Course: 501
Advanced Web Designing

Unit-1: Concepts of NoSQL: MongoDB

Unit-1: Concepts of NoSQL: MongoDB

1.1 Concepts of NoSQL. Advantages and features.

1.1.1 MongoDB Datatypes (String, Integer, Boolean, Double,
Arrays, Objects)

1.1.2 Database creation and dropping database

1.2 Create and Drop collections

1.3 CRUD operations (Insert, update, delete, find, Query and

Projection operators)

1.4 Operators (Projection, update, limit (), sort ()) and

Aggregation commands

> History of MongoDb

« MongoDB is a NoSQL database that was developed by 10gen, a

company founded by Dwight Merriman and Eliot Horowitz in 2007.

Dwight Merriman Eliot Horowitz
* The first version of MongoDB was released in 2009, and it quickly
gained popularity among developers due to its ease of use, scalability,

and flexibility.

In 2013, 10gen changed its name to MongoDB Inc. to better
reflect its focus on the development of the MongoDB database.

In 2017, MongoDB Inc. went public, and the company has
continued to grow and expand its offerings, including the
introduction of a cloud-based database service called MongoDB
Atlas.

Today, MongoDB is used by a wide range of companies and
organizations,

The name "MongoDB" is derived from the word "humongous,"
reflecting the database's ability to store and manage large
amounts of data.

O What is MongoDb?

* MongoDB is a popular open-source, NoSQL database that stores

data in a document-oriented format.

* Unlike traditional relational databases, which store data in tables,
MongoDB stores data as JSON-like documents, making it more

flexible and scalable.

* |t was developed by MongoDB Inc. and first released in 2009.

OConcepts of NoSQL
 NoSQL, also referred to as “not only SQL”,

‘nonSQL", is an approach to database design that
enables the storage and querying of data outside the

traditional structures found in relational databases.

« NoSQL databases are non-tabular databases and

store data differently than relational tables.

 NoSQL databases come in a variety of types based
on their data model. The main types are document,

key-value, wide-column, and graph.
O NoSQL databases are generally classified into four main
categories:

1. Document databases: These databases store data as semi-structured
documents, such as JSON or XML, and can be queried using

documentoriented query languages.

2. Key-value stores: These databases store data as key-value pairs, and are

optimized for simple and fast read/write operations.

3. Column-family stores: These databases store data as column families, which
are sets of columns that are treated as a single entity. They are optimized for

fast and efficient querying of large amounts of data.

4. Graph databases: These databases store data as nodes and edges, and are
designed to handle complex relationships between data.

O Advantages ofNoSQL:

* There are many great features inbuilt with MongoDB. As compared to RDBMS,

so let’s discuss MongoDB Benefits.

RDBMS MongoDB
Database Database

Tables rsssssnnnafaaduusssnns i E—— Collections
ROWS 'sssnnus vk eefennnnnndadodoan. Documents

Columnsl wokanlnnannun adns | Fields

O Flexible Database
 We know that MongoDB is a schema-less database.
 That means we can have any type of data in a separate document.

* This thing gives us flexibility and a freedom to store data of different types.

O Sharding

 We can store a large data by distributing it to several servers connected to the
application. If a server cannot handle such a big data then there will be no
failure condition. The term we can use here is “auto -sharding ”.

One giant database partitioned into
many small databases (shards)

O High Speed

MongoDB is a document-oriented database. It is easy to access documents by
indexing. Hence, it provides fast query response. The speed of MongoDB is

100 times faster than the relational database.

\ ‘“\“\“\‘\\q\\.‘w‘.‘ 2
I“‘“““\ﬁ"-l\nl'\'u‘v”

\\?,l‘l'-'?"‘.\‘ ot
““‘“‘Q U Ll
‘\ L .-.\l. e

O High Availability
* MongoDB has features like replication and gridFS. These features help to

increase data availability in MongoDB. Hence the performance is very high.

database availability?

AWD

O Scalability

* A great advantage of MongoDB is that it is a horizontally scalable database.
When you have to handle a large data, you can distribute it to several

machines.
O Easy Environment Setup

* It is easier to setup MongoDB then RDBMS. It also provides JavaScript client for

qgueries.
O Full Technical Support

* MongoDB Inc. provides professional support to its clients. If there is any problem,

you can directly reacha MongoDB client support system.

AWD
AWD

=~ Disadvantages of NoSQL:

O Joins not Supported
* MongoDB doesn’t support joins like a relational database. Yet one can use joins
functionality by adding by coding it manually. But it may slow execution and

affect performance.

O High Memory Usage
* MongoDB stores key names for each value pairs. Also, due to no functionality of
joins, there is data redundancy. This results in increasing unnecessary usage of

memory.

‘O Limited Data Size
* You can have document size, not more than 16MB.

AWD

O GUlis not available :

* GUI mode tools to access the database are not flexibly available in the market.
O Backup:

* Backup is a great weak point for some NoSQL databases like MongoDB.

MongoDB has no approach for the backup of data in a consistent manner.

O Large document size :

 Some database systems like MongoDB and CouchDB store data in JSON
format.

* This means that documents are quite large (BigData, network bandwidth,
speed), and having descriptive key names actually hurts since they increase
the document size.

AWD

»- MongoDB is used in a wide variety of applications and
industries, including:
O Web and mobile applications:

* MongoDB is often used as the primary database for web and mobile
applications, where it provides high performance and scalability, as well as

support for flexible data models.

O E-commerce:

* MongoDB is used by many e-commerce sites to store product catalogs, customer
data, and order information, as well as to provide real-time analytics and

personalized recommendations.

O Social networking:

* MongoDB is used by social networking sites to store user profiles, activity feeds,
and social graphs, as well as to provide real-time analytics and

recommendations.

O Gaming:

* MongoDB is used in the gaming industry to store user data, game progress, and
other game-related information, as well as to provide real-time analytics and

recommendations.
O Financial services:

* MongoDB is used in the financial services industry to store and analyze large
volumes of data, such as transaction data, customer data, and market data.

O Healthcare:

* MongoDB is used in the healthcare industry to store and manage patient data,
medical records, and other healthcare-related information, as well as to provide

real-time analytics and insights.

O Government:

* MongoDB is used by many government agencies to store and manage large
volumes of data, such as census data, weather data, and traffic data, as well as

to provide real-time analytics and insights.

O How to Install MongoDB on Windows

Step 1: Go to the Official MongoDB website

[https://www.mongodb.com/try/download/community-kubernetes-operator]
Step 2: Navigate to Products > Community Edition

Step 3: Select the appropriate installer file from the dropdown menus

on the Community Edition page.

— In the version dropdown, select the latest version, 6.0.1(current)
— In the Platform dropdown, select Windows
— In the Package dropdown, select msi

Step 4: Click the green "Download" button. Wait for 2-5 minutes for the

https://www.mongodb.com/
https://www.mongodb.com/

file to download. (Depending on your internet speed)

AWD

¢« 5 C

’ MOﬂgoDB Products Solstions

MongoDB Community Server
Download

MongoDB Enterprise Advonced
MongoDB Community Edition

MongoDB Community
Kubernetes Operator

> brew install mongodb-atlas

$ atlas setup

Version

7.6.0{c

urrent)

Windows x84

AWD

O After the installer file has been downloaded, it's time to run the installer file.
" Procedure

Step: 1: Go to the downloaded directory in your system (by default, it should be in the

‘Downloads’ directory).

Step 2: Double-click on the .msi file. It will open the MongoDB setup windows.

3 mongodo-windows-¥86,64-7.00-signed

AWD

O Step 3: It will open the MongoDB Community Edition installation wizard. This
setup wizard guides you through the installation of MongoDB in your system. To continue

the process, click "Next."

S MongoDB 7.0.0 2008R2Plus SSL (64 bit) Setup = ¥

Welcome to the MongoDB 7.0.0
2008R2Plus SSL (64 bit) Setup Wizard

The Setup Wizard will install MongoDB 7.0.0 2008R2Plus SSL
(64 bit) on your computer. Click Next to continue or Cancel to
exit the Setup Wizard.

Mext Cancel

m
o
@)
R 8

AWD

O Step 4: Read the End-User License Agreement, accept the terms and

conditions, and then click the "Next" button to continue.

A MongoDB 7.0.0 2008R2Plus SSL (64 bit) Setup =
End-User License Agreement i

'

Please read the following license agreement carefully '
1

Server Side Public License
VERSION 1. OCTOBER 16, 2018 f

-y

Copyright © 2018 MongoDB, Inc.

Everyone is permitted to copy and distribute verbatim copies of
this
license document, but changing it is not allowed.

TERMS AND CONDITIONS

[]1accept the terms in the License Agreement

Print Back Next Cancel i

AWD

O Step 5: Next, you can choose either the Complete setup or Custom
setup type to proceed. But for a beginner, we'drecommend using
Complete setup option. It installs MongoDB inthe default

Select the Complete setup, and click "Next."

¢ Sl MongoDB 7.0.0 2008R2Plus SSL (64 bit) Setup

Choose Setup Type
Choose the setup type that best suits your needs

[Complete]

Recommended for most users.

Custom

All program features will be installed. Requires the most disk space.

Allows users to choose which program features will be installed and where they
will be installed. Recommended for advanced users.

The Mongo Shell must be installed separately for Windows installations. Download Now

Back

Next

Cancel

1i

the
location.

AWD

O Step 6: Select the "InstallMongoD as a Service" option on the next
page. Keep all other parameters as default. Click on the "Next" button.

A MongoDB 7.0.0 2008R2Plus SSL (64 bit) Service Customizati... =

i . .)
Service Configuration

'

Specify optional settings to configure MongoDB as a service. ’

Install MongoD as a Service 3

© Run service as Network Service user

() Run service as a local or domain user:

Account Domain: I

Account Name: IMongoDB

Account Password: |

Service Name: |MongoDB
Data Directory: IC:\Program Files\MongoDB\Server\7.0\data\
Log Directory: lC:\Program Files\MongoDB\Server\7.0\log\

< Back Next > Cancel ;}

AWD

O Step 7:In the next step, you will get an option to install MongoDB
compass. Uncheck it if you don't want MongoDB compass to

be installed on your device, and then click the "Next" button.

M MongoDB Compass —

Install MongoDB Compass P
MongoDB Compass is the official graphical user interface for MongoDB. ’

By checking below this installer will automatically download and install the latest b
version of MongoDB Compass on this machine. You can learn more about
MongoDB Compass here: https://www.mongodb.com/products/compass

Install MongoDB Compass Back Next Cancel j

AWD

O Step 8: In the "Ready to install MongoDB" page, click the "Install"
button, give administrator access, and wait for the installation to finish.
Once installation is complete, you can click on the "Finish" button to
finalize your installation.

M MongoDB 7.0.0 2008R2Plus SSL (64 bit) Setup ==

Ready to install MongoDB 7.0.0 2008R2Plus SSL (64 bit) -

Click Install to begin the installation. Click Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Back -' Install Cancel

AWD

OHow to Install MongoDB Shell on Windows

Step 1: Download MongoDB Shell

* To begin with Windows MongoDB Shell Installation process, go to the download

page at https://www.mongodb.com/try/download/shell.
* Choose your OS and your desired MongoDB version.

e Click Download.

AWD

MongoDB Atlas

MongoDB Enterprise Advanced

MongoDB Community Edition

Tools

MongoDB Shell

MongoDB Compass (GUI)

Atlas CLI

Atlas Kubernetes Operator

MongoDB CLlI for Cloud
Manager and Ops Manager

MongoDB Cluster-to-Cluster
Sync

Relational Migrator

MongoDB Database Tools

MongoDB Connector for Bl

Atlas SQL Interface

Mobile & Edge

| TooLs

MongoDB Shell Download

MongoDB Shell is the quickest way to connect to (and work with) MongoDB. Easily query
data, configure settings, and execute other actions with this modern, extensible
command-line interface — replete with syntax highlighting, intelligent autocomplete,
contextual help, and error messages.

Note: MongoDB Shell is an open source (Apache 2.0), standalone product developed
separately from the MongoDB Server.

Learn more

Version

110.5 v

Platform
Windows 64-bit (8.1+) v

Package
zZip v

- e Copy link More Options s+

AWD

O MongoDB Data Types
 MongoDB data types refer to the different types of data that can be stored in a

MongoDB database.

* MongoDB supports a wide range of MongoDB data types, including strings,
integers, doubles, booleans, dates, arrays, object IDs, regular expressions, and
binary data.

AWD

- String
* In MongoDB, the string data type is used to store a sequence of UTF-8 characters.

e Strings are one of the most commonly used MongoDB data types, as they can be
used to represent a wide range of text-based data, such as names, addresses,

descriptions, and more.

2 Integer:

* In MongoDB, the integer data type is used to store an integer value. We can store

integer data type in two forms 32 -bit signed integer and 64 — bit signed integer.

AWD

=~ Double

 The Double data type in MongoDB is used to store floating-point numbers that

require higher precision than the standard 32-bit float data type.

* Double data types are used to represent decimal values and are commonly used

in financial applications or scientific calculations.

=~ Boolean

* The boolean data type in MongoDB represents a logical value that can be either true

or false.

- Arrays

* This type is used to store arrays or list or multiple values into one key.

AWD

2 Object

. In MongoDB, the Object data type is used to represent complex and nested
data structures, such as documents within a collection. The Object data type is also

known as the BSON document data type, where BSON stands for Binary JSON.
= Null

. This type is used to store a Null value.

=~ Date

* This datatype is used to store the current date or time in UNIX time format.

You can specify your own date time by creating object of Date and passing day,

month, year into it.

= Object ID

This datatype is used to store the document’s ID.

AWD

»- Binary Data

* In MongoDB, the binary data type is used to store binary data as a sequence of

bytes.

* This data type is commonly used to store images, videos, audio files, and other

non-textual data.

- Regular Expression

* |In MongoDB, the regular expression (regex) data type is used to store and search

for text patterns in strings.

* Regular expressions are a powerful tool for string manipulation and pattern

matching, and MongoDB provides several operators for working with them.

AWD

»- Date
* This datatype is used to store the current date or time in UNIX time format.

* You can specify your own date time by creating object of Date and passing day,

month, year into it.

= Code

* This datatype is used to store JavaScript code into the document.

AWD

Database:

The MongoDB database is a container for collections and it can store one or more

collections.
It is not necessary to create a database before you work on it.

The show dbs command gives the list of all the databases.

test> show dbs
admin 40.00 KiB

config 6©.00 KiB
72.00 KiB

https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/

AWD

O Creating a Database

> The use Command

MongoDB use DATABASE_NAME is used to create database. The
command will create a new database if it doesn't exist, otherwise it

will return the existing database.

Syntax

use DATABASE NAME

Example >use mydb

switched to db mydb

AWD

O To check your currently selected database, use the command db

>db
mydb

O |f you want to check your databases list, use the command show
dbs.

>show dbs
local 0.78125GB

test 0.23012GB

AWD

O Your created database (mydb) is not present in list. To display
database, you need to insert at least one document into it.

»db.bca. 1nsert ({name: "Rlex",age:21, state: "Gujarat"})
»show dbs

local 0.76125GB

mydh 0.230126B

test 0.23012GB

AWD

AWD

OThe dropDatabase() Method

« MongoDB db.dropDatabase() command is used to drop a existing database.

