example the event is the "click" event.

 Example:

• Arrow Function: Sending the event object manually:

 Output

Unit-2: Forms and Hooks in React.JS

Unit-2: Forms and Hooks in React.JS

2.3 Forms: (Adding forms, Handling forms, Submitting forms)

2.3.1 event.target.name and event. Target.event, React

Memo

2.3.2 Components (TextArea, Drop down list (SELECT))

2.4 Hooks: Concepts and Advantages

2.4.1 useState, useEffect, useContext

2.4.2 useRef, useReducer, useCallback, useMemo

2.3.3 Hook: Building custom hook, advantages and use

➢ React Forms

• Forms are an integral part of any modern web application.

It allows the users to interact with the application as well

as gather information from the users.

• Forms can perform many tasks that depend on the nature

of your business requirements and logic such as

authentication of the user, adding user, searching,

filtering, booking, ordering, etc.

• A form can contain text fields, buttons, checkbox, radio

button, etc.

➢ Creating Form

• React offers a stateful, reactive approach to build a form.

• The component rather than the DOM usually handles the

React form.

• In React, the form is usually implemented by using

controlled components.

➢ There are mainly two types of form input in React.

• Uncontrolled component

• Controlled component

➢ Uncontrolled component

• The uncontrolled input is similar to the traditional HTML form inputs.

• The DOM itself handles the form data.

• Here, the HTML elements maintain their own state that will be updated

when the input value changes.

• To write an uncontrolled component, you need to use a ref to get form

values from the DOM.

• In other words, there is no need to write an event handler for every

state update.

• You can use a ref to access the input field value of the form from the

DOM.

➢ Controlled Component

• In HTML, form elements typically maintain their own state and update it

according to the user input.

• In the controlled component, the input form element is handled by the

component rather than the DOM.

• Here, the mutable state is kept in the state property and will be updated only

with setState() method.

• Controlled components have functions that govern the data passing into them

on every onChange event, rather than grabbing the data only once, e.g., when

you click a submit button.

• This data is then saved to state and updated with setState() method.

• This makes component have better control over the form elements and data.

➢ Example

• Add a form that allows users to enter their name:

➢ Output

• This will work as normal, the form will submit and the page will

refresh.

• But this is generally not what we want to happen in React.

• We want to prevent this default behavior and let React control

the form.

➢ Handling Forms

• Handling forms is about how you handle the data when it

changes value or gets submitted.

• In HTML, form data is usually handled by the DOM.

• In React, form data is usually handled by the components.

• When the data is handled by the components, all the data is

stored in the component state.

• You can control changes by adding event handlers in the

onChange attribute.

• We can use the useState Hook to keep track of each inputs value

and provide a "single source of truth" for the entire application.

➢ Example:

• Use the useState Hook to manage the input:

➢ Submitting Forms

• You can control the submit action by adding an event handler in

the onSubmit attribute for the < form > :

➢ Example :

• Add a submit button and an event handler in the onSubmit attribute:

.

➢ Output

➢ event.target.name

• The target property returns the element where the event occured.

• The target property is read-only.

• The target property returns the element on which the event occurred,

opposed to the currentTarget property, which returns the element whose

event listener triggered the event.

➢ Syntax

event.target

https://www.w3schools.com/jsref/event_currenttarget.asp

➢ In React, event. target refers to the HTML element that triggered the event.

For instance, if you have a button component in React, you can add an onClick

listener to it to listen for click events.

➢ When the button is clicked, the event object that is passed to the handler

function will have the event .

➢ Example

➢ Example

➢ Output

➢ React Memo

• Using memo will cause React to skip rendering a component if its props have

not changed.

• This can improve performance.

• React Memo is a higher-order component that wraps around a component to

memoize the rendered output and avoid unnecessary renderings.

• This improves performance because it memoizes the result and skips

rendering to reuse the last rendered result.

• React.memo is a function that you can use to optimize the render

performance of pure function components and hooks.

➢ Example:

const MyComponent = React.memo(function MyComponent(props) {

/* render using props */

});

➢ Components (TextArea, Drop down list (SELECT))

➢ TextArea

• One frequently used form control is textarea, which is used to get multi-line

input from a user. It's different from a normal text input, which allows only

single-line input.

• A good example of a use case for textarea is an address field.

• TextArea is a controlled component.

• This means that the visible text will always match the contents of the value

prop. In this example, notice how value is stored within this. state .

• The onChange function will set the new value when the user enters or

removes a character in the textarea.

➢ Example

function TextAreaExample() { const [value,

setValue] = React.useState(''); return (

<div>

<Label text="Business description">

<TextArea

value={value}

placeholder="Tell us about your business"

onChange={v => setValue(v)}

/>

</Label>

</div>

);

}

➢ Dropdowns

• A Dropdown in React JS list is a graphical user interface element that gives

users a list of possibilities and allows them to select one value from the list.

• There are two statuses in the dropdown menu: active and inactive.