* Syntax

db.dropDatabase()

AWD

Collection:
It is used to store a varied number of documents inside the database.

As MongoDB is a Schema-free database, it can store the documents that are not
the same in structure. Also, there is no need to define the columns and their

datatype.

name : "gfg",

age: 20,
status : "A"

COLLECTION

AWD

O There are 2 ways to create a collection.

2 Method 1

* You can create a collection using the createCollection() database

method.
 Example

db.createCollection(“student")
2> Method 2

* You can also create a collection during the insert process.

AWD

Example

AWD

db. student.insertOne({“name": "Alex",age:21,state:“Gujarat"})

AWD

O Display Collections(Tables)
* Example

show collections

O Exit The Mongosh Terminal
* Example
Ctrl + C [Pressed Two Times |

or

AWD

quit()

AWD

* The drop() Method

* MongoDB's db.collection.drop() is used to drop a collection from

the database.

e Syntax

db.COLLECTION_ NAME.drop()

AWD

» MongoDB stores data records as documents that are stored together in

collections and the database stores one or more collections of documents.
J Document:

« A document is a basic unit of storing data into the database.

* Asingle record of a collection is also known as a document.

e Basically, It is a structure that compromises key & value pairs which is similar to

the JSON objects. Documents have a great ability to store complex data.

* For example:

> var mydocument = {name: "gfq", country: "India", age: 21, status: 'A'}
|

* Here, the name, country, age and status are fields, and gfg, India, 21, A are their

values.

AWD

Olnsert Documents

* There are 2 methods to insert documents into a MongoDB

database.

~-insertOne()

* To insert a single document, use the insertOne() method.

* This method inserts a single object into the database.

O Example

¢

db posts insertOne
title: Post Title 1"

acknowledged: true,
insertedId: ObjectId("62c350dc@7d768a33fdfe9bo™)

¥
Atlas atlas-8iy36m-shard-© [primary] blog>

AWD

Note:

If you try to insert documents into a collection that does not exist, MongoDB
will create the collection automatically.

Note:

AWD

When typing in the shell, after opening an object with curly braces "{" you
can press enter to start a new line in the editor without executing the

command.

The command will execute when you press enter after closing the braces.

O insertMany ()

* To insert multiple documents at once use the insertMany ()
method.

* This method inserts an array of objects into the database.

AWD

* Example

db.posts.insertMany ([

{
title: "Post Title 2",
body: "Body of post.”,
category: "Event",
likes: 2,
tags: ["news", "ewvents"],
date: Date{)

}s

{
titles "Post Title 37,

body: "Body of post.™,
category: "Technology"™,
likes: 3,

tags: ["oewsT; Tevents™l;
date: Date()

AWD

O Find Data [Dipslay Data from Collection(Table)]

* There are 2 methods to find and select data from a MongoDB

collection, find() and findOne().

- find()

* To select data from a collection in MongoDB, we can use the

find() method.

* This method accepts a query object. If left empty, all documents

will be returned.

AWD

|
* Example db.posts.find()

Collection (Table) Name

AWD

> findOne()
* To select only one document, we can use the findOne() method.

 This method accepts a query object. If left empty, it will return the

first document it finds.
* Note: This method only returns the first match it finds.

« Example

db.posts.findOne
Collection (Table) Name

O Delete Documents

* We can delete documents by using the methods deleteOne() or

deleteMany().

* These methods accept a query object. The matching documents
will be deleted.

> deleteOne()

 The deleteOne() method will delete the first document that

matches the query provided.
O Example

db.posts.deleteOne({ title: "Post Title 5" })

1 acknowledged: true, deletedCount: 1 }

Atlas atlas-8iy36m-shard-© [primary] blog>

> deleteMany()

 The deleteMany() method will delete all documents that match the

qguery provided.
O Example

db.posts.deleteMany({ category: "Technology " })

{ acknowledged: true, deletedCount: 1 }

Atlas atlas-8iy36m-shard-@ [primary] blog>

O Update Document

 To update an existing document we can use the updateOne() or

updateMany() methods.

* The first parameter is a query object to define which document or

documents should be updated.

* The second parameter is an object defining the updated data.

- updateOne()

* The updateOne() method will update the first document that is
found matching the provided query.

AWD

O Syntax:

db.COLLECTION_NAME.update({SELECTION_CRITERIA}, {$%set:
{UPDATED_DATA}}, {

upsert: <boolean>,

multi: <boolean>,

writeConcern: <document>,

collation: <document>,

arrayFilters: [<filterdocumentl>, ...],

hint: <document|string>

})

AWD

O Parameters:

* The first parameter is the Older value in the form of Documents.
Documents are a structure created of file and value pairs, similar to

JSON objects.

* The second parameter must contain a Sset keyword to update the

following specify document value.

* The third parameter is optional.

O Example [First we can see all records(documents) from table]

db.posts.find title: "Post Title 1

{
_id: ObjectId("62c350dc@7d768a33fdfe9b0"),

title: 'Post Title 1°,
body: 'Body of post.’,
category: 'News',
likes: 1,

tags: ['news', ‘events'],
date: 'Mon Jul 04 2022 15:43:08 GMT-050@ (Central Daylight Time)'

]
Atlas atlas-8iy36bm-shard-0 [primary] blog>

7 MongoDB updateOne() method

* This methods updates a single document which matches the given

filter.

db.posts.updateOne({ title: "Post Title 1 bset: | likes: 2

acknowledged: true,
insertedlId: null,
matchedCount: 1,

modifiedCount: 1,

upsertedCount: @

I
Atlas atlas-8iy3obm-shard-0 [primary] blog:>

AWD

O Examples:

* In the following examples, we are working with:
* Database: gfg

* Collections: student

 Document: Three documents contains name and the age of the
students

AWD

 Update the name of the document whose name key has avi value
to hello world.

> use gfg

switched to db gfg

> db.student,find().pretty()

{ "_id" : ObjectId("5f8dd@790cf217478ba9355d"), "name" : "avi', "age" : 12 }

{
" 1d" : ObjectId("5f8dd08adcf217478bag9355¢"),
"name" "payal",

"age" : 15
}
{
" id" : ObjectId("5f8dde940cf217478ba9355f"),
"name" : "prachi",
"age" : 17
}
> |

AWD

Here, the first parameter is the document whose value to be
changed {name:"”avi”} and the second parameter is set keyword
means to set{update) the following matched key value with the

older key value.

db. student.update({name: "avi"},{$set:{name: "helloword"}})

Note: The value of the key must be of the same datatype that was

defined in the collection.

AWD

O Output

> db.student.update({name:"avi“}, {$set:{name:"helloword"}})

WriteResult({

"nMatched" : 1, "nUpserted" : @, "nModified"

> db.student.find().pretty()

{
" id"
"name"
"age"

-

n idu
“;ame“
uageu

o S

" id"
“;ame"
"agell

: ObjectId("5f8dde790cf217478ba%9355d"),
: "helloword",
X2

: ObjectId("5f8dd08a0cf217478ba9355e"),
upayalu'
e B

: ObjectId("5f8dd0948cf217478ba%9355f"),
s *prachi",
%

ot ¥)

AWD

O Example

Update the age of the document whose name is prachi to 20.

db. student.update({name: "prachi"},{$set:{age:20}}

Here, the first parameter is the document whose value to be
changed {name:"prachi”} and the second parameter is set keyword

means to set(update) the value of the age field to 20.

AWD

O Output

{

> db.student.update({name:"prachi"}, {$set:{age:20}})
WriteResult({ "nMatched" : 1, "nUpserted" : @, "nModified"
> db.student.find().pretty()

" id" : ObjectId("5f8dde790cf217478ba%355d"),
"name" : "helloword",
"age" : 12

" id" : ObjectId("5f8dd08aBcf217478ba9355e"),
"name" : "payal",
“age" : 15

" id" : ObjectId("5f8dd0940cf217478ba%355f"),
"name" : “"prachi",
apge” & 20

11})

AWD

»- updateMany()

 The updateMany() method will update all documents that match

the provided query.

* When you update your document, the value of the id field remains

unchanged.

* This method can also add new fields in the document. Specify an
empty document({}) in the selection criteria to update all collection
documents.

AWD

Examples:

In the following examples, we are working with:

Database: gfg
Collection: student

Document: Three documents contains name and age of the students

> use gfg

switched to db gfg
> db.student.find().pretty()

{
"__id "
" name "
1] agen

L B

1] idn
u;amen
uageu

B

" idu
";ame"
llageu

-
-

18

ObjectId("6008ebcB®10cf217478ba93570"),
"aaksh",
15

ObjectId("6060ebcB10cT217478ba%93571"),
"nikhil",
18

ObjectId("608ebc01@cf217478ba93572"),
"vishal",

AWD

O update single document

db. student.updateMany({name: "aaksh"}, {§set:{age: 20}})

'> db.student.updateMany({name: "aaksh"}, {$set:{age: 20}})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount"
> db.student.find().pretty()
{
" _id" : ObjectId("600ebc@10cf217478ba%93570"),
"name" : "aaksh",
"age" : 20
}
{
" id" : ObjectId("608ebcP10cT217478ba93571"),
"name" : "nikhil",
raga® a8
}
{
" _id" : ObjectId("6@0ebcB10cf217478ba93572"),
"name" : "“vishal",
"age" : 18
}
>

0

AWD

O uUpdate multiple documents

db.student.updateMany({age:18},{$set:{eligible:"true"}})

O Here, we update all the matched documents whose age is 18 to

eligible: true

AWD

O Output
> db.student.updateMany({age:18},{$set:{eligible:"true"}})
{ "acknowledged" : true, "matchedCount" : 2, "modifiedCount" : 2 }
> db.student.find().pretty()
{
“_id" : ObjectlId("é60@ebcBl10cf217478ba93578"),
"name" : "aaksh",
"age" : 20
}
{
“_id" : ObjectId("600ebc®10cf217478ba93571"),
"name" : "nikhil",
Yage" : 18,
"eligible" : "true"
¥
{
"_id" : Objectld("é600ebc@10cf217478ba93572"),
"name" : "vishal",
"age" : 18,
"eligible" : "true"
}
>

AWD

O MongoDB Comparison Operators
* Seq- Sgt

e Sgte* Sin e Slt

Slte * Sne

Snin

O Seq
* The Seq specifies the equality condition. It matches documents where the value

of a field equals the specified value.
Syntax:

{ <field>= : { Seq: <value= }}

Example:

db.books.find ({ price: { $eq: 300 } })

Py Tha shAavia Avarmnanldla Arlmarine ftha hanl e ~AllarH AN A calacrt Al AAaciimaante wwhAara

AWD

O $gt
* The Sgt chooses a document where the value of the field is greater than the

specified value.

Syntax:

{ field: { $gt: value } }

Example:

db.books.find ({ price: { $gt: 200 } })

O $gte

* The Sgte choose the documents where the field value is greater than or equal to

a specified value.

Syntax:

{ field: { $Sgte: value } }

Example:

db.books.find ({ price: { $Sgte: 250 } })

O sin
* The Sin operator choose the documents where the value of a field equals any

value in the specified array.

Syntax:

{ filed: { $in: [<valuel>, <value2>, 131}
Example:

db.books.find({ price: { $Sin: [100, 200] } })

O st

* The Slt operator chooses the documents where the value of the field is less than

the specified value.

Syntax:

{ field: { $Slt: value } }

Example:

db.books.find ({ price: { $It: 20 } })

O Slte

* The Slte operator chooses the documents where the field value is less than or

equal to a specified value.

Syntax:

{ field: { Site: value } }

Example:

db.books.find ({ price: { $lte: 250 } })

AWD

O sne

* The Sne operator chooses the documents where the field value is not equal to

the specified value.

Syntaxx:

{ <field>=: { $ne: <value= } }

Example:

db.books.find ({ price: { Sne: 500 } })

AWD

O $nin
* The Snin operator chooses the documents where the field value is not in the

specified array or does not exist.

Syntax:
{ field : { Snin: [=valuel =, <=svalue2>,1}}
Example:

db.books.find ({ price: { $nin: [50, 150, 2001} })

O What is MongoDB Projection?

* MongoDB Projection is a special feature allowing you to select only
the necessary data rather than selecting the whole set of data from

the document.

 For Example, If a Document contains 10 fields and only 5 fields are

to be shown the same can be achieved using the Projections.
O This will enable us to:
* Project concise yet transparent data

* Filter data without impacting the overall database performance

AWD

O MongoDB Projection Operators

* MongoDB projection method positively impacts database performance as
it reduces the workload of the find query when trying to retrieve specific

data from a document, minimizing resource usage.

* To enhance the querying and reduce the workload, multiple operators can

be used within a projection query like the ones below:
O Operators
* S

 SelemMatch

AWD

Sslice

Smeta

AWD

O ¢ Operator

 The S operator limits the contents of an array from the query
results to contain only the first element matching the query

document.

Syntax:

db.books.find({ <array>: <value=> ...},
{ "<array>=.%":11})

db.books.find({ <array.field>: <value> ..},
{ "<array>=.5":11})

AWD

O selemMatch

 The content of the array field made limited using this operator from
the query result to contain only the first element matching the

element SelemMatch condition.

Syntax:

db.library.find({ bookcode: "63109" },
{ students: { $elemMatch: {roll: 102 }}})

AWD

O Smeta

 The meta operator returns the result for each matching document

where the metadata associated with the query.

Symntacc:

{ Smeta: =metaDatakKeyword = 3

Example:

db . books.find/(
—qgquery =,

{ score: { $Smeta: " textScore™ } o}

AWD

O Sslice

It controls the number of values in an array that a query returns.

Syntax:

db.books.find({ field: value }, { array: {Sslice: count } });

Example:

db.books.find({}. { comments: { $slice: [200, 10011} })

AWD

O Update Operators

This operator is used to set the value of a field to current date, either as a Date or

ScurrentDate ,
a Timestamp.
Sinc This operator is used to increment the value of the field by the specified amount.
$min This operator is used only to update the field if the specified value is less than the
existing field value
$max This operator is used only to update the field if the specified value is greater than

the existing field value.

Smul This operator is used to multiply the value of the field by the specified amount.

AWD

Srename This operator is used to rename a field.

This operator is used to set the value of a field if an update results in an insert of a

setOninsert : : _—
? document. It has no effect on update operations that modify existing documents.

O Increment the value of the field using Sinc operator:
db.Employee.update({"name.first": "Sumit"},
{Sinc: {"personalDetails.salary": 3000}})

O Comparing values (or numbers) using Smax operator:
db.Employee.update({"name.first": "Sumit"},
{Smax: {"personalDetails.salary": 40000}})

O Multiplying the value of a field using Smul operator:
db.Employee.update({"name.first": "Sumit"},

{Smul: {"personalDetails.salary": 2}})

O Updating the value of date field using ScurrentDate operator:
db.Employee.updateOne({"name.first": "Om"},
{ScurrentDate: {joiningDate: true}})

O Comparing values (or numbers) using Smin operator:
db.Employee.update({"name.first": "Sumit"},
{Smin: {"personalDetails.salary": 5000}})

O Renaming a field using Srename operator:
db.Employee.update({"name.first": "Om"},

{Srename: {"department": "unit"}})

AWD

O MongoDB limit() Method

* In MongoDB, limit() method is used to limit the fields of document
that you want to show. Sometimes, you have a lot of fields in
collection of your database and have to retrieve only 1 or 2. In such

case, limit() method is used.

* The MongoDB limit() method is used with find() method.
Syntax:

db.COLLECTION_NAME.find().limit{NUMBER)

O Example
db.tybca.find().limit(1)

AWD

O skip() method

* In MongoDB, skip() method is used to skip the document. It is used

with find() and limit() methods.

Syntax

db.COLLECTION_NAME.find().limittNUMBER).skip(NUMBER)

* Execute the following query to retrieve only one document and skip
2 documents.

O Example
db.tybca.find().limit(1).skip(2)

AWD

O MongoDB sort() method

* In MongoDB, sort() method is used to sort the documents in the
collection. This method accepts a document containing list of fields

along with their sorting order.
O The sorting order is specified as 1 or -1.
* 1is used for ascending order sorting.

 -1isused for descending order sorting.

Syntax:

db.COLLECTION_NAME.find().sort({KEY:1})

AWD

O Example

* Execute the following query to display the documents in descending

order.

db.tybca.find().sort({"Course":-1})

AWD

O Aggregation Commands

aggregate

count

distinct

Performs aggregation tasks such as Sgroup using an aggregation

pipeline.

Counts the number of documents in a collection or a view.

Displays the distinct values found for a specified key in a
collection or a view.

https://www.mongodb.com/docs/v6.2/reference/command/aggregate/#mongodb-dbcommand-dbcmd.aggregate
https://www.mongodb.com/docs/v6.2/reference/command/aggregate/#mongodb-dbcommand-dbcmd.aggregate
https://www.mongodb.com/docs/v6.2/core/aggregation-pipeline/#std-label-aggregation-pipeline
https://www.mongodb.com/docs/v6.2/core/aggregation-pipeline/#std-label-aggregation-pipeline
https://www.mongodb.com/docs/v6.2/core/aggregation-pipeline/#std-label-aggregation-pipeline
https://www.mongodb.com/docs/v6.2/core/aggregation-pipeline/#std-label-aggregation-pipeline
https://www.mongodb.com/docs/v6.2/reference/operator/aggregation/group/#mongodb-pipeline-pipe.-group
https://www.mongodb.com/docs/v6.2/reference/operator/aggregation/group/#mongodb-pipeline-pipe.-group
https://www.mongodb.com/docs/v6.2/reference/operator/aggregation/group/#mongodb-pipeline-pipe.-group
https://www.mongodb.com/docs/v6.2/reference/command/count/#mongodb-dbcommand-dbcmd.count
https://www.mongodb.com/docs/v6.2/reference/command/count/#mongodb-dbcommand-dbcmd.count
https://www.mongodb.com/docs/v6.2/reference/command/distinct/#mongodb-dbcommand-dbcmd.distinct
https://www.mongodb.com/docs/v6.2/reference/command/distinct/#mongodb-dbcommand-dbcmd.distinct

AWD

mapReduce

pipeline

Performs map-reduce aggregation for large data sets.

The array that transforms the list of documents as a part of the
aggregation pipeline.

https://www.mongodb.com/docs/v6.2/reference/command/mapReduce/#mongodb-dbcommand-dbcmd.mapReduce
https://www.mongodb.com/docs/v6.2/reference/command/mapReduce/#mongodb-dbcommand-dbcmd.mapReduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/core/map-reduce/#std-label-map-reduce
https://www.mongodb.com/docs/v6.2/reference/command/mapReduce/#mongodb-dbcommand-dbcmd.mapReduce
https://www.mongodb.com/docs/v6.2/reference/command/mapReduce/#mongodb-dbcommand-dbcmd.mapReduce

O Syntax

* Basic syntax of aggregate() method is as follows -

>db.COLLECTION_NAME.aggregate (AGGREGATE OPERATION)

* Now from the above collection, if you want to display a list stating how
many WFS books are written by each user, then you will use the following

aggregate() method -

> db.mycol.aggregate([{Sgroup : {_id : "Sby_user", num_books : {Ssum : 1}}}])

{" id": “wfs_books", "num_books" : 2 } {" id" : "Neo4j
>

nm n
’

num_books" : 1}

AWD

The aggregate command does the aggregation operation using the
aggregation pipeline.

* The aggregation pipeline allows the user to perform data
processing from a record or other source using a stage-based
application sequence.

AWD

O Aggregation Pipelines
» Aggregation operations allow you to group, sort, perform

calculations, analyze data, and much more.

 Aggregation pipelines can have one or more "stages". The order of
these stages are important. Each stage acts upon the results of the
previous stage.

O Example

db.posts.aggregate

$match: likes: $gt: 1

$group: id: "$category”, totallikes: $sum: “"$likes”

[{ _id: 'News', totallikes: 3 }, { _id: "Event', totallikes: 8 }]

Atlas atlas-8iy36m-shard-@ [primary] blog>

Unit-2: Fundamentals of React.js

Unit-2: Fundamentals of React.js
2.1 Overview of React
2.1.1 Concepts of React.
2.1.2 Using React with HTML
2.1.3 React Interactive components: Components within components and
Files
2.1.4 Passing data through Props
2.2 Class components
2.2.1 React class and class components
2.2.2 Conditional statements, Operators, Lists

2.2.3 React Events: Adding events, Passing arguments, Event object

» History of React

e |t was created by Jordan Walke, who was a software engineer at Facebook.

* |t was initially developed and maintained by Facebook and was later used in its

products like WhatsApp & Instagram.

* Facebook developed ReactlS in 2011 in its newsfeed section, but it was released to

the public in the month of May 2013.

Jordan Walke

> What is React

e React is an open-source component-based front-end JavaScript

library.

 |tis used to create fast and interactive user interfaces for web and

mobile applications.

* Itis easy to create a dynamic application in React because it

requires less coding and offer more functionality.
* |tis used by big MNC and fresh new startups

* ReactlS is a declarative, efficient, and flexible JavaScript library for

building reusable Ul components.

It is an open-source, component-based front end library

responsible only for the view layer of the application.
A JavaScript library for building user interfaces

The user interface(Ul) is the point of human-computer interaction

and communication in a device.

This can include dipslay screens,keyboards a mouse and the

appearance of a desktop.

> Is React JS Library or Framework

React is not framework.
React is a JavaScript library for building user interfaces.

It is also known as React)S and React.js so don’t confused if you

read different notation in different places.

React knows only one thing that is to create an awesome UI.

» What Should you Know before Learning ReactJS
e Basic knowledge of HTML,CSS and JavaScript

e Basic understanding of how to use npm.

» Where to Write ReactJS

(] Text Editor/Source Code Editor

* Visual Studio Code

* Notepad++

e Atom

» Web Browser

 Google Chrome,Firefox

 React Developer Tools

» Why Learn React

The main objective of ReactlS is to develop User Interfaces (Ul)

that improves the speed of the apps.

It uses virtual DOM (JavaScript object), which improves the

performance of the app.

The JavaScript virtual DOM is faster than the regular DOM. We can
use React)S on the client and server-side as well as with other

frameworks.

It uses component and data patterns that improve readability and

helps to maintain larger apps.

> Installation Reactjs on Windows:

J Step 1:

* Install Node.js installer for windows. Click on this link. Here install
the LTS version (the one present on the left).

* Once downloaded open NodelS without disturbing other settings,

click on the Next button until it’s completely installed.

https://nodejs.org/en/

nede

HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY CERTIFICATION NEWS

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine.

Download for Windows (x64)

16.14.0 LTS 17.6.0 Current

Recommended For Most Users Latest Features

Other Downloads | Changelog | APl Docs Other Downloads | Changelog | API Docs

Or have a look at the Long Term Support (LTS) schedule

Download the installer for windows by clicking on LTS or Current version button. Here, we
will install the latest version LTS for windows that has long time support. However, you can

also install the Current version which will have the latest features.

After you download the MSI, double-click on it to start the installation as
shown below.

Open File - Security Warning Xl

[Do you want to run this file?

Name: ..ers\javatpoinfl\Downloads\node-v4.4.2-x64.msi

Publisher: Node.js Foundation
Type: Windows Installer Package
From: C\Users\javatpointl\Downloads\node-v4.4,.2-x6...

Bn | [Conesl]

Always ask before opening this file

While files from the Intemet can be useful, this file type can

..-’-'\
@ potentially harm your computer. Only run software from publishers
' you trust. What's the risk?

Welcome to the Node.js Setup Wizard

n ‘ d e The Setup Wizard will install Node.js on your computer,
(8

* Accept the terms of license agreement.

B e D=
.-'| End-User License Agreement d |l

Please read the following license agreement carefully n .[]9 e

|I'Io-de.js is licensed for use as follows: =
L4
Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject .

Choose the location where you want to install.

Destination Folder

Choose a custom location or dick Next to install.

nede

©

Install Node.js to:

C:\Program Files\nodejs\

Next | cancel |

Custom Setup

Select the way you want features to be installed.

ﬂ s
o@d ¢

Click the icons in the tree below to change the way features will be installed.

------ == Rd | Node.js runtime

- &3 v | npm package manager

& &3 ~ | Add to PATH

- &3 v | Online documentation shortcuts

Install the core Node.js runtime
(node.exe).

This feature requires 13MB on your
hard drive, Ithas 2 of 2
subfeatures selected. The
subfeatures require 16KB on your
hard drive,

| Browse..,

Reset Disk Usage

—

Back Next Cancel

Ready to install:

Ready to install Node.js ﬂ‘dc

@S

Click Install to begin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

Installing Node.js

Please wait while the Setup Wizard installs Node.js.

Status: Generating script operations for action:
|

1‘ Back | } Next j [Cancel

Completed the Node.js Setup Wizard

Click the Finish button to exit the Setup Wizard.

Node.js has been successfully installed.

» Verify Installation

* Once you install Node.js on your computer, you can
verify it by opening the command prompt and typing

node -v.

* If Node.js is installed successfully then it will display the
version of the Node.js installed on your machine, as

shown below.

5 C\Windows\system32\cmd exe

Microsoft Windows [Version 10.8.19843.1237]
(¢) Microsoft Corporation. ALl rights reserved.

C:\Users\91963node -v
v14.18.8

C:\Users\91963

e Step 3: Now in the terminal run the below
command:

npm install -g create-react-app

& npm
Microsoft Windows [Version 10.8.17134,829]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\PCh>npm anstall -g create-react-app
|] - fetchMetadata: removing builtins@l.0.3 from the tree as its been replaced

* |t will globally install react app for you. To check
everything went well run the command

create-react-app —version

* |f everything went well it will give you the
installed version of react app

e Step 4: Now Create a new folder where you want to make your
react app using the below command:

mkdir newfolder

* Note: The newfolder in the above command is the name of the
folder and can be anything.

, B Command Prompt

» - . r
MicrosotTt Windows /

{c) 2018 Microsoft

C:\Users\PCW>rmkdir newfolder

Enter Your Folder name in place of

Move inside the same folder using the below command:

cd newfolder (your folder name)

Command Prompt

Microsoft Windows [Version 1©2.©.17134.829]
(c) 2018 Microsoft Corporation. All rights reserved.

Command to move inside

E:\>cd newfolder
your folder

E:\newfolder>_

Now you are inside
vour folder

e Step 5: Now inside this folder run the command —>
create-react-app reactfirst YOUR_APP_NAME

Command Prompt

Microsoft Windows [Version 1©.0.17134.829]
(¢) 2018 Microsoft Corporation. All rights reserved.

C:\Users\PCW>E:

E:\>cd newfolder
E:\newfolder>create-react-app reactfirst
Creating a new React app in

Installing packages. This might take a couple of minutes.
Installing 3 , and with

core-js@3.18.3 postinstal

E:\newfolder\reactfirst\node_modules\core-js
> node -e "try{require(’'./postinstall’')}catch(e){}"

* |t will take some time to install the required dependencies

» Create a new React project

 Once the React installation is successful, we can create a new

React project using create-react-app command.
* Here, | choose "reactproject” name for my project.

C:\Users\myproject> create-react-app reactproject

NPM is a package manager which starts the server and access the
application at default server http://localhost:3000. Now, we will

get the following screen.

C @ localhost:

e

Edit src/App. js and save to reload.

Learn React

http://localhost:3000/

» Next, open the project on Code editor. Here, | am using Visual
Studio Code. Our project's default structure looks like as below

image.

@ EXPLORER
b OPEN EDITORS
p 4 REACTPROJECT

VS

b node_modules

b public
b src
.gitignore
{} package-lockjson
[.3 {} packagejson
README.md

» In React application, there are several files and folders in the root

directory. Some of them are as follows:
1 node_modules:
* |t contains the React library and any other third party libraries needed.
 public:
* |t holds the public assets of the application. It contains the index.

 html where React will mount the application by default on the <div

id="root"></div> element.
 src:

* |t contains the App.css, App.js, App.test.js, index.css, index.js, and

serviceWorker.js files.

* Here, the App.js file always responsible for displaying the output screen

in React.

J package-lock.json:

* Itis generated automatically for any operations where npm

package modifies either the node_modules tree or package.json.

* It cannot be published. It will be ignored if it finds any other place

rather than the top-level package.
J package.json:
* It holds various metadata required for the project.

* |t gives information to npm, which allows to identify the project as

well as handle the project?s dependencies.
(J README.md:

* |t provides the documentation to read about React topics.

» React Features
* ReactlS gaining quick popularity as the best JavaScript framework among web
developers.

* |tis playing an essential role in the front-end ecosystem. The important features

of ReactlS are as following.

Features \SEaw

& of

COMPONENTS React)S

° VIRTUAL DOM

ONE-WAY
DATA BINDING

O JSX

d Components

[One-way Data Binding
O Virtual DOM

O Simplicity

d Performance

> JSX

e JSX stands for JavaScript XML.

* |tis alJavaScript syntax extension.

* Its an XML or HTML like syntax used by React)S.

* This syntax is processed into JavaScript calls of React Framework.

* It extends the ES6 so that HTML like text can co-exist with JavaScript react code.

* Itis not necessary to use JSX, but it is recommended to use in ReactlS.

Components
ReactlS is all about components.

React)S application is made up of multiple components, and each component has its

own logic and controls.

These components can be reusable which help you to maintain the code when

working on larger scale projects.
One-way Data Binding

ReactlS is designed in such a manner that follows unidirectional data flow or one-
way data binding.
The benefits of one-way data binding give you better control throughout the

application.

If the data flow is in another direction, then it requires additional features. It is
because components are supposed to be immutable and the data within them

cannot be changed.

> Virtual DOM

 Avirtual DOM object is a representation of the original DOM object.
* It works like a one-way data binding.

Whenever any modifications happen in the web application, the entire Ul is re-

rendered in virtual DOM representation.

* Then it checks the difference between the previous DOM representation and

new DOM.

* Once it has done, the real DOM will update only the things that have actually

changed. This makes the application faster, and there is no wastage of memory.

Simplicity
React)S uses JSX file which makes the application simple and to code as well as

understand.

We know that ReactlS is a component-based approach which makes the code

reusable as your need.
This makes it simple to use and learn.
Performance

ReactlS is known to be a great performer. This feature makes it much better

than other frameworks out there today.
The reason behind this is that it manages a virtual DOM.