• Only one discount is displayed while the dropdown list is fixed.

• By activating the list, all accessible options in the list are revealed, and This

situation may alter this value.

• You may use a dropdown list as one of many different lists in your apps.

• It's an excellent technique to provide various options and let the user select

one from the list.

➢ Creating a Dropdown in React

Js import * as React from 'react';

const App = () => { return (

<div>

<select>

<option value="fruit">Fruit</option>

<option value="vegetable">Vegetable</option>

<option value="meat">Meat</option>

</select>

</div>

);

};

export default App;

➢ Hooks

• Hooks are used to give functional components an access to use the states and

are used to manage side-effects in React.

• They let developers use state and other React features without writing a class

For example- State of a component It is important to note that hooks are not

used inside the classes.

• Hooks allow us to "hook" into React features such as state and lifecycle

methods.

• Hooks are backward-compatible, which means it does not contain any

breaking changes. Also, it does not replace your knowledge of React concepts.

➢ When to use a Hooks

• If you write a function component, and then you want to add some state to it,

previously you do this by converting it to a class. But, now you can do it by

using a Hook inside the existing function component.

➢ Rules for using hooks

• Only functional components can use hooks

• Calling of hooks should always be done at top level of components

• Hooks should not be inside conditional statements

➢ Advantages of Using React Hooks

❑ Simplified Code

• One of the primary benefits of using React Hooks is that it simplifies the

codebase.

• Hooks eliminate the need for class components, which often require more

boilerplate code and can be harder to read and understand. With Hooks,

developers can write cleaner, more intuitive code.

➢ Improved Reusability

• React Hooks make it easier to reuse stateful logic across components. With

custom hooks, developers can extract component logic into reusable

functions.

• This promotes cleaner, more modular code, and reduces duplication.

❑ Easier Testing and Debugging

• Functional components that use Hooks are generally easier to test and debug

than class components.

• Since Hooks promote separation of concerns and a more functional

programming style, developers can write more predictable and testable code.

❑ Reduced Bundle Size

• By using functional components with Hooks instead of class components,

developers can reduce the overall size of their application bundle.

• This can lead to faster load times and improved performance for users.

➢ React Hooks Installation

❑ To use React Hooks, we need to run the following commands:

$ npm install react@16.8.0-alpha.1 --save

$ npm install react-dom@16.8.0-alpha.1 --save

• The above command will install the latest React and React-DOM alpha versions

which support React Hooks.

• Make sure the package.json file lists the React and React-DOM dependencies

as given below.

"react": "^16.8.0-alpha.1",

"react-dom": "^16.8.0-alpha.1",

➢ React.js — Basic Hooks (useState , useEffect , & useContext)

❑ useState

• The React useState Hook allows us to track state in a function component.

• State generally refers to data or properties that need to be tracking in an

application.

➢ Import useState

• To use the useState Hook, we first need to import it into our component.

➢ Example:

➢ Initialize useState

• We initialize our state by calling useState in our function component.

• useState accepts an initial state and returns two values:

• The current state.

• A function that updates the state.

➢ React useEffect Hooks

• The useEffect Hook allows you to perform side effects in your components.

• Some examples of side effects are: fetching data, directly updating the DOM,

and timers.

• useEffect accepts two arguments. The second argument is optional.

• useEffect(<function>, <dependency>)

➢ Example

➢ Output

➢ useContext Hook

• The useContext Hook provides function components access to

the context value for a context object. It:

• Takes the context object (i.e., value returned from React.createContext) as the

one argument it accepts.

• And returns the current context value as given by the nearest context provider.

• With this in mind, we’ll have the <Child /> component in our example use the

useContext hook to access the data property available in our application

context and render its value in its markup.

➢ Example

import React, { createContext, useContext } from

"react"; const Context = createContext(); const Child = ()

=> {

const context = useContext(Context);

return <div>{context.data}</div>;

};

const App = () => {

return (

<Context.Provider value={{ data: "Data from context!" }}>

<Child />

</Context.Provider>

);

};

➢ React useRef Hook

• The useRef is a hook that allows to directly create a reference to the DOM

element in the functional component.

• The useRef hook is a new addition in React 16.8. To learn useRef the user

should be aware about refs in React. Unlike useState if we change a value in

useRef it will not re-render the webpage

➢ Reasons to use useRef hook

• The main use of useRef hook is to access the DOM elements in a more efficient

way as compared to simple refs. Since useRef hooks preserve value across

various re-renders and do not cause re-renders whenever a value is changed

they make the application faster and helps in caching and storing previous

values

➢ Importing useRef hook

• To import the useRef hook, write the following code at the top level of your

component

➢ Example

import React, {Fragment, useRef} from 'react'; function

App() {

// Creating a ref object using useRef hook

const focusPoint = useRef(null); const

onClickHandler = () => {

focusPoint.current.value =

"The quick brown fox jumps over the lazy dog";

focusPoint.current.focus();

};

return (

<Fragment>

<div> <button onClick={onClickHandler}> ACTION </button> </div>

<label>

Click on the action button to focus

and populate the text.