The DOM is a cross-platform and programming APl which deals with HTML,
XML or XHTML.

The DOM exists entirely in memory. Due to this, when we create a component,

we did not write directly to the DOM.

Instead, we are writing virtual components that will turn into the DOM leading

to smoother and faster performance.

» Adding React to an HTML Page

<IDOCTYPE html>
<html lang="en">
<title>Test React</title>
<!l-- Load React API -->
<script src= "https://unpkg.com/react@16/umd/react.production.min.js"></script>
<!-- Load React DOM-->
<script src= "https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>
<l-- Load Babel Compiler -->
<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
<body>

<script type="text/babel">

// JSX Babel code goes here

</script>
</body>
</html>

What is Babel?

Babel is a JavaScript compiler that can translate markup or programming

languages into JavaScript.

With Babel, you can use the newest features of JavaScript (ES6 - ECMAScript
2015).

Babel is available for different conversions. React uses Babel to convert JSX into

JavaScript.

> What is JSX?

JSX stands for JavaScript XML.

JSX is an XML/HTML like extension to JavaScript.

JSX is a combination of HTML and JavaScript.

You can embed JavaScript objects inside the HTML elements.

JSX is not supported by the browsers, as a result Babel compiler transcompile

the code into JavaScript code.
JSX makes codes easy and understandable.

It is easy to learn if you know HTML and JavaScript.

https://www.geeksforgeeks.org/reactjs-introduction-jsx/
https://www.geeksforgeeks.org/reactjs-using-babel/

> Example

* Here, we will write JSX syntax in JSX file and see the corresponding JavaScript

code which transforms by preprocessor(babel).

 JSX File
<div>Hello React)S</div>
O Corresponding Output

React.createElement("div", null, "Hello ReactlS");

* The above line creates a react element and passing three arguments inside
where the first is the name of the element which is div, second is
the attributes passed in the div tag, and last is the content you pass which is

the "Hello ReactJS."

» React DOM Render

 The method ReactDom.render() is used to render (display) HTML elements:
» Example

<IDOCTYPE html>

<html lang="en">

<title>Test React</title>

<script src=

"https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@16/umd/react-

dom.production.min.js"></script>
<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
<body>

<div id="id01">Hello World!</div>

<script type="text/babel">
ReactDOM.render(
<h1>Hello React!</h1>,
document.getElementByld('id01'));

</script>

</body>

</html>

Hello React!

* Output

» JSX Expressions

* Expressions can be used in JSX by wrapping them in curly {} braces.
<IDOCTYPE html>

<html lang="en">

<title>Test React</title>

<script src=
"https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@16/umd/react-
dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<body>
<div id="id01">Hello World!</div>

<script type="text/babel">
const name = 'John Doe’;

ReactDOM.render(
<h1>Hello {name}</h1>,
document.getElementByld('id01'));
</script>

</body>
</html>

* Output

Hello John Doe

» React Elements
* React applications are usually built around a single HTML element.
* React developers often call this the root node (root element):

<div id="root"></div>

React elements look like this:

const element = <hl>Hello React!</hl:>

Elements are rendered (displayed) with the ReactDOM.render() method:

ReactDOM. render({element, document.getElementById{ root'));

» Example
<IDOCTYPE html>
<html lang="en">

<title>Test React</title>
<script src= "https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@16/umd/react-
dom.production.min.js"></script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

<body>
<div id="root"></div>

<script type="text/babel">
ReactDOM.render(<h1>Hello React!</h1>, document.getElementByld('root'));
</script>

Output

</body>
</html> Hello React!

» Example

<IDOCTYPE html>
<html lang="en">
<title>Test React</title>

<script src=

"https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@16/umd/react-

dom.production.min.js"></script>

<script src="https://unpkg.com/babel-
standalone@6.15.0/babel.min.js"></script>

<body>

<div id="root"></div>

<script type="text/babel">

function tick() {
const element = (<h1>{new Date().toLocaleTimeString()}</h1>);
ReactDOM.render(element, document.getElementByld('root'));

)

setIinterval(tick, 1000);
</script>

</body>
</html>

Output

11:49:21 PM

» Advantage of ReactlJS
J Easy to Learn and Use

* React)S is much easier to learn and use. It comes with a good

supply of documentation, and training resources.

* Any developer who comes from a JavaScript background can easily

understand and start creating web apps using React.

* Itis not fully featured but has the advantage of open-source
JavaScript User Interface(Ul) library, which helps to execute the

task in a better manner.

 Creating Dynamic Web Applications Becomes Easier

* To create a dynamic web application specifically with HTML strings
was tricky because it requires a complex coding, but React JS

solved that issue and makes it easier.

* It provides less coding and gives more functionality. It makes use
of the JSX(JavaScript Extension), which is a particular syntax letting
HTML quotes and HTML tag syntax to render particular

subcomponents.

* It also supports the building of machine-readable codes.

(J Reusable Components

A ReactJS web application is made up of multiple components, and each

component has its own logic and controls.

These components are responsible for outputting a small, reusable piece

of HTML code which can be reused wherever you need them.

The reusable code helps to make your apps easier to develop and

maintain.

These Components can be nested with other components to allow

complex applications to be built of simple building blocks.

React)S uses virtual DOM based mechanism to fill data in HTML DOM.
The virtual DOM works fast as it only changes individual DOM elements

instead of reloading complete DOM every time.

J Performance Enhancement

React)S improves performance due to virtual DOM. The DOM is a cross-

platform and programming API which deals with HTML, XML or XHTML.

Most of the developers faced the problem when the DOM was updated,
which slowed down the performance of the application. ReactlJS solved

this problem by introducing virtual DOM.

The React Virtual DOM exists entirely in memory and is a representation

of the web browser's DOM.

Due to this, when we write a React component, we did not write directly

to the DOM.

Instead, we are writing virtual components that react will turn into the

DOM, leading to smoother and faster performance.

(1 The Support of Handy Tools

* React JS has also gained popularity due to the presence of a handy
set of tools.

* These tools make the task of the developers understandable and
easier.

 The React Developer Tools have been designed as Chrome and

Firefox dev extension and allow you to inspect the React

component hierarchies in the virtual DOM.

* It also allows you to select particular components and examine

and edit their current props and state.

(d Known to be SEO Friendly

* Traditional JavaScript frameworks have an issue in dealing with
SEO. The search engines generally having trouble in reading

JavaScript-heavy applications.
 Many web developers have often complained about this problem.

e React)S overcomes this problem that helps developers to be easily

navigated on various search engines.

* Itis because React.js applications can run on the server, and the
virtual DOM will be rendering and returning to the browser as a

regular web page.

(J The Benefit of Having JavaScript Library
* Today, ReactlS is choosing by most of the web developers.
* |tis because itis offering a very rich JavaScript library.

* The JavaScript library provides more flexibility to the web

developers to choose the way they want.
J Scope for Testing the Codes
* ReactlS applications are extremely easy to test.

* |t offers a scope where the developer can test and debug their

codes with the help of native tools.

» Disadvantage of ReactJS
 The high pace of development

* The high pace of development has an advantage and disadvantage

both.

* In case of disadvantage, since the environment continually
changes so fast, some of the developers not feeling comfortable to

relearn the new ways of doing things regularly.

* It may be hard for them to adopt all these changes with all the

continuous updates.

 They need to be always updated with their skills and learn new

ways of doing things.

] Poor Documentation

* Itis another cons which are common for constantly updating
technologies.
* React technologies updating and accelerating so fast that there is

no time to make proper documentation.

* To overcome this, developers write instructions on their own with

the evolving of new releases and tools in their current projects.

J View Part
* ReactlS Covers only the Ul Layers of the app and nothing else.

* So you still need to choose some other technologies to get a

complete tooling set for development in the project.

L] JSX as a barrier

* React)S uses JSX. It's a syntax extension that allows HTML with

JavaScript mixed together.

* This approach has its own benefits, but some members of the
development community consider JSX as a barrier, especially for

new developers.

* Developers complain about its complexity in the learning curve.

» Example 1

JSX:

import React from ‘react’;

import ReactDOM from "react-dom/client’;

const myElement = <hl>I Love JSX!</hl>;

const root = ReactDOM.createRoot(document.getElementById('root’));

root.render(myElement) ;

» Output

I Love JSX!

» Example 2
Without JSX:

import React from ‘react’;

import ReactDOM from "react-dom/client’;

const myElement = React.createElement("hl", {}, 'I do not use JSX!');

const root = ReactDOM.createRoot(document.getElementById('root'));

root. render (myElement) ;

» Output

I do not use JSX!

» React Components

Components are independent and reusable bits of code.

They serve the same purpose as JavaScript functions, but work in

isolation and return HTML.

A Component is considered as the core building blocks of a React

application.

It makes the task of building Uls much easier. Each component
exists in the same space, but they work independently from one
another and merge all in a parent component, which will be the

final Ul of your application.

Every React component have their own structure, methods as well
as APIs.

They can be reusable as per your need. For better understanding,
consider the entire Ul as a tree.

Here, the root is the starting component, and each of the other
pieces becomes branches, which are further divided into sub-
branches

Browser Ul Tree

— (X

-))

Components

HEADER

Root (App) «———
Component

SIDENAV MAIN CONTENT SIDENAV

B

FOOTER

» In React)S, we have mainly two types of components. They are
* Functional Components

e Class Components

1 Functional Components

* |n React, function components are a way to write components that

only contain a render method and don't have their own state.

* They are simply JavaScript functions that may or may not receive

data as parameters.

* We can create a function that takes props(properties) as input and

returns what should be rendered.

* A Function component also returns HTML, and behaves much the same way as
a Class component, but Function components can be written using much less

code, are easier to understand

» Create Your First Component

* When creating a React component, the component's name MUST start with an

upper case letter.

» A valid functional component can be shown in the below example.

function WelcomeMessage(props) {

return <h1=Welcome to the , {props.name}</h1=;

Example

Create a Function component called Car

function Car() {

return <h2:>Hi, I am a Carl</h2>;

[Class Component

A class component must include the extends

React.Component statement.

This statement creates an inheritance to React.Component, and

gives your component access to React.Component's functions.

The component also requires a render() method, this method

returns HTML.
Class components are more complex than functional components.

It requires you to extend from React.

Component and create a render function which returns a React
element.

You can pass data from one class to other class components.

You can create a class by defining a class that extends Component

and has a render function.

Example

Create a Class component called Car

Car extends React_ Componemnt

et urm h2>Hi, I am a Car! h2

» Valid class component is shown in the below example.
class MyComponent extends React.Component {
render() {
return (
<div>This is main component.</div>
);
}

(J Rendering a Component

* Now your React application has a component called Car, which

returns an <h2> element.

* To use this component in your application, use similar syntax as

normal HTML: <Car />

» Example
1 Display the Car component in the "root" element:

import React from 'react’;

import ReactDOM from 'react-dom/client’;

function Car() { Output
return <h2>Hi, | am a Carl</h2>; Hi, I am a Car!

}

const root =

ReactDOM.createRoot(document.getElementByld('root'));

root.render(<Car />);

» Props

Components can be passed as props, which stands for properties.

Props are like function arguments, and you send them into the

component as attributes.
They are read-only components.

It is an object which stores the value of attributes of a tag and work

similar to the HTML attributes.
It gives a way to pass data from one component to other components.
It is similar to function arguments.

Props are passed to the component in the same way as arguments

passed in a function.

» Example

Use an attribute to pass a color to the Car component, and use it
in the render() function:

import React from 'react’;

import ReactDOM from 'react-dom/client’;
function Car(props) {

return <h2>I am a {props.color; Car!</h2>;

const root = ReactDOM.createRoot(document.getElementById("root’));

root.render(<Car color="red"/>»),

Output

[am a red Car!

» Example

App.js

import React, { Component } from 'react’;
class App extends React.Component {
render() {
return (
<div>
<h1> Welcome to { this.props.name } </h1>
<p> <h4> Javatpoint is one of the best Java training institute in Noida, Delhi, Gurugram, Ghazi

</div=

i
export default App;

Main.js

import React from ‘react’;
import ReactDOM from 'react-dom’,

import App from "/App,s’

ReactDOM.render(<App name = "JavaTpoint!!" />, document.getElementByld('app));

Qutput

C | @ localhost:ao

Welcome to JavaTpoint!!

Javatpeint is one of the best Java training institute in Noida, Delhi, Gurugram, Ghaziabad and Faridabad.

» Components in Components
* We can refer to components inside other components:
» Example

* Use the Car component inside the Garage component:

import React from "react’;

import ReactDOM from 'react-dom/client®;

function Car() {
return <h2>T am a Car!</h2:>»;

=

function Garagel()
return
ol
<hl>kWho liwves in my Garage?</hl:>
<Car />

-

root.render{<Garages />);

const root = ReactDOM.createRoot{document.getElementById/(

"root”));

Output

Who lives in my Garage?

Iam a Car!

» Components in Files

React is all about re-using code, and it is recommended to split your

components into separate files.

To do that, create a new file with a .js file extension and put the code inside it:

Example
This is the new file, we named it "Car.js":

function Car

returmn <hZ>Hi, I am a Car!l- g P

B
.

export detawult Car;

» To be able to use the Car component, you have to import the file in your

application.

 Example

* Now we import the "Car.js" file in the application, and we can use

the Car component as if it was created here.

import React from ‘react’;

import ReactDOM from 'react-dom/client’;

import Car from './Car.js’;

const root = ReactDOM.createRoot(document.getElementById("root’));

root.render(<Car /»);

* Output

Hi, I am a Car!

» React Conditional Rendering

* In React, conditional rendering works the same way as the conditions work in

JavaScript.

* We use JavaScript operators to create elements representing the current state, and

then React Component update the Ul to match them.

* From the given scenario, we can understand how conditional rendering works.

Consider an example of handling a login/logout button.
 The login and logout buttons will be separate components.
* |fauserlogged in, render the logout component to display the logout button.

* |fausernotlogged in, render the login component to display the login button. In

React, this situation is called as conditional rendering.

» There is more than one way to do conditional rendering in React.
They are given below.

e if

* ternary operator

* |ogical && operator

* switch case operator

e Conditional Rendering with enums

if

It is the easiest way to have a conditional rendering in React in the render
method.

It is restricted to the total block of the component.

IF the condition is true, it will return the element to be rendered.

if JavaScript operator to decide which component to render.

» It can be understood in the below example.

import React from 'react';
import ReactDOM from 'react-dom/client';

function MissedGoal() {
return <hl>MISSED!'</hl>;

}

function MadeGoal() {
return <hl>GOAL'</hl>;

}

Hfunction Goal (props) {
const 1s5Goal = props.isGoal;
= if (isGoal) {
return <MadeGoal/>;
-}
return <MissedGoal/>;

-}

const root = ReactDOM.createRoot (document.getElementById('rooct'));
root.render (<Goal isGoal={false} />);

» Logical && operator

* This operator is used for checking the condition. If the condition is true, it will

return the element right after &&, and if it is false, React will ignore and skip it.

» Syntax

{
condition &&

// whatever written after && will be a part of output.

We can understand the behavior of this concept from the below example.

If you run the below code, you will not see the alert message because the

condition is not matching.

(' reactjs' == 'reactjs ') && alert('This alert will never be shown!')

If you run the below code, you will see the alert message because the condition
is matching.

(10 > 5) && alert('This alert will be shown!")

> Example

import React from 'react’;
import ReactDOM from ‘react-dom’;
A Example Component

function Example()

i
return(<div:=>
i
(10 = 5) && alert('This alert will be shown!")
h
< i =
)
h

* You can see in the above output that as the condition (10 > 5) evaluates to true,

the alert message is successfully rendered on the screen.

Ternary operator

The ternary operator is used in cases where two blocks alternate given a certain

condition.
This operator makes your if-else statement more concise.

It takes three operands and used as a shortcut for the if statement.

Syntax

condition ? true : false

If the condition is true, statement1 will be rendered. Otherwise, false will be rendered.

» Example
render() {
const isLoggedIn = this.state.isLoggedIn;
return (
<div>
Welcome {isLoggedIn ? 'Back’ : 'Please login first'}.
</div>

);

» Switch case operator
 Sometimes it is possible to have multiple conditional renderings.
* Inthe switch case, conditional rendering is applied based on a different state.

» Example

function NotificationMsg({ text}) {
switch{text) {
case 'Hi All':
return <Message: text={text} /=>;
case 'Hello JavaTpoint™:
return <Message text={text} /=,
default:

returrmn null;

» Conditional Rendering with enums

e InJavaScript, an object can be used as an enum when it is used as a map of key-
value pairs.

* An enum is a great way to have a multiple conditional rendering.
* |Itis more readable as compared to switch case operator.

* |tis perfect for mapping between different state.

* |tis also perfect for mapping in more than one condition.

* It can be understood in the below example.

» Example

const ENUMOBIJECT = {

> Example

* We want to create three different components Foo, Bar and Default. We want

to show these components based on a certain state.

const Foo = () => {

return <button>FOO</button>;
;
const Bar = () => {

return <button>BAR</button>;
g
const Default = () => {

return <button>DEFAULT</button>;

I

» We’ll now be creating an object that can be used as an enum.

const ENUM_STATES = {
foo: <Foo />,
bar: <Bar />,

default: <Default />

I

» Let’s now create a function that will take state as a parameter and return
components based on “state”. The “EnumState” function below is quite self-

explanatory.

function EnumState({ state }) {

return <div>{ENUM_STATES[state]}</div>;

* The state property key above helps us to retrieve the value from the object.

You can see that it is much more readable compared to the switch case
operator.

e Let’s create an Enum component, which will pass the values of “state” to the
function “EnumState”.

class Enum extends React.Component {
render() {

return (
<div>
<h1>Conditional Rendering with enums</h1>
<EnumState state="default"></EnumState>
<EnumState state="bar"></EnumState>
<EnumState state="foo"></EnumState>
</div>
);
}
}

ReactDOM.render(<Enum />, document.getElementByld("app"));

> React Lists
e Lists are very useful when it comes to developing the Ul of any website.

e Lists are mainly used for displaying menus on a website, for example, the

navbar menu.
* Inregular JavaScript, we can use arrays for creating lists.
e you will render lists with some type of loop.

* The JavaScript map() array method is generally the preferred method.

> Example

import React from 'react’;

import ReactDOM from 'react-dom’;

const numbers =[1,2,3,4,5];

const updatedNums = numbers.map((number)=>{

return {number};

});
ReactDOM.render(
 Output
{updatedNums} o 1
.
</UI>I s 3
« 4
document.getElementByld('root’) ¢ O

> React Events

 Aneventis an action that could be triggered as a result of the user action or

system generated event.

 For example, a mouse click, loading of a web page, pressing a key, window

resizes, and other interactions are called events.

* React has its own event handling system which is very similar to handling events

on DOM elements.

* The react event handling system is known as Synthetic Events. The synthetic

event is a cross-browser wrapper of the browser's native event.

Events Handler

Builds/Modifies Builds/Modifies

React Virtual
DOM

Delivers events Delivers events

Handling events with react have some syntactic differences from handling

events on DOM. These are:
React events are named as camelCase instead of lowercase.

With JSX, a function is passed as the event handler instead of a string. For

example:

» Event declaration in plain HTML:

<button onclick="showMessage()" >
Hello JavaTpoint

< /button=

> Event declaration in React:

<button onClick={showMessage} =
Hello JavaTpoint

< /button=

» Example

import React from "react’;

import ReactDOM from 'react-dom/client’;

function Football() {
const shoot = () =» {
alert("Great Shot!");

return |
<button onClick={shoot}>Take the shot!</button:

);

[

const root = ReactDOM.createRoot(document.getElementById(root"));

root.render(<Football />);

> Output

Great Shot!

localhost: 38088

| Take the shotl |

» Passing Arguments

To pass an argument to an event handler, use an arrow function.

d Example:

Send "Goall!" as a parameter to the shoot function, using arrow function:

import React from 'react’;

import ReactDOM from 'react-dom/client’;

function Football()
const shoot = (a) => {

alert(a);

return (
<button onClick={() =» shoot({"Goal!")}>Take the shot!</button:
»
1
]
const root = ReactDOM.createRoot{document.getElementById('root"));

root. render(<Football /:);

> Output

Goal

localhost: 3080

|1Eketheshuﬂ|

» React Event Object
* Event handlers have access to the React event that triggered the function.

* In our example the event is the "click" event.

d Example:
* Arrow Function: Sending the event object manually:

import React from 'react’;

import ReactDDM from 'react-dom/client’;

function Football()

I
W
==

const shoot = (a, b)
alert({b.type);
P
b’ represents the React ewvent that triggered the function.

In this case, the "'click® ewvent

- _."I
return
<button onClick={(event) =»> shoot("Goal!"™, event) >Take the shot!</button:>
}
const root = ReactDOM.createRoot(document.getElementById('root’));

root.render{<Football /=);

> Output

click
- localhost: 3008

| Take the shot! |

Unit-2: Forms and Hooks in React.JS

Unit-2: Forms and Hooks in React.JS
2.3 Forms: (Adding forms, Handling forms, Submitting forms)

2.3.1 event.target.name and event. Target.event, React

Memo

2.3.2 Components (TextArea, Drop down list (SELECT))
2.4 Hooks: Concepts and Advantages

2.4.1 useState, useEffect, useContext

2.4.2 useRef, useReducer, useCallback, useMemo

2.3.3 Hook: Building custom hook, advantages and use

> React Forms

 Forms are an integral part of any modern web application.
It allows the users to interact with the application as well

as gather information from the users.

 Forms can perform many tasks that depend on the nature
of your business requirements and logic such as
authentication of the user, adding user, searching,

filtering, booking, ordering, etc.

A form can contain text fields, buttons, checkbox, radio
button, etc.

» Creating Form
* React offers a stateful, reactive approach to build a form.

* The component rather than the DOM usually handles the

React form.

* |n React, the form is usually implemented by using

controlled components.
» There are mainly two types of form input in React.
* Uncontrolled component

e Controlled component

» Uncontrolled component

The uncontrolled input is similar to the traditional HTML form inputs.
The DOM itself handles the form data.

Here, the HTML elements maintain their own state that will be updated

when the input value changes.

To write an uncontrolled component, you need to use a ref to get form

values from the DOM.

In other words, there is no need to write an event handler for every

state update.

You can use a ref to access the input field value of the form from the

DOM.

» Controlled Component

In HTML, form elements typically maintain their own state and update it

according to the user input.

In the controlled component, the input form element is handled by the

component rather than the DOM.

Here, the mutable state is kept in the state property and will be updated only

with setState() method.

Controlled components have functions that govern the data passing into them
on every onChange event, rather than grabbing the data only once, e.g., when

you click a submit button.
This data is then saved to state and updated with setState() method.

This makes component have better control over the form elements and data.

» Example
 Add a form that allows users to enter their name:

import React from ‘react’;

import ReactDOM from 'react-dom/client’;

function MyForm() {
return (
<form>
<label>Enter your name:
<input type="text"” />
</label>

</form>

const root = ReactDOM.createRoot(document.getElementById('root’));
root.render(<MyForm />);

> Output

- - localhost: 3000

Enter vour name :| sds |

e This will work as normal, the form will submit and the page will

refresh.
e But this is generally not what we want to happen in React.

 We want to prevent this default behavior and let React control

the form.

» Handling Forms

Handling forms is about how you handle the data when it

changes value or gets submitted.
In HTML, form data is usually handled by the DOM.
In React, form data is usually handled by the components.

When the data is handled by the components, all the data is

stored in the component state.

You can control changes by adding event handlers in the

onChange attribute.

We can use the useState Hook to keep track of each inputs value
and provide a "single source of truth" for the entire application.

> Example:

Use the useState Hook to manage the input:

import { useState ; from “react”;

import ReactDOM from ‘react-dom/client’;
function MyForm() {

const [name, setName]| = useState("");

return (
<form>
<label>Enter your name:
<input
type="text"”
value={name ;
onChange={(e) => setName(e.target
/>
</label>

</form>

N

.value) ;

const root = ReactDOM.createRoot(document.getElementById(‘root”));

root.render(<MyForm />);

> Submitting Forms

* You can control the submit action by adding an event handler in

the onSubmit attribute for the <form> :
> Example:

 Add a submit button and an event handler in the onSubmit attribute:

import { useState ; from “react”;

import ReactDOM from 'react-dom/client’;
function MyForm() A

const |[name, setName]| = useState("");
const handleSubmit = (event) => {
event.preventDefault();

alert(" The name you entered was: ${name;);

return (
<form onSubmit={handleSubmit}>

<label>Enter your name:
<input
type="text"
value={name}
onChange={(e) => setName(e.target.value);
/>
</label>
<input type="submit"” />
</form>

const root = ReactDOM.createRoot(document.getElementById(root"));
root.render(<MyForm />);

> Output

. - localhost:3000

Enter VOur name:

| | [Submit |

» event.target.name
* The target property returns the element where the event occured.
* The target property is read-only.

* The target property returns the element on which the event occurred,

opposed to the currentTarget property, which returns the element whose

event listener triggered the event.
» Syntax

event.target

https://www.w3schools.com/jsref/event_currenttarget.asp

In React, event. target refers to the HTML element that triggered the event.
For instance, if you have a button component in React, you can add an onClick
listener to it to listen for click events.

When the button is clicked, the event object that is passed to the handler

function will have the event.

Example

Get the name of the element where the event occurred:

I let text = event.target.tagllame;

Get the element where the event occurred:

I const element = event.target;

> Example

<!DOCTYPE html>

<html>

<body onclick="myFunction(event)" style="border:1px solid black;padding:8px">
<h1>HTML DOM Events</hl>

<h2>The target Property</h2>

<p>Click on any elements in this document to find out which element triggered
the onclick event.</p>

<button>This is a button</button>
<p id="demo"></p>

<script>

function myFunction(event) {
let text = event.target.nodelame;
document.getElementById(“demo").innerHTML = text;

¥

</script>

</body>
</html>

> Output

HTML DOM Events

The target Property

Click on any elements in this document to find out which element triggered the onclick event.

| This is a button |

HTML DOM Events

The target Property

Click on any elements in this document to find out which element triggered the onclick event.

| This is a button | \

BUTTON

When You Clicked

> React Memo

* Using memo will cause React to skip rendering a component if its props have

not changed.
* This can improve performance.

* React Memo is a higher-order component that wraps around a component to

memoize the rendered output and avoid unnecessary renderings.

* This improves performance because it memoizes the result and skips

rendering to reuse the last rendered result.

 React.memo is a function that you can use to optimize the render
performance of pure function components and hooks.

» Example:

const MyComponent = React.memo(function MyComponent(props) {
/* render using props */

1;

» Components (TextArea, Drop down list (SELECT))
> TextArea

* One frequently used form control is textarea, which is used to get multi-line
input from a user. It's different from a normal text input, which allows only

single-line input.
A good example of a use case for textarea is an address field.
 TextArea is a controlled component.

* This means that the visible text will always match the contents of the value

prop. In this example, notice how value is stored within this. state .

 The onChange function will set the new value when the user enters or
removes a character in the textarea.

» Example
function TextAreaExample() { const [value,
setValue] = React.useState("); return (
<div>
<Label text="Business description">
<TextArea
value={value}
placeholder="Tell us about your business"
onChange={v => setValue(v)}
/>
</Label>

</div>

» Dropdowns

A Dropdown in React JS list is a graphical user interface element that gives

users a list of possibilities and allows them to select one value from the list.
There are two statuses in the dropdown menu: active and inactive.
Only one discount is displayed while the dropdown list is fixed.

By activating the list, all accessible options in the list are revealed, and This

situation may alter this value.
You may use a dropdown list as one of many different lists in your apps.

It's an excellent technique to provide various options and let the user select
one from the list.

» Creating a Dropdown in React
Js import * as React from 'react’;
const App = () => { return (
<div>
<select>
<option value="fruit">Fruit</option>
<option value="vegetable">Vegetable</option>
<option value="meat">Meat</option>
</select>
</div>
);
5
export default App;

> Hooks

* Hooks are used to give functional components an access to use the states and

are used to manage side-effects in React.

* They let developers use state and other React features without writing a class
For example- State of a component It is important to note that hooks are not

used inside the classes.

* Hooks allow us to "hook" into React features such as state and lifecycle

methods.

* Hooks are backward-compatible, which means it does not contain any
breaking changes. Also, it does not replace your knowledge of React concepts.

> When to use a Hooks

* [f you write a function component, and then you want to add some state to it,
previously you do this by converting it to a class. But, now you can do it by

using a Hook inside the existing function component.
» Rules for using hooks
* Only functional components can use hooks
* Calling of hooks should always be done at top level of components

* Hooks should not be inside conditional statements

» Advantages of Using React Hooks

d Simplified Code

One of the primary benefits of using React Hooks is that it simplifies the

codebase.

Hooks eliminate the need for class components, which often require more
boilerplate code and can be harder to read and understand. With Hooks,

developers can write cleaner, more intuitive code.
Improved Reusability

React Hooks make it easier to reuse stateful logic across components. With
custom hooks, developers can extract component logic into reusable

functions.

This promotes cleaner, more modular code, and reduces duplication.

d Easier Testing and Debugging

Functional components that use Hooks are generally easier to test and debug

than class components.

Since Hooks promote separation of concerns and a more functional

programming style, developers can write more predictable and testable code.
Reduced Bundle Size

By using functional components with Hooks instead of class components,

developers can reduce the overall size of their application bundle.

This can lead to faster load times and improved performance for users.

» React Hooks Installation

d To use React Hooks, we need to run the following commands:
S npm install react@16.8.0-alpha.1 --save
S npm install react-dom@16.8.0-alpha.1 --save

 The above command will install the latest React and React-DOM alpha versions

which support React Hooks.

* Make sure the package.json file lists the React and React-DOM dependencies

as given below.
"react": "716.8.0-alpha.1",

"react-dom": "716.8.0-alpha.1",

React.js — Basic Hooks (useState, useEffect, & useContext)
useState
The React useState Hook allows us to track state in a function component.

State generally refers to data or properties that need to be tracking in an

application.
Import useState
To use the useState Hook, we first need to import it into our component.

Example:

At the top of your component, import the useState Hook.

import | useState from “react”

Initialize useState

We initialize our state by calling useState in our function component.

useState accepts an initial state and returns two values:
The current state.

A function that updates the state.