</label>

<textarea ref={focusPoint} />

</Fragment>

);

};

export default App;

➢ useReducer

• The useReducer(reducer, initialState) hook accepts 2 arguments:

the reducer function and the initial state. The hook then returns

an array of 2 items: the current state and the dispatch function.

• The useReducer Hook is similar to the useState Hook.

• It allows for custom state logic.

• If you find yourself keeping track of multiple pieces of state that

rely on complex logic, useReducer may be useful.

➢ Syntax

• The useReducer Hook accepts two arguments.

useReducer(<reducer>, <initialState>)

➢ Example

➢ useCallback

• The React useCallback Hook returns a memoized callback

function.

• Think of memoization as caching a value so that it does not need

to be recalculated.

• This allows us to isolate resource intensive functions so that they

will not automatically run on every render.

• The useCallback Hook only runs when one of its dependencies

update.

• This can improve performance.

.

➢ Example

import React, { useState, useCallback } from 'react'

var funccount = new Set(); const App = () => {

const [count, setCount] = useState(0) const

[number, setNumber] = useState(0) const

incrementCounter = useCallback(() => {

setCount(count + 1)

}, [count])

const decrementCounter = useCallback(() => {

setCount(count - 1)

}, [count])

const incrementNumber = useCallback(() => {

setNumber(number + 1)

}, [number])

funccount.add(incrementCounter);

funccount.add(decrementCounter);

funccount.add(incrementNumber);

alert(funccount.size);

return (

<div>

Count: {count}

<button onClick={incrementCounter}>

Increase counter

</button>

<button

onClick={decrementCounter}>

Decrease Counter

</button>

<button onClick={incrementNumber}>

increase number

</button>

</div>)} export

default App;

➢ Output

➢ useMemo

• The React useMemo Hook returns a memoized value. Think of

memoization as caching a value so that it does not need to be

recalculated.

• The useMemo Hook only runs when one of its dependencies update.

This can improve performance.

• The React useMemo Hook returns a memoized value.

• Think of memoization as caching a value so that it does not need to be

recalculated.

• The useMemo Hook only runs when one of its dependencies update.

• This can improve performance.

➢ Example

➢ Building a custom hook

• Creating a custom hook is the same as creating a JavaScript

function whose name starts with “use”. It can use other hooks

inside it, return anything you want it to return, take anything as

parameters.

• Note: It is important to name your custom hooks starting with

“use”, because without it React can’t realize that it is a custom

hook and therefore can’t apply the rules of hooks to it. So, you

should name it starting with “use”.

➢ Example

➢ Advantages of Building a custom hook

❑ Reusability

• Custom React JS hooks offer reusability as when a custom hook is

created, it can be reused easily, which ensures clean code and

reduces the time to write the code.

• It also enhances the rendering speed of the code as a custom

hook does not need to be rendered again and again while

rendering the whole code.

https://www.turing.com/blog/want-software-developer-jobs-learn-how-to-write-a-clean-code-first/

➢ Readability

• Instead of using High-Order Components (HOCs), one can use

custom hooks to improve the readability of the code.

• Complex codes can become hard to read if layers of providers

surround the components, consumers, HOCs, render props, and

other abstractions, generally known as wrapper hell.

• On the other hand, using custom React JS hooks can provide

cleaner logic and a better way to understand the relationship

between data and the component.

❑ Testability

• Generally, the test containers and the presentational components

are tested separately in React.

• This is not a trouble when it comes to unit tests. But, if a

container contains several HOCs, it becomes difficult as you will

have to test the containers and the components together to do

the integration tests.

Unit-3: Fundamentals of Angular

Unit-3: Fundamentals of Angular

3.1 Concepts and characteristics of Angular JS

3.1.1 Expressions in Angular JS (Numbers, Strings, Objects, Arrays)

3.1.2 Setting up Environment, Angular JS Filters

3.1.3 Understanding MVC (Model, View, Controller) architecture

3.2 AngularJS Directive (ng-app, ng-init, ng-controller, ng-model, ng-repeat)

3.2.1 Some other dire ctives: ng-class, ng-animate, ng-show, ng-hide

3.2.2 Expressions and Controllers

3.2.3 Filters (Uppercase, Lowercase, Currency, order by)

➢ History of AngularJS:

• AngularJS was originally developed in 2008-2009 by Miško

Hevery and Adam Abrons at Brat Tech LLC, as software for

the online JSON storage service, in order to ease to

development of the applications for the enterprise, that

has been valued by the megabyte.

• It is now maintained by Google.

• AngularJS was released with version 1.6, which contains

the component-based application architecture concept.

➢ AngularJS

• AngularJS is a Javascript open-source front-end structural

framework that is mainly used to develop single-page web

applications(SPAs).

• It is a continuously growing and expanding framework which

provides better ways for developing web applications.