Example:

Initialize state at the top of the function component.

import | useState from “react”;

function FavoriteColor()

N

const [color, setColor] = useState(™"

» React useEffect Hooks
* The useEffect Hook allows you to perform side effects in your components.

 Some examples of side effects are: fetching data, directly updating the DOM,

and timers.

* useEffect accepts two arguments. The second argument is optional.

* usekEffect(<function>, <dependency>)

> Example

import { useState, useEffect } from "react";
import ReactDOM from "react-dom/client";

function Timer() {
const [count, setCount] = useState(0):

useEffect (() => {
setTimeout (() => {

setCount ((count) => count + 1);
}. 1060)

b) i

return <hl>I have rendered {count} times!</hl>;

}

const root = ReactDOM.createRoot (document.getElementById('root')):;
root.render (<Timer />):

> Output

. - localhost: 3600

I have rendered 1 times!

» useContext Hook

 The useContext Hook provides function components access to

the context value for a context object. It:

* Takes the context object (i.e., value returned from React.createContext) as the

one argument it accepts.

* And returns the current context value as given by the nearest context provider.

context chect lie vale refurned
From ReactereateContext)

l

const c tValue = useContext (ContextObject);

4
|
current cortext vaue as gven b’
the rearest context provider

With this in mind, we’ll have the <Child /> component in our example use the
useContext hook to access the data property available in our application
context and render its value in its markup.

» Example
import React, { createContext, useContext } from
"react"; const Context = createContext(); const Child = ()
=> {
const context = useContext(Context);
return <div>{context.data}</div>;
;
const App = () => {
return (
<Context.Provider value={{ data: "Data from context!" }}>
<Child />
</Context.Provider>
);
Iy

> React useRef Hook

 The useRef is a hook that allows to directly create a reference to the DOM

element in the functional component.

* The useRef hook is a new addition in React 16.8. To learn useRef the user
should be aware about refs in React. Unlike useState if we change a value in

useRef it will not re-render the webpage
» Reasons to use useRef hook

* The main use of useRef hook is to access the DOM elements in a more efficient
way as compared to simple refs. Since useRef hooks preserve value across
various re-renders and do not cause re-renders whenever a value is changed
they make the application faster and helps in caching and storing previous
values

> Importing useRef hook

* To import the useRef hook, write the following code at the top level of your

component

import { useRef } from 'react’;

» Example

import React, {Fragment, useRef} from 'react’; function

App() {

// Creating a ref object using useRef hook
const focusPoint = useRef(null); const
onClickHandler = () => {
focusPoint.current.value =

"The quick brown fox jumps over the lazy dog";

-

focusPoint.current.focus();
5
return (

<Fragment>

<div> <button onClick={onClickHandler}> ACTION </button> </div>

<label>
Click on the action button to focus
and populate the text.
</label>

<textarea ref={focusPoint} />

</Fragment>

export default App;

> useReducer

 The useReducer(reducer, initialState) hook accepts 2 arguments:
the reducer function and the initial state. The hook then returns

an array of 2 items: the current state and the dispatch function.
* The useReducer Hook is similar to the useState Hook.
* It allows for custom state logic.

* If you find yourself keeping track of multiple pieces of state that

rely on complex logic, useReducer may be useful.
» Syntax

* The useReducer Hook accepts two arguments.

useReducer(<reducer>, <initialState>)

> Example

' Component () ’
[state, dispatch]

nst action = {

"ActionType’

>

useCallback

The React useCallback Hook returns a memoized callback

function.

Think of memoization as caching a value so that it does not need

to be recalculated.

This allows us to isolate resource intensive functions so that they

will not automatically run on every render.

The useCallback Hook only runs when one of its dependencies

update.

This can improve performance.

Syntax:

const memoizedCallback

() =>{
doSomething(a, b);

s

[a, bl],

) s

useCallback(

» Example

import React, { useState, useCallback } from 'react’
var funccount = new Set(); const App = () => {
const [count, setCount] = useState(0) const
[number, setNumber] = useState(0) const
incrementCounter = useCallback(() => {
setCount(count + 1)

}, [count])

const decrementCounter = useCallback(() => {

setCount(count - 1)

}, [count])

const incrementNumber = useCallback(() => {
setNumber(number + 1)

}, [number])
funccount.add(incrementCounter);
funccount.add(decrementCounter);
funccount.add(incrementNumber);
alert(funccount.size);

return (
<div>
Count: {count}
<button onClick={incrementCounter}>
Increase counter
</button>

<button
onClick={decrementCounter}>

Decrease Counter

</button>

<button onClick={incrementNumber}>
increase number

</button>

</div>)} export
default App;

> Output

Count. -1| Increase counter | Decrese Counter | Increase number |

locathost:3000 says

-
P

>

useMemo

The React useMemo Hook returns a memoized value. Think of
memoization as caching a value so that it does not need to be

recalculated.

The useMemo Hook only runs when one of its dependencies update.

This can improve performance.
The React useMemo Hook returns a memoized value.

Think of memoization as caching a value so that it does not need to be

recalculated.
The useMemo Hook only runs when one of its dependencies update.

This can improve performance.

<= =" = 53y to= g
NncTci1on CalcCculacter

ist [number, setNumber]

= use

st [Ainc, setInc] =

factorial

Factorial
< -

1S ' torial
NE R =, _13 7 >Re-render</

ctorialOf (;) 1

console.log('factorialof(n) call

ed!) ;
< -*_--:'*ri;'::'*(-

<= 0 2 A = 0 & factc

» Building a custom hook

* Creating a custom hook is the same as creating a JavaScript
function whose name starts with “use”. It can use other hooks
inside it, return anything you want it to return, take anything as

parameters.

* Note: It isimportant to name your custom hooks starting with
“use”, because without it React can’t realize that it is a custom
hook and therefore can’t apply the rules of hooks to it. So, you
should name it starting with “use”.

» Example

// First Component
import React from "react™;

// importing the custom hook
import useCustomHook from "./useCustomHook™;

function FirstComponent(props){

// ClickedButton = resetCounter;
const clickedButton = useCustomHook(©@ , "FirstComponent™);

return (
<div>
<hl> This is the First Component</hl>
<button onClick={clickedButton}>
Click here!
</button>
</div>
)
¥

export default FirstComponent;

» Advantages of Building a custom hook
(d Reusability

* Custom React JS hooks offer reusability as when a custom hook is

created, it can be reused easily, which ensures clean code and

reduces the time to write the code.

* It also enhances the rendering speed of the code as a custom
hook does not need to be rendered again and again while
rendering the whole code.

https://www.turing.com/blog/want-software-developer-jobs-learn-how-to-write-a-clean-code-first/

» Readability

Instead of using High-Order Components (HOCs), one can use

custom hooks to improve the readability of the code.

Complex codes can become hard to read if layers of providers
surround the components, consumers, HOCs, render props, and

other abstractions, generally known as wrapper hell.

On the other hand, using custom React JS hooks can provide
cleaner logic and a better way to understand the relationship
between data and the component.

d Testability

Generally, the test containers and the presentational components

are tested separately in React.

This is not a trouble when it comes to unit tests. But, if a
container contains several HOCs, it becomes difficult as you will
have to test the containers and the components together to do
the integration tests.

Unit-3: Fundamentals of Angular

Unit-3: Fundamentals of Angular

3.1 Concepts and characteristics of Angular JS

3.1.1 Expressions in Angular JS (Numbers, Strings, Objects, Arrays)

3.1.2 Setting up Environment, Angular JS Filters

3.1.3 Understanding MVC (Model, View, Controller) architecture

3.2 AngularJS Directive (ng-app, ng-init, ng-controller, ng-model, ng-repeat)
3.2.1 Some other dire ctives: ng-class, ng-animate, ng-show, ng-hide

3.2.2 Expressions and Controllers

3.2.3 Filters (Uppercase, Lowercase, Currency, order by)

» History of Angularls:

* Angular]S was originally developed in 2008-2009 by Misko
Hevery and Adam Abrons at Brat Tech LLC, as software for
the online JSON storage service, in order to ease to

development of the applications for the enterprise, that

has been valued by the megabyte.
* |tis now maintained by Google.

* AngularlS was released with version 1.6, which contains
the component-based application architecture concept.

» Angularls

* AngularlS is a Javascript open-source front-end structural
framework that is mainly used to develop single-page web

applications(SPAs).

* |tisa continuously growing and expanding framework which

provides better ways for developing web applications.
* |t changes the static HTML to dynamic HTML.

* |ts features like dynamic binding and dependency injection
eliminate the need for code that we have to write otherwise.

AngularlS is rapidly growing and because of this reason,
we have different versions of Angular]S with the latest
stable being 1.7.9.

It is also important to note that Angular is different from
Angular)s.

It is an open-source project which can be freely used and
changed by anyone.

It extends HTML attributes with Directives, and data is
bound with HTML.

* AngularlS is a JavaScript framework written in JavaScript.

» Why use Angular)S?
d Easy to work with:

 All you need to know to work with AngularlS is the basics of HTML, CSS,

and Javascript, not necessary to be an expert in these technologies.
d Time-saving:
* AngularlJs allows us to work with components and hence we can use
them again which saves time and unnecessary code.

(d Ready to use a template:

* Angularl)s is mainly plain HTML, and it mainly makes use of the plain
HTML template and passes it to the DOM and then the AngularlS
compiler. It traverses the templates and then they are ready to use.

(J Directives:

* Angular)S’s directives allow you to extend HTML with custom

elements and attributes.

* This enables you to create reusable components and define

custom behaviors for your application.

* Directives make it easier to manipulate the DOM, handle events,
and encapsulate complex Ul logic within a single component.

» Features of AngularJS
* The core features of Angularl)S are as follows -
d Data-binding

* [t is the automatic synchronization of data between model and view

components.
d Scope

* These are objects that refer to the model. They act as a glue between

controller and view.
O Controller
* These are JavaScript functions bound to a particular scope.
O Services

* Angular]S comes with several built-in services such as Shttp to make a
XMLHttpRequests. These are singleton objects which are instantiated only
once in app.

O Filters
* These select a subset of items from an array and returns a new array.
d Directives

 Directives are markers on DOM elements such as elements,

attributes, css, and more.

* These can be used to create custom HTML tags that serve as new,
custom widgets. Angular)S has built-in directives such as ngBind,

ngModel, etc.
d Templates

e These are the rendered view with information from the controller and

model.

 These can be a single file (such as index.html) or multiple views in one
page using partials.

d Routing -

* [t is concept of switching views.

(J Model View Whatever -

MVW is a design pattern for dividing an application into different parts

called Model, View, and Controller, each with distinct responsibilities.

Angular]S does not implement MVC in the traditional sense, but rather
something closer to MVVM (Model-View-ViewModel). The Angular JS

team refers it humorously as Model View Whatever.

d Deep Linking -

Deep linking allows to encode the state of application in the URL so that

it can be bookmarked.

The application can then be restored from the URL to the same state.

(J Dependency Injection -

* AngularlS has a built-in dependency injection subsystem that
helps the developer to create, understand, and test the
applications easily.

» AngularlS - Environment Setup

* When you open the link https://angularjs.org/, you will see there

are two options to download AngularlS library -

NNGULARJS

v Google

HTML enhanced for web apps!

& Download AngularJS 1 | Try the new Angular 2

|

@ View on GitHub @ Design Doc

https://angularjs.org/
https://angularjs.org/

* View on GitHub - By clicking on this button, you are diverted to
GitHub and get all the latest scripts.

 Download Angular)S 1 - By clicking on this button, a screen you
get to see a dialog box shown as -

Download AngularJsS

Branch 15x (stable) 1.2x (legacy) ©

Build Minified Uncompressed Zip <

CDN nttps://ajax googleapis com/ajax/libs/angularjs/1 5 2/angular min js ©
Bower power install angulargt 5 2 ©
npm

npm install angular@1.5.2

Srowse acgaditional modules

Extras

Previous Versions

o Download ‘

» CDN access - You also have access to a CDN. The CDN gives you
access to regional data centers. In this case, the Google host. The
CDN transfers the responsibility of hosting files from your own
servers to a series of external ones. It also offers an advantage
that if the visitor of your web page has already downloaded a
copy of Angular]S from the same CDN, there is no need to
redownload it.

» Angularl)S Extends HTML
* AngularlS extends HTML with ng-directives.
 The ng-app directive defines an Angularl)S application.

 The ng-model directive binds the value of HTML controls (input,

select, textarea) to application data.

 The ng-bind directive binds application data to the HTML view.

» Example

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/1libs/angularjs/1.6.9/angular.min.js">
<[script>

<body>

<div ng-app="">

<p>Input something in the input box:</p>
<p>Name: <input type="text" ng-model="name"></p>
<p ng-bind="name"></p>

<fdiv>

</body>
</html>

> Output

Input something 1nn the imput box:

Name: |Hello!!! Everyone

Hello!!! Exvervone

» Expressions in Angular JS (Numbers, Strings, Objects, Arrays)

* Expressions are variables which were defined in the double

braces {{ }}.
» Syntax:
* Asimple example of an expression is {{5 + 6}}.

* Angular.JS expressions are used to bind data to HTML the same

way as the ng-bind directive.

* AngularlS displays the data exactly at the place where the
expression is placed.

» Example

</head>

script src="

The Ng-app is nof
defined with any

application name.

}) 2
\ A SiMple addifion

e operation inside an
Sneas eXpression

> Example Output

<IDOCTYPE html> o Exven:eglu_;szrat(OI\ x

<html>

Guru99 Global Event

<head><meta chrset="UTF 8"> Addition 15

<title>Event Registration</title> </head>

<body>
<script src="https://code.angularjs.org/1.6.9/angular-route.js"></script>
<script src="https://code.angularjs.org/1.6.9/angular.min.js"></script>
<h1> Guru99 Global Event</h1>
<div ng-app=""> Addition : {{6+9}} </div>

</body>

</html>

» Angular.JS Numbers

* Expressions can be used to work with numbers as well. Let’s look

at an example of Angular.JS expressions with numbers.

* In this example, we just want to show a simple multiplication of 2
number variables called margin and profit and displayed their
multiplied value.

ng-inf 104 to

inifalize vVariables

Variales being
used in an
eXpression

> Output

/W& Event Registration x __

r C QA

Guru99 Global Event

Total Profit margin 400

» Angularls Strings

Expressions can be used to work with strings as well. Let’s look at

an example of Angular JS expressions with strings.

In this example, we are going to define 2 strings of “firstName”
and “lastName” and display them using expressions accordingly.

» Example

Variables names
ouing) displasyed

» Angular.JS Objects

* Expressions can be used to work with JavaScript objects as well.

* Let’s look at an example of Angular.JS expressions with
javascript objects. A javascript object consists of a name-value
pair.

 Below is an example of the syntax of a javascript object.

» Syntax:

var car = {type:"Ford", model:"Explorer", color:"White"};

https://www.guru99.com/interactive-javascript-tutorials.html

» Example

Creating an object
_An S Vil with 2
ket Ve pairs

ACCSSing 60
Ve 0f fhe doject
POrSOn Via. i's key
Vae pairs

> Output

/ W& Event Registration x \ .
<« > C |

Guru99 Global Event

First Name : Guru
Last Name : S99

» AngularlS Arrays

Expressions can be used to work with arrays as well. Let’s look at

an example of Angular JS expressions with arrays.