• It changes the static HTML to dynamic HTML.

• Its features like dynamic binding and dependency injection

eliminate the need for code that we have to write otherwise.

•

AngularJS is rapidly growing and because of this reason,

we have different versions of AngularJS with the latest

stable being 1.7.9.

• It is also important to note that Angular is different from

AngularJS.

• It is an open-source project which can be freely used and

changed by anyone.

• It extends HTML attributes with Directives, and data is

bound with HTML.

• AngularJS is a JavaScript framework written in JavaScript.

➢ Why use AngularJS?

❑ Easy to work with:

• All you need to know to work with AngularJS is the basics of HTML, CSS,

and Javascript, not necessary to be an expert in these technologies.

❑ Time-saving:

• AngularJs allows us to work with components and hence we can use

them again which saves time and unnecessary code.

❑ Ready to use a template:

• AngularJs is mainly plain HTML, and it mainly makes use of the plain

HTML template and passes it to the DOM and then the AngularJS

compiler. It traverses the templates and then they are ready to use.

❑ Directives:

• AngularJS’s directives allow you to extend HTML with custom

elements and attributes.

• This enables you to create reusable components and define

custom behaviors for your application.

• Directives make it easier to manipulate the DOM, handle events,

and encapsulate complex UI logic within a single component.

➢ Features of AngularJS

• The core features of AngularJS are as follows −

❑ Data-binding

• It is the automatic synchronization of data between model and view

components.

❑ Scope

• These are objects that refer to the model. They act as a glue between

controller and view.

❑ Controller

• These are JavaScript functions bound to a particular scope.

❑ Services

• AngularJS comes with several built-in services such as $http to make a

XMLHttpRequests. These are singleton objects which are instantiated only

once in app.

❑ Filters

• These select a subset of items from an array and returns a new array.

❑ Directives

• Directives are markers on DOM elements such as elements,

attributes, css, and more.

• These can be used to create custom HTML tags that serve as new,

custom widgets. AngularJS has built-in directives such as ngBind,

ngModel, etc.

❑ Templates

• These are the rendered view with information from the controller and

model.

• These can be a single file (such as index.html) or multiple views in one

page using partials.

❑ Routing −

• It is concept of switching views.

❑ Model View Whatever −

• MVW is a design pattern for dividing an application into different parts

called Model, View, and Controller, each with distinct responsibilities.

• AngularJS does not implement MVC in the traditional sense, but rather

something closer to MVVM (Model-View-ViewModel). The Angular JS

team refers it humorously as Model View Whatever.

❑ Deep Linking −

• Deep linking allows to encode the state of application in the URL so that

it can be bookmarked.

• The application can then be restored from the URL to the same state.

❑ Dependency Injection −

• AngularJS has a built-in dependency injection subsystem that

helps the developer to create, understand, and test the

applications easily.

➢ AngularJS - Environment Setup

• When you open the link https://angularjs.org / , you will see there

are two options to download AngularJS library −

https://angularjs.org/
https://angularjs.org/

• View on GitHub − By clicking on this button, you are diverted to
GitHub and get all the latest scripts.

• Download AngularJS 1 − By clicking on this button, a screen you
get to see a dialog box shown as −

➢ CDN access − You also have access to a CDN. The CDN gives you

access to regional data centers. In this case, the Google host. The

CDN transfers the responsibility of hosting files from your own

servers to a series of external ones. It also offers an advantage

that if the visitor of your web page has already downloaded a

copy of AngularJS from the same CDN, there is no need to

redownload it.

➢ AngularJS Extends HTML

• AngularJS extends HTML with ng-directives.

• The ng-app directive defines an AngularJS application.

• The ng-model directive binds the value of HTML controls (input,

select, textarea) to application data.

• The ng-bind directive binds application data to the HTML view.

➢ Example

➢ Output

➢ Expressions in Angular JS (Numbers, Strings, Objects, Arrays)

• Expressions are variables which were defined in the double

braces {{ }}.

➢ Syntax:

• A simple example of an expression is {{5 + 6}}.

• Angular.JS expressions are used to bind data to HTML the same

way as the ng-bind directive.

• AngularJS displays the data exactly at the place where the

expression is placed.

➢ Example

➢ Example Output

<! DOCTYPE html >

< html >

< head><meta chrset = "UTF 8" >

< title>Event Registration</title> </head >

body > <

< script src = "https://code.angularjs.org/1.6.9/angular - route.js"></script>

< script src = "https://code.angularjs.org/1.6.9/angular.min.js"></script >

< h1> Guru99 Global Event</h 1>

< div ng - app=""> Addition : {{6+9}} </div>

< /body >

< /html >

➢ Angular.JS Numbers

• Expressions can be used to work with numbers as well. Let’s look

at an example of Angular.JS expressions with numbers.

• In this example, we just want to show a simple multiplication of 2

number variables called margin and profit and displayed their

multiplied value.

➢ Example

➢ Output

➢ AngularJS Strings

• Expressions can be used to work with strings as well. Let’s look at

an example of Angular JS expressions with strings.

• In this example, we are going to define 2 strings of “firstName”

and “lastName” and display them using expressions accordingly.

➢ Example

➢ Angular.JS Objects

• Expressions can be used to work with JavaScript objects as well.

• Let’s look at an example of Angular.JS expressions with

javascript objects. A javascript object consists of a name-value

pair.

• Below is an example of the syntax of a javascript object.

➢ Syntax:

var car = {type:"Ford", model:"Explorer", color:"White"};

https://www.guru99.com/interactive-javascript-tutorials.html

➢ Example

➢ Output

➢ AngularJS Arrays

• Expressions can be used to work with arrays as well. Let’s look at

an example of Angular JS expressions with arrays.

• In this example, we are going to define an array which is going to

hold the marks of a student in 3 subjects. In the view, we will

display the value of these marks accordingly.

➢ Example

➢ Output

➢ AngularJS Filters

• AngularJS provides filters to transform data:

• currency Format a number to a currency format.

• date Format a date to a specified format.

• filter Select a subset of items from an array.

• json Format an object to a JSON string.

• limitTo Limits an array/string, into a specified number of

elements/characters.

• lowercase Format a string to lower case.

• number Format a number to a string.

• orderBy Orders an array by an expression.

• uppercase Format a string to upper case.

➢ Adding Filters to Expressions

• Filters can be added to expressions by using the pipe character |,

followed by a filter.

• The uppercase filter format strings to upper case:

➢ Example

➢ Output

➢ Understanding MVC (Model, View, Controller) architecture

➢ AngularJS - MVC Architecture

• MVC stands for Model View Controller.

• It is a software design pattern for developing web applications.

• It is very popular because it isolates the application logic from the user

interface layer and supports separation of concerns.

• Model View Controller or MVC as it is popularly called, is a software design

pattern for developing web applications.

• A Model View Controller pattern is made up of the following three parts −

➢ The Model

• The model is responsible for managing application data. It responds to the

request from view and to the instructions from controller to update itself .

➢ The View

• A presentation of data in a particular format, triggered by the controller's

decision to present the data.

• They are script-based template systems such as JSP, ASP, PHP and very easy to

integrate with AJAX technology.

➢ The Controller

• The controller responds to user input and performs interactions on the data

model objects.

• The controller receives input, validates it, and then performs business

operations that modify the state of the data model.

• AngularJS is a MVC based framework. In the coming chapters, we will see how

AngularJS uses MVC methodology.

➢ AngularJS – Directives

❑ ng - app directive

• The ng - app directive starts an AngularJS Application.

• It defines the root element. It automatically initializes or bootstraps the

application when the web page containing AngularJS Application is loaded.

• It is also used to load various AngularJS modules in AngularJS Application.

• In the following example, we define a default AngularJS application using ng -

app attribute of a <div> element .

❑ ng - init directive

• ng - init directive initializes an AngularJS Application data. It defines the initial

values for an AngularJS application.

• In following example, we'll initialize an array of countries. We're using JSON

syntax to define array of countries.

❑ ng - model directive:

• ng - model directive defines the model/variable to be used in AngularJS

Application.

• In following example, we've defined a model named "name".

❑ ng - repeat directive

• ng - repeat directive repeats html elements for each item in a collection. In

following example, we've iterated over array of countries.

❑ ng - controller Directive

• The AngularJS ng - controller directive adds a controller class to the view (your

application). It is the key aspect which specifies the principles behind the

Model - View - Controller design pattern.

• It facilitates you to write code and make functions and variables, which will be

parts of an object, available inside the current HTML element. This object is

called scope.

• This is supported by all HTML elements .

➢ Syntax:

➢ Example

➢ Output

❑ ng - class Directive

• The ng - class directive dynamically binds one or more CSS classes to an HTML

element.

• The value of the ng - class directive can be a string, an object, or an array.

• If it is a string, it should contain one or more, space - separated class names.

• As an object, it should contain key - value pairs, where the key is the class name

of the class you want to add, and the value is a boolean value. The class will

only be added if the value is set to true.

➢ Example

<!DOCTYPE html>

<html>

<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></s

cript>

<style>

.sky {

color:white;

background-color:lightblue;

padding:20px;

font-family:"Courier New";

}

.tomato { background-

color:coral; padding:40px;

font-family:Verdana;

}

</style>

<body ng-app="">

<p>Choose a class:</p>

< select ng - model="home">

< option value="sky">Sky</option >

< option value="tomato">Tomato</option >

< /select >

< div ng - class="home">

< h 1 > Welcome Home!</h 1 > Output

< p>I like it!</p >

< /div >

< /body >

< /html >

➢ Angular Animations

❑ What Does ngAnimate Do?

• The ngAnimate module adds and removes classes.

• The ngAnimate module does not animate your HTML elements.