In this example, we are going to define an array which is going to
hold the marks of a student in 3 subjects. In the view, we will
display the value of these marks accordingly.

» Example

Inifiizing an
QYo using the
ng-init directive

Accessing each

> Output

p " ¥ Event Registration x \ﬁ_)

« = C

Guru99 Global Event

Student Marks
Subject1 : 1
Subject2 : 15
Subject3 : 19

» Angularls Filters

Angular)S provides filters to transform data:
currency Format a number to a currency format.
date Format a date to a specified format.

filter Select a subset of items from an array.
json Format an object to a JSON string.

limitTo Limits an array/string, into a specified number of

elements/characters.

lowercase Format a string to lower case.
number Format a number to a string.
orderBy Orders an array by an expression.

uppercase Format a string to upper case.

» Adding Filters to Expressions

* Filters can be added to expressions by using the pipe character |,

followed by a filter.

 The uppercase filter format strings to upper case:

» Example

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">
</script>

<body>

<div ng-app="myApp" ng-controller="personCtrl™>
<p>The name is {{ lastName | uppercase }}</p>
</div>

<script>

angular.module(‘myApp', []).controller(’'personCtrl’, function($scope) {
$scope.firstName = "John",
$scope.lastlame = "Doe”

}Xs;

</script>

</body>
</html>

> Output

The name 1s DOE

» Understanding MVC (Model, View, Controller) architecture

» AngularlS - MVC Architecture

 MVC stands for Model View Controller.
e |tis a software design pattern for developing web applications.

* |tisvery popular because it isolates the application logic from the user

interface layer and supports separation of concerns.

 Model View Controller or MVC as it is popularly called, is a software design

pattern for developing web applications.

* A Model View Controller pattern is made up of the following three parts -

Conmntroller

» The Model

 The model is responsible for managing application data. It responds to the

request from view and to the instructions from controller to update itself.

> The View

A presentation of data in a particular format, triggered by the controller's

decision to present the data.

 They are script-based template systems such as JSP, ASP, PHP and very easy to

integrate with AJAX technology.
» The Controller

* The controller responds to user input and performs interactions on the data

model objects.

 The controller receives input, validates it, and then performs business

operations that modify the state of the data model.

* Angularl)S is a MVC based framework. In the coming chapters, we will see how
Angularl)S uses MVC methodology.

> Angular)S - Directives

4 ng-app directive

The ng-app directive starts an Angular)S Application.

It defines the root element. It automatically initializes or bootstraps the

application when the web page containing AngularJS Application is loaded.
It is also used to load various AngularJS modules in Angular)S Application.

In the following example, we define a default AngularJS application using ng-

app attribute of a <div> element.

<div ng-app = ">

< /div>

 ng-init directive
* ng-init directive initializes an AngularJS Application data. It defines the initial
values for an AngularlS application.

* |In following example, we'll initialize an array of countries. We're using JSON

syntax to define array of countries.

<div ng-app = " ng-init = ‘countries = [{locale:en-IND',name:'India’}, {locale:'er

PAK' name: Pakistan’}, {locale:'en-AUS’ name:'Australia’}] ">

</div>

d ng-model directive:

ng-model directive defines the model/variable to be used in Angularl)S

Application.

In following example, we've defined a model named "name".

<div ng-app = ">

<p>Enter your Name: <input type = "text” ng-model = "name"></p>

</div>

d ng-repeat directive

ng-repeat directive repeats html elements for each item in a collection. In

following example, we've iterated over array of countries.

<div ng-app = "">

<p=>List of Countries with locale:</p>

<li ng-repeat = "country in countries”>
{{ 'Country: ' + country.name + ', Locale: * + country.locale }}
</fli>

d ng-controller Directive

* The AngularlS ng-controller directive adds a controller class to the view (your
application). It is the key aspect which specifies the principles behind the

Model-View-Controller design pattern.

* |t facilitates you to write code and make functions and variables, which will be
parts of an object, available inside the current HTML element. This object is

called scope.
* This is supported by all HTML elements.

> Syntax:

<element ng-controller="expression"> < /element>

> Example

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">
</script>

<body>

<div ng-app="myApp" ng-controller="myCtrl">
Full Name: {{firstName + " " + lastName}}
</div>

<script>

var app = angular.module('mylpp’, [1);
app.controller('myCtrl', function($scope) {

$scope.firstName = "John";
$scope.lasthame = "Doe";
1);
</script>

<p>This example shows how to define a controller, and how to use variables
made for the scope.</p>

</body>
</html>

> Output

Full Name: John Doe

This example shows how to define a controller, and how to use variables made for the scope.

 ng-class Directive

The ng-class directive dynamically binds one or more CSS classes to an HTML

element.
The value of the ng-class directive can be a string, an object, or an array.
If it is a string, it should contain one or more, space-separated class names.

As an object, it should contain key-value pairs, where the key is the class name
of the class you want to add, and the value is a boolean value. The class will

only be added if the value is set to true.

Syntax

<element ng-class="expression"'></element>

o

» Example
<IDOCTYPE html>
<htmlI>
<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></s
cript>
<style>
.sky {
color:white;
background-color:lightblue;
padding:20px;

font-family:"Courier New";

.tomato { background-
color:coral; padding:40px;
font-family:Verdana;

}

</style>

<body ng-app="">

<p>Choose a class:</p>

<select ng-model="home">

<option value="sky">Sky</option>
<option value="tomato">Tomato</option>
</select>

<div ng-class="home">

<h1>Welcome Home!</h1> Output

<p>I like it!</p> Choose a class:

</div>

</body>

</html>

» Angular Animations

(d What Does ngAnimate Do?

* The ngAnimate module adds and removes classes.
 The ngAnimate module does not animate your HTML elements.

 However, when ngAnimate notices certain events, such as hiding or showing an
HTML element, the element receives some pre-defined classes that can be
used to create animations.

» Example

<IDOCTYPE html>

<htmlI>

<style>

div {

transition: all linear 0.5s;
background-color: lightblue;
height: 100px; width: 100%;
position: relative; top: O;

left: O;

.ng-hide { height: 0; width: O;
background-color: transparent;
top:-200px; left: 200px;

}

</style>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">

</script>

<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angularanimate.js">

</script>

<body ng-app="ngAnimate">
<h1>Hide the DIV: <input type="checkbox" ng-model="myCheck"></h1>
<div ng-hide="myCheck"></div>

</body>

</html> Hide the DIV: o

> Output

Hide the DIV:

4 ng-show Directive

* The AngularlS ng-show directive is used to show or hide the given HTML

element according to the expression given to the ng-show attribute.

* |t shows the specified HTML element if the given expression is true, otherwise

it hides the HTML element.

* |tissupported by all HTML elements.

Syntax:

<element ng-show="expression”> </element>

» Example

<IDOCTYPE html>

<htmlI>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.min.js">
</script>

<body ng-app="">

Show HTML element: <input type="checkbox" ng-model="myVar">
<div ng-show="myVar">

<h1>Welcome to Angulajs</h1>

<p>A solution of all technology.</p>

</div>

</body>

</html>

> Output

Show HTML element: ||

Show HTML element:

Welcome to Angulajs

A solution of all technology.

d ng-hide Directive
 The AngularlS ng-hide directive is used to hide the HTML element if the

expression is set to true.

* The element is shown if you remove the ng-hide CSS class and hidden, if you
add the ng-hide CSS class onto the element. The ng-hide CSS class is

predefined in Angular)S and sets the element's display to none.

<element ng-hide="expression” > </element>

As a CSS class:

<element class="ng-hide"> </element=>

> Example

<!DOCTYPE html>

<html>

<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.minjs"> </script>
<body ng-app="">

Hide HTML: <input type="checkbox" ng-model="myVar">
<div ng-hide="myVar">

<h1>Welcome to JavaTpoint!</h1>

<p>A solution of all technologoes.</p>

</div>

</body>

</html>

> Output

Hide HTML: [

Welcome to Java Tpoint!

A solution of all technologoes.

Hide HTML-

» Expressions and Controllers

d AngularlS Expressions

Angularl]S expressions can be written inside double braces: {{ expression }}.

Angular)S expressions can also be written inside a directive:

ngbind="expression".

Angularl)S will resolve the expression, and return the result exactly where the

expression is written.

Angular)S expressions are much like JavaScript expressions: They can contain

literals, operators, and variables.

Example {{ 5+ 5 }} or {{ firstName + " " + [astName }}

> Example

<IDOCTYPE html>

<html)

¢script
src="https://ajax.googleapis.com/ajax/1ibs/angularis/1.6.9/angular.min.js™
¢[script)

<body>

<div ng-app>
oMy first expression: {{ 5+ 5 }}¢/p>
¢[divy

¢/body>
¢/html>

> Output

My first expression: 10

> If you remove the ng-app directive, HTML will display the expression as it is,

without solving it:

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">
</script)

<body>

<p>Without the ng-app directive, HTML will display the expression as it is,
without solving it.</p>

<div>
<p>My first expression: {{ 5 + 5 }}</p>
</div)>

</body>
</html>

> Output

Without the ng-app directive, HTML will display the expression as it 1s, without solving it.

My first expression: {{ 5+ 3 }}

» AngularlS Controllers

* AngularlS applications are controlled by controllers.
* The ng-controller directive defines the application controller.

* A controller is a JavaScript Object, created by a standard JavaScript object
constructor.

> Example

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">
</script>

<body>

<div ng-app="myApp" ng-controller="myCtrl™”>

First Name: <input type="text"™ ng-model="firstName">

Last Name: <input type="text" ng-model="lastMName">

Full Name: {{firstName + " " + lastName}}

</div>
<script>

var app = angular.module('mylpp’, []1);
app.controller('myCtrl', function($scope) {

$scope.firstlName = "John";
$scope.lastName = "Doe™;
5)s
</script>
</body>

</html>

> Output

First Name: | John

Last Name: |Doe

Full Name: John Doe

» Angularls Filters

* AngularlS Filters allow us to format the data to display on Ul without changing

original format.
* Filters can be used with an expression or directives using pipe | sign.

{{expression | filterName:parameter }}

» Angular includes various filters to format data of different data types. The
following table lists important filters.

m

Uppercase Converts string to upper case.
Lowercase Converts string to lower case.
Currency Formats numeric data into specified currency format and

fraction.

orderBy

Sorts an array based on specified predicate expression.

> Uppercase/lowercase filter

The uppercase filter converts the string to upper case and lowercase filter
converts the string to lower case.

Example: uppercase & lowercase filters

<IDOCTYPE html>
<html >
<head>
<script src="~/Scripts/angular.js"></script>
{/head>
<body ng-app>
<div ng-init="person.firstName="'James';person.lastName="Bond'">

Lower case: {{person.firstName + + person.lastName | lowercase}}

Upper case: {{person.firstName + + person.lastName | uppercase}}
</div>
</body>

</html>

Result:

Lower case: james bond
Upper case: JAMES BOND

Currency Filter

The currency filter formats a number value as a currency. When no currency symbol
is provided, default symbol for current locale is used.

AngularlS currency filter is used to convert a number into a currency format.

If no currency format is specified currency filter uses the local currency format.
Parameters: It contains 2 parameters as mentioned above and described below:

symbol: It is an optional parameter.

{{ expression | currency : 'currency_symbol' : 'fraction'}}

Parameters: It contains 2 parameters as mentioned above and described below:

symbol: It is an optional parameter. It is used to specify the currency symbol. The
currency symbol can be any character or text.

fractionsize: It is an optional parameter. It is used to specify the number of
decimals.

Example: Currency filter

<IDOCTYPE html>
<html >
<head>
<script src="~/Scripts/angular.js"></script>
</head>
<body ng-app="myApp">
<div ng-controller="myController">
Default currency: {{person.salary | currency}}

Custom currency identifier: {{person.salary | currency:'Rs.'}}

No Fraction: {{person.salary | currency:'Rs.':0}}

Fraction 2:
</div>
<script>
var myApp = angular.module('myApp', []1);

myApp.controller("myController", function ($scope) {
$scope.person = { firstName: 'James', lastName: 'Bond', salary: 100000}
1)
</script>
</body>
</html>

> Output

Result:

Default currency: $1©0,000.080

Custom currency identifier: Rs.100,000.00
No Fraction: Rs.1900,000

Fraction 2: GBP1©00©,0800.00

» orderBy filter
* The orderBy filter sorts an array based on specified expression predicate.

{{ expression | orderBy : predicate_expression : reverse}}

Example: orderBy filter

<IDOCTYPE html>
<html>
<head>
<script src="~/Scripts/angular.js"></script>
</head>
<body ng-app="myApp">
<div ng-controller="myController">
<select ng-model="SortOrder">
<option value="+name">Name (asc)</option>
<option value="-name">Name (dec)</option>
<option value="+phone">Phone (asc)</option>
<option value="-phone">Phone (dec)</option>
</select>
<ul ng-repeat="person in persons | orderBy:SortOrder">
{{person.name}} - {{person.phone}}</1li>

</div>

{script>

var myApp = angular.module('myApp', []);

myApp.controller("myController", function ($scope) {

$scope.persons

D P . R

=

name:

name:

name:

name:

name:

$scope.SortOrder =

1)

{/script>
</body>
</html>

name: 'John', phone: '512-455-1276' },
'Mary', phone: '899-333-3345" },
'Mike', phone: '511-444-4321" },
'Bill', phone: '145-788-5678' 1},
'Ram', phone: '433-444-8765' },
'Steve', phone: '218-345-5678"' }]

"+name’;

The above example displays a list of person names and phone numbers in a
particular order specified using orderBy:SortOrder filter.

SortOrder is a model property and will be set to the selected value in the
dropdown.

Therefore, based on the value of SortOrder, ng-repeat directive will display the
data.

Unit-3: Angular JS: Single page application:

Unit-3: Angular JS: Single page application:
Single page application using AngularJS
Create a module, Define Simple controller
Embedding AngularJS script in HTML
Angular)S’s routine capability
SrouteProvider service from ngRoute
Navigating different pages

HTML DOM directives

ng-disabled, ng-show, ng-hide, ng-click
Modules (Application, Controller)

Forms (Events, Data validation, ng-click)

> Single page application using AngularlS

« Single page application (SPA) is a web application that fits on a
single page.

* All your code (JS, HTML, CSS) is retrieved with a single page load.

And navigation between pages performed without refreshing the

whole page.

<« C [localhost:B8000/#/

Ilomc&'_ e About

Home

Hello from HomeController

» Advantages of Single Page Application:
d Team collaboration:

* Single-page applications are excellent when more than one developer is

working on the same project.

* |t allows backend developers to focus on the API, while frontend developers

can focus on creating the user interface based on the backend API.
O Caching:

* The application sends a single request to the server and stores all the received
information in the cache. This proves beneficial when the client has poor

network connectivity.
d Fast and responsive:

* As only parts of the pages are loaded dynamically, it improves the website’s
speed.

d Debugging is easier:

* Debugging single-page applications with chrome is easier since
such applications are developed using AngularJS Batarang and

React developer tools.

(d Linear user experience: Browsing or navigating through the
website is easy.

» Disadvantages of Single Page Application:

(d SEO optimization:

SPAs provide poor SEO optimization.

This is because single-page applications operate on JavaScript and load data at

once server.
The URL does not change and different pages do not have a unique URL.