• However, when ngAnimate notices certain events, such as hiding or showing an

HTML element, the element receives some pre-defined classes that can be

used to create animations.

➢ Example

<!DOCTYPE html>

<html>

<style>

div {

transition: all linear 0.5s;

background-color: lightblue;

height: 100px; width: 100%;

position: relative; top: 0;

left: 0;

}

.ng-hide { height: 0; width: 0;

background-color: transparent;

top:-200px; left: 200px;

}

</style>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">

</script>

<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angularanimate.js">

</script>

< body ng - app=" ngAnimate ">

< h 1 > Hide the DIV: <input type="checkbox" ng - model=" myCheck "></h 1 >

< div ng - hide=" myCheck "></div>

< /body >

< /html >

➢ Output

❑ ng - show Directive

• The AngularJS ng - show directive is used to show or hide the given HTML

element according to the expression given to the ng - show attribute.

• It shows the specified HTML element if the given expression is true, otherwise

it hides the HTML element.

• It is supported by all HTML elements.

➢ Example

<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.min.js">

</script>

<body ng-app="">

Show HTML element: <input type="checkbox" ng-model="myVar">

<div ng-show="myVar">

<h1>Welcome to Angulajs</h1>

<p>A solution of all technology.</p>

</div>

</body>

</html>

➢ Output

❑ ng - hide Directive

• The AngularJS ng - hide directive is used to hide the HTML element if the

expression is set to true.

• The element is shown if you remove the ng - hide CSS class and hidden, if you

add the ng - hide CSS class onto the element. The ng - hide CSS class is

predefined in AngularJS and sets the element's display to none.

➢ Example

➢ Output

➢ Expressions and Controllers

❑ AngularJS Expressions

• AngularJS expressions can be written inside double braces: {{ expression }}.

• AngularJS expressions can also be written inside a directive:

ngbind="expression".

• AngularJS will resolve the expression, and return the result exactly where the

expression is written.

• AngularJS expressions are much like JavaScript expressions: They can contain

literals, operators, and variables.

• Example {{ 5 + 5 }} or {{ firstName + " " + lastName }}

➢ Example

➢ Output

➢ If you remove the ng - app directive, HTML will display the expression as it is,

without solving it:

➢ Output

➢ AngularJS Controllers

• AngularJS applications are controlled by controllers.

• The ng-controller directive defines the application controller.

• A controller is a JavaScript Object, created by a standard JavaScript object

constructor.

➢ Example

➢ Output

➢ AngularJS Filters

• AngularJS Filters allow us to format the data to display on UI without changing

original format.

• Filters can be used with an expression or directives using pipe | sign.

{{expression | filterName:parameter }}

➢ Angular includes various filters to format data of different data types. The

following table lists important filters.

Filter Name Description

Uppercase Converts string to upper case.

Lowercase Converts string to lower case.

Currency Formats numeric data into specified currency format and

fraction.

orderBy Sorts an array based on specified predicate expression.

➢ Uppercase/lowercase filter

• The uppercase filter converts the string to upper case and lowercase filter
converts the string to lower case.

.

➢ Currency Filter

•
The currency filter formats a number value as a currency. When no currency symbol

is provided, default symbol for current locale is used.

• AngularJS currency filter is used to convert a number into a currency format.

• If no currency format is specified currency filter uses the local currency format.

Parameters: It contains 2 parameters as mentioned above and described below:

symbol: It is an optional parameter.

{{ expression | currency : 'currency_symbol' : 'fraction'}}

• Parameters: It contains 2 parameters as mentioned above and described below:

•
symbol: It is an optional parameter. It is used to specify the currency symbol. The

currency symbol can be any character or text.

• fractionsize: It is an optional parameter. It is used to specify the number of

decimals.

.

➢ Output

➢ orderBy filter

• The orderBy filter sorts an array based on specified expression predicate.

{{ expression | orderBy : predicate_expression : reverse}}

.

.

•

The above example displays a list of person names and phone numbers in a

particular order specified using orderBy:SortOrder filter.

•
SortOrder is a model property and will be set to the selected value in the

dropdown.

• Therefore, based on the value of SortOrder, ng-repeat directive will display the

data.

Unit-3: Angular JS: Single page application:

Unit-3: Angular JS: Single page application:

 Single page application using AngularJS

Create a module, Define Simple controller

Embedding AngularJS script in HTML

AngularJS’s routine capability

$routeProvider service from ngRoute

Navigating different pages

HTML DOM directives

ng-disabled, ng-show, ng-hide, ng-click

Modules (Application, Controller)

Forms (Events, Data validation, ng-click)

➢ Single page application using AngularJS

• Single page application (SPA) is a web application that fits on a

single page.

• All your code (JS, HTML, CSS) is retrieved with a single page load.

And navigation between pages performed without refreshing the

whole page.

➢ Advantages of Single Page Application:

❑ Team collaboration:

• Single-page applications are excellent when more than one developer is

working on the same project.

• It allows backend developers to focus on the API, while frontend developers

can focus on creating the user interface based on the backend API.

❑ Caching:

• The application sends a single request to the server and stores all the received

information in the cache. This proves beneficial when the client has poor

network connectivity.

❑ Fast and responsive:

• As only parts of the pages are loaded dynamically, it improves the website’s

speed.

❑ Debugging is easier:

• Debugging single-page applications with chrome is easier since

such applications are developed using AngularJS Batarang and

React developer tools.

❑ Linear user experience: Browsing or navigating through the

website is easy.

➢ Disadvantages of Single Page Application:

❑ SEO optimization:

• SPAs provide poor SEO optimization.

• This is because single-page applications operate on JavaScript and load data at

once server.

• The URL does not change and different pages do not have a unique URL.

• Hence it is hard for the search engines to index the SPA website as opposed to

traditional server-rendered pages.

❑ Browser history:

• A SPA does not save the users’ transition of states within the website. A

browser saves the previous pages only, not the state transition.

• Thus when users click the back button, they are not redirected to the previous

state of the website.

• To solve this problem, developers can equip their SPA frameworks with the

HTML5 History API.

❑ Security issues:

• Single-page apps are less immune to cross-site scripting (XSS) and since no new

pages are loaded, hackers can easily gain access to the website and inject new

scripts on the client-side.

❑ Memory Consumption:

• Since the SPA can run for a long time sometimes hours at a time, one needs to

make sure the application does not consume more memory than it needs.

Else, users with low-memory devices may face serious performance issues.

❑ Disabled Javascript:

• Developers need to chalk out ideas for users to access the information on the

website for browsers that have Javascript disabled.

➢ Pros

❑ No Page Refresh

• When you are using SPA, you don’t need to refresh the whole page, just load the

part of the page which needs to be changed. Angular allows you to preload

and cache all your pages, so you don’t need extra requests to download them.

❑ Better User Experience

• SPA feels like a native application: fast and responsive.

❑ Ability to Work Offline

• Even if user loses internet connection, SPA can still work because all the pages

are already loaded.

➢ Cons

❑ More Complex to Build

• You need to write pretty much JavaScript, handle shared state between pages,

manage permissions, etc.

❑ SEO

 • To index your SPA app, search engine crawlers should be able to execute

JavaScript. Only recently, Google and Bing started indexing Ajax-based pages by

executing JavaScript during crawling. You need to create static HTML snapshots

especially for search engines.

❑ Initial Load is Slow

 • SPA needs to download more resources when you open it.

❑ Client Should have JavaScript Enabled

• Of course, SPA requires JavaScript. But fortunately, almost everyone has JavaScript

enabled.

➢ Angular Application

• Every angular application starts from creating a module. Module is a container

for the different parts of your application: controllers, service, etc.

• Let's define a simple controller:

• After we created module and controller, we need to use them in our HTML.

• First of all, we need to include Angular script and app.js that we built.

• Then, we need to specify our module in ng-app attribute and controller in ng-

controller attribute.

➢ Output

➢ Creating a Module

• A module is created by using the AngularJS function angular.module

• The " myApp " parameter refers to an HTML element in which the application

will run.

• Now you can add controllers, directives, filters, and more, to your AngularJS

application.

➢ Adding a Controller

• Add a controller to your application, and refer to the controller with the ng -

controller directive:

• Output

➢ Modules and Controllers in Files

• It is common in AngularJS applications to put the module and the controllers

in JavaScript files.

• In this example, "myApp.js" contains an application module definition, while

"myCtrl.js" contains the controller:

• Output

➢ Embedding AngularJS script in HTML

❑ Angularjs include html:

• HTML does not support embedding html pages within html page.

• But we can achieve this functionality using AngularJS.

• AngularJS provides the ng-include directive to embed HTML pages within a

HTML page.

➢ Example:

❑ testable.htm

➢ Include above html file

.

➢ AngularJS’s routine capability

• Routing in AngularJS is used when the user wants to navigate to different pages in

an application but still wants it to be a single-page application.

• AngularJS routes enable the user to create different URLs for different content in

an application.

• The ngRoute module helps in accessing different pages of an application without

reloading the entire application.

• We can build Single Page Application (SPA) with AngularJS.

• It is a web app that loads a single HTML page and dynamically updates that page

as the user interacts with the web app.

• AngularJS supports SPA using routing module ngRoute. This routing module acts

based on the url.

• When a user requests a specific url, the routing engine captures that url and

renders the view based on the defined routing rules.

•

AngularJS also provides the ability to pass parameters in routes, which means,

it allows us to dynamically generate routes and handle different data based on

the parameters.

•

We can define route patterns with placeholders for parameters, and AngularJS

will extract the values from the URL and make them available in your controller.

• This parameterization of routes can be useful for creating dynamic pages or

handling specific data queries within a single-page application.

➢ $routeProvider

• $routeProvider is used to configure the routes. It helps to define what page to

display when a user clicks a link.

• It accepts either when() or otherwise() method.

• The ngRoute must be added as a dependency in the application module.

• With the $routeProvider you can define what page to display when a user

clicks a link.

• Define the $routeProvider using the config method of your application. Work

registered in the config method will be performed when the application is

loading.

• Routing allows us to create Single Page Applications. To do this, we use ngview

and ng-template directives, and $routeProvider services.

• We use $routeProvider to configure the routes.

https://www.geeksforgeeks.org/angularjs-routing/

•

The config() takes a function that takes the $routeProvider as a parameter and

the routing configuration goes inside the function.

•
The $routeProvider is a simple API that accepts either when() or otherwise()

method. We need to install the ngRoute module.

•

f you want to navigate to different pages in your application, but you also

want the application to be a SPA (Single Page Application), with no page

reloading, you can use the ngRoute module.

• The ngRoute module routes your application to different pages without

reloading the entire application.

• Now your application has access to the route module, which provides

the $ routeProvider .

• Use the $ routeProvider to configure different routes in your application:

➢ Navigating different pages

• We will be building an application, which will display a login page when a user

requests for base url - http://localhost/. Once the user logs in successfully, we

will redirect it to student page http://localhost/student/{username} where

username would be logged in user's name.

• In our example, we will have one layout page - index.html, and two HTML

templates - login.html and student.html.

• Index.html - layout view

• login.html - template

• student.html - template

➢ The following is a main layout view - index.html.

.

.

➢ HTML DOM directives

• AngularJS has directives for binding application data to the attributes of HTML

DOM elements.

❑ The following directives are used to bind application data to the attributes

of HTML DOM elements −

❑ ng - disabled Directive

• The ng - disabled directive binds AngularJS application data to the disabled

attribute of HTML elements.

• Output

➢ Application explained:

• The ng - disabled directive binds the application data mySwitch to the HTML

button's disabled attribute.

• The ng - model directive binds the value of the HTML checkbox element to the

value of mySwitch .

• If the value of mySwitch evaluates to true , the button will be disabled:

❑ ng - show Directive

• The ng - show directive shows or hides an HTML element.

➢ Example

➢ Output

❑ ng - hide Directive

• The ng - hide directive hides or shows an HTML element.

➢ Example

➢ Output

➢ ng - click Directive

• The ng - click directive defines AngularJS code that will be executed when the

element is being clicked.

➢ Example

➢ Output

➢ Modules (Application, Controller)

❑ AngularJS Modules

• A module in AngularJS is a container of the different parts of an application

such as controller, service, filters, directives, factories etc. It supports

separation of concern using modules.

• AngularJS stops polluting global scope by containing AngularJS specific

functions in a module.

❑ Application Module

• An AngularJS application must create a top level application module. This

application module can contain other modules, controllers, filters, etc.

• In the above example, the angular.module() method creates an application

module, where the first parameter is a module name which is same as

specified by ng-app directive.

• The second parameter is an array of other dependent modules [].

• In the above example we are passing an empty array because there is no

dependency.

➢ Note:

• The angular.module() method returns specified module object if no

dependency is specified.

• Therefore, specify an empty array even if the current module is not

dependent on other module.

• Now, you can add other modules in the myApp module.

❑ Create Controller Module

➢ The following example demonstrates creating controller module in myApp

module.

•

In the above example, we have created a controller named "myController"

using myApp.controller() method.

•
Here, myApp is an object of a module, and controller() method creates a

controller inside "myApp" module.

➢ Forms (Events, Data validation, ng-click)

❑ AngularJS – Forms

• AngularJS facilitates you to create a form enriches with data binding and

validation of input controls.

• Input controls are ways for a user to enter data. A form is a collection of

controls for the purpose of grouping related controls together.

❑ Following are the input controls used in AngularJS forms:

• input elements

• select elements

• button elements

• textarea elements

➢ Events

• AngularJS provides multiple events associated with the HTML controls. For

example, ng-click directive is generally associated with a button. AngularJS

supports the following events −

• ng-click

• ng-dbl-click

• ng-mousedown

• ng-mouseup

• ng-mouseenter

• ng-mouseleave

• ng-mousemove

• ng-mouseover

• ng-keydown

• ng-keyup

• ng-keypress

• ng-change

➢ ng - click

• The ng - click directive tells AngularJS what to do when an HTML element is

clicked.

➢ Example

➢ Output

➢ Form Validation

• AngularJS offers client-side form validation.

• AngularJS monitors the state of the form and input fields (input, textarea,

select), and lets you notify the user about the current state.

• AngularJS also holds information about whether they have been touched, or

modified, or not.

• You can use standard HTML5 attributes to validate input, or you can make

your own validation functions.

• Client-side validation cannot alone secure user input. Server side validation is

also necessary.

❑ Required

• Use the HTML5 attribute required to specify that the input field must be filled

out:

➢ Example

➢ Output

➢ Example

➢ Output