Hence it is hard for the search engines to index the SPA website as opposed to

traditional server-rendered pages.
Browser history:

A SPA does not save the users’ transition of states within the website. A

browser saves the previous pages only, not the state transition.

Thus when users click the back button, they are not redirected to the previous
state of the website.

* To solve this problem, developers can equip their SPA frameworks with the

HTMLS History API.
d Security issues:

* Single-page apps are less immune to cross-site scripting (XSS) and since no new
pages are loaded, hackers can easily gain access to the website and inject new

scripts on the client-side.
d Memory Consumption:

* Since the SPA can run for a long time sometimes hours at a time, one needs to
make sure the application does not consume more memory than it needs.

Else, users with low-memory devices may face serious performance issues.

J Disabled Javascript:

* Developers need to chalk out ideas for users to access the information on the
website for browsers that have Javascript disabled.

> Pros
(d No Page Refresh

* When you are using SPA, you don’t need to refresh the whole page, just load the
part of the page which needs to be changed. Angular allows you to preload

and cache all your pages, so you don’t need extra requests to download them.
(1 Better User Experience
 SPA feels like a native application: fast and responsive.
O Ability to Work Offline

* Even if user loses internet connection, SPA can still work because all the pages
are already loaded.

» Cons
0 More Complex to Build

* You need to write pretty much JavaScript, handle shared state between pages,

manage permissions, etc.
O SEO

* To index your SPA app, search engine crawlers should be able to execute
JavaScript. Only recently, Google and Bing started indexing Ajax-based pages by
executing JavaScript during crawling. You need to create static HTML snapshots

especially for search engines.
U Initial Load is Slow
* SPA needs to download more resources when you open it.
1 Client Should have JavaScript Enabled

* Of course, SPA requires JavaScript. But fortunately, almost everyone has JavaScript
enabled.

» Angular Application

* Every angular application starts from creating a module. Module is a container

for the different parts of your application: controllers, service, etc.

var app = angular.module('myApp’, [1);

* Let's define a simple controller:

app.controller('HomeController', function($scope) {
$scope.message = 'Hello from HomeController’;

13F

After we created module and controller, we need to use them in our HTML.
First of all, we need to include Angular script and app.js that we built.

Then, we need to specify our module in ng-app attribute and controller in ng-

controller attribute.

¢!doctype html>
¢html ng-app="myApp">
¢head)
¢script src="https://cdnjs.cloudflare.com/ajax/1ibs/angular.js/1.4.7/angular.min. js"¢/script)
¢/head>
<body ng-controller="HomeController"»
<h1>{{message} }</h1>
¢script src="app.js"></script
¢/body>
¢/html>

» Output

If you have done this correctly, you should see:

& C [localhost:8000

Hello from HomeController

» Creating a Module

A module is created by using the AngularJS function angular.module

<div ng-app="myApp >...</div>

<script>

var app = angular.module("myapp”, [1);

</script>

* The "myApp" parameter refers to an HTML element in which the application

will run.

 Now you can add controllers, directives, filters, and more, to your AngularJS

application.

> Adding a Controller

* Add a controller to your application, and refer to the controller with the ng-

controller directive:

<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="myApp" ng-controller="myCtrl">
{{ firstName + " " + lastName }}
</div>

<script>
var app = angular.module(“"myApp”, []1);
app.controller("myCtrl"”, function($scope) {

$scope.firsthName = "HP";
$scope.lastlame = “"Company”;
s
</script>
</body>
</html>

* Output HP Companyv

Modules and Controllers in Files

It is common in Angular)S applications to put the module and the controllers

in JavaScript files.

In this example, "myApp.js" contains an application module definition, while

"myCtrl.js" contains the controller:

<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="myApp" ng-controller="myCtrl">
{{ firstName + " " + lastName }}
</div>

<script src="myApp.js"></script>
<script src="myCtrl.js"></script>

</body>
</html>

Output HP Company

» Embedding Angularl)S script in HTML

[Angularjs include html:

 HTML does not support embedding html pages within html page.
* But we can achieve this functionality using Angularls.

* AngularlS provides the ng-include directive to embed HTML pages within a
HTML page.

> Example:
O testable.htm

<p>Students with country name:</p>
<table>
<tr>
<th>Name</th>
<th>Country</th>
</tr>

<tr ng-repeat = "student in students™>
<td>{{ student.name }}</td>
<td>{{ student.country }}</td>
</tr>
</table>

>

Include above html file

<html>
<head>
<title>AngularJdS Include Example</title>
<script src=
"http://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.min.js">
</script>
<style>
table, th , td {
border: 1px solid grey;
border-collapse: collapse;
padding: 5px;
h

table tr:nth-child(odd) {
background-color: #f2f2f2;

}

table tr:nth-child(even) {
background-color: #ffffff;
h
</style>
</head>

<body>
<h1>AngularldS Include Example.</h1>
<div ng-app = ""
ng-init = "students=[{name: 'Prabhjot’,country:'uUs’},
{name: 'Nidhi’',country: 'Sweden'},
{name: 'Kapil',country: 'India’}]"
>
<div ng-include=""testTable.htm'"></div>
</div>
</body>
|</html>

Output:
AngularJS Include Example.

Students with country name:

Name | Country
Prabhjot | US
Nidhi Sweden
Kapil India

» AngularlS’s routine capability

Routing in AngularlS is used when the user wants to navigate to different pages in

an application but still wants it to be a single-page application.

Angular]S routes enable the user to create different URLs for different content in

an application.

The ngRoute module helps in accessing different pages of an application without

reloading the entire application.
We can build Single Page Application (SPA) with Angularls.

It is a web app that loads a single HTML page and dynamically updates that page

as the user interacts with the web app.

AngularlS supports SPA using routing module ngRoute. This routing module acts

based on the url.

When a user requests a specific url, the routing engine captures that url and
renders the view based on the defined routing rules.

AngularlS also provides the ability to pass parameters in routes, which means,
it allows us to dynamically generate routes and handle different data based on
the parameters.

We can define route patterns with placeholders for parameters, and Angularl)S
will extract the values from the URL and make them available in your controller.

This parameterization of routes can be useful for creating dynamic pages or
handling specific data queries within a single-page application.

> SrouteProvider

* SrouteProvider is used to configure the routes. It helps to define what page to

display when a user clicks a link.
* |t accepts either when() or otherwise() method.
 The ngRoute must be added as a dependency in the application module.

* With the SrouteProvider you can define what page to display when a user

clicks a link.

* Define the SrouteProvider using the config method of your application. Work
registered in the config method will be performed when the application is

loading.

* Routing allows us to create Single Page Applications. To do this, we use ngview

and ng-template directives, and SrouteProvider services.

* We use SrouteProvider to configure the routes.

https://www.geeksforgeeks.org/angularjs-routing/

The config() takes a function that takes the SrouteProvider as a parameter and
the routing configuration goes inside the function.

The SrouteProvider is a simple API that accepts either when() or otherwise()
method. We need to install the ngRoute module.

f you want to navigate to different pages in your application, but you also
want the application to be a SPA (Single Page Application), with no page
reloading, you can use the ngRoute module.

The ngRoute module routes your application to different pages without
reloading the entire application.

Now your application has access to the route module, which provides
the SrouteProvider.

Use the SrouteProvider to configure different routes in your application:

app-config(function($routeProvider) {
$routeProwvider
-when(”" /", 4

TtemplateUrl : "main.htm”™
3
-when(" /red™, {
templateUrl : “"red.bhtm™
)
-when(" /green™, {
templateUrl : "green.htm”
¥)
-when(”"/blue™, {
templateUrl : "blue.htm”
¥)s

¥)s5

» Navigating different pages

We will be building an application, which will display a login page when a user
requests for base url - http://localhost/. Once the user logs in successfully, we
will redirect it to student page http://localhost/student/{username} where

username would be logged in user's name.

In our example, we will have one layout page - index.html, and two HTML

templates - login.html and student.html.
Index.html - layout view
login.html - template

student.html - template

> The following is a main layout view - index.html.

Example: Layout view - Index.html

<IDOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title></title>
<script src="Scripts/angular.js"></script>
<script src="Scripts/angular-route.js"></script>
<link href="Content/bootstrap.css" rel="stylesheet"”
</head>
<body ng-app="ngRoutingDemo">
<hl1>Angular Routing Demo</hl>

<div ng-view>

</div>

/>

<script>

var app = angular.module('ngRoutingDemo’', ['ngRoute']);
app.config(function ($routeProvider) {

$routeProvider.when('/", {
templateUrl: '"'/login.html®,
controller: 'loginController’

}) -when(' /student/:username’, {

templateUrl: '/student.html’',

controller: 'studentContreoller'
}) .otherwise({
redirectTo: "/"

2 50

app-controller("loginController”, function ($scope, $location) {

$scope.authenticate = function (username) {

J/ write authentication code here..

$location.path(’'/student/' + username)

| -

1);

app.controller("loginController", function ($scope, $location) {

$scope.authenticate = function (username) {

// write authentication code here..

$location.path('/student/' + username)

13

1);

app.controller("studentController", function ($scope, $routeParams) {

$scope.username = $routeParams.username;

1)

s

{/script>
</body>
</html>

>

HTML DOM directives

AngularlS has directives for binding application data to the attributes of HTML

DOM elements.

d The following directives are used to bind application data to the attributes

of HTML DOM elements -

Sr.No. Name & Description
1 ng-disabled
disables a given control.
5 ng-show
shows a given control.
3 ng-hide
hides a given control.
ng-click
g |

represents a Angular]S click event.

d ng-disabled Directive

* The ng-disabled directive binds Angularl)S application data to the disabled

attribute of HTML elements.

<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="" ng-init="mySwitch=true">

<p>

<button ng-disabled="mySwitch">Click Me!</button>
</p>

<p>

<input type="checkbox” ng-model="mySwitch"/>Button
</p>

<p>

{{ mySwitch }}

</p>

</div>

</body>
</html>

B aatroy

* Output =

Application explained:

The ng-disabled directive binds the application data mySwitch to the HTML
button's disabled attribute.

The ng-model directive binds the value of the HTML checkbox element to the

value of mySwitch.

If the value of mySwitch evaluates to true, the button will be disabled:

<p>
<button disabled>Click Me!</button>
</p>

If the value of mySwitch evaluates to false, the button will not be disabled:

<p>
<button>Click Me!</button>
</p>

' ng-show Directive
* The ng-show directive shows or hides an HTML element.

> Example

<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="">
<p ng-show="true">I am visible.</p>
<p ng-show="false">I am not visible.</p>

</fdiv>

</body>
</html>

I am visible.

> Output

d ng-hide Directive
* The ng-hide directive hides or shows an HTML element.

> Example

<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="">

<p ng-hide="true">I am not visible.</p>

<p ng-hide="false">I am visible.</p>

</div>

</body>
</html>

I am wvisible.

> Output

> ng-click Directive

The ng-click directive defines Angularl)S code that will be executed when the

element is being clicked.

> Example

<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="myApp" ng-controller="myCtrl">
<button ng-click="count = count + 1">Click Me!</button>

<p>{{ count }}</p>

</div>

<script>

var app = angular.module('myApp', [1);

app.controller('myCtrl’', function($scope) {
$scope.count = 9;

B;

</script>

</body>
</html>

> Output

Click Me!

O

Clhick Metl

1

» Modules (Application, Controller)

d Angular]S Modules

A module in AngularlS is a container of the different parts of an application
such as controller, service, filters, directives, factories etc. It supports

separation of concern using modules.

Angularl)S stops polluting global scope by containing AngularlJS specific
functions in a module.

d Application Module

* An Angular]S application must create a top level application module. This

application module can contain other modules, controllers, filters, etc.

Example: Create Application Module

<IDOCTYPE html>
<html >
<head>

<script src="~/Scripts/angular.js"></script>
</ head>
<body ng-app="myApp">

@* HTML content *@

<script>

var myApp = angular.module('myaApp’', []1);

</script>
</body>
</html>

In the above example, the angular.module() method creates an application
module, where the first parameter is a module name which is same as

specified by ng-app directive.
The second parameter is an array of other dependent modules [].

In the above example we are passing an empty array because there is no

dependency.
Note:

The angular.module() method returns specified module object if no

dependency is specified.

Therefore, specify an empty array even if the current module is not

dependent on other module.

Now, you can add other modules in the myApp module.

O Create Controller Module

> The following example demonstrates creating controller module in myApp

module.

Example:Create Controller Module

<IDOCTYPE html>
<html >
<head>
<script src="~/Scripts/angular.js"></script>
</ head>
<body ng-app="myApp">
<div ng-controller="myController">
{imessage}}
</diwv>
<script>
var myApp = angular.module("myapp”, [1);

myApp.controller("myController™, function ($scope) {
$scope.message = "Hello Angular World!"™;
3)s
</script>
</body>
</html>

In the above example, we have created a controller named "myController"
using myApp.controller() method.

Here, myApp is an object of a module, and controller() method creates a
controller inside "myApp" module.

» Forms (Events, Data validation, ng-click)
d AngularJS - Forms

* AngularlS facilitates you to create a form enriches with data binding and

validation of input controls.

* |nput controls are ways for a user to enter data. A form is a collection of

controls for the purpose of grouping related controls together.
d Following are the input controls used in AngularJS forms:
* input elements
* select elements
* button elements

* textarea elements

> Events

* Angularl]S provides multiple events associated with the HTML controls. For
example, ng-click directive is generally associated with a button. AngularJS
supports the following events -

* ng-click

* ng-dbl-click

* ng-mousedown

* ng-mouseup

* ng-mouseenter

* ng-mouseleave

* ng-mousemove

* ng-mouseover

* ng-keydown

* ng-keyup

* ng-keypress

ng-change

> ng-click
* The ng-click directive tells AngularJS what to do when an HTML element is

clicked.

Syntax

<element ng-click="expression”"></element>

Parameter Values

Value Description

expression An expression to execute when an element is clicked.

» Example

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">
</script>

<body ng-app="myApp">

<div ng-controller="myCtrl">

<p>Click the button to run a function:</p>

<button ng-click="myFunc()">0K</button>

<p>The button has been clicked {{count}} times.</p>
</div>

<script>
angular.module('myApp', [])
.controller('myCtrl’', ['$scope’, function($scope) {
$scope.count = @;
$scope.myFunc = function() {
$scope.count++;
¥
1Ds
</script>
</body>
</html>

> Output

Click the button to run a function:

OK

The button has been clicked O times.

Click the button to run a function:

OK

The button has been clicked 1 times.

» Form Validation
* AngularlS offers client-side form validation.

* Angular]S monitors the state of the form and input fields (input, textarea,

select), and lets you notify the user about the current state.

* AngularlS also holds information about whether they have been touched, or

modified, or not.

* You can use standard HTMLS5 attributes to validate input, or you can make

your own validation functions.

* Client-side validation cannot alone secure user input. Server side validation is
also necessary.

d Required

Use the HTML5 attribute required to specify that the input field must be filled
out:

> Example

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">
</script>

<body ng-app="">

<p>Try writing in the input field:</p>
<form name="myForm">
<input name="myInput” ng-model="myInput"” required>

</form>

<p>The input's valid state is:</p>
<h1>{{myForm.myInput.$valid}}</hl>

</body>
</html>

> Output

Tryv writing in the input field:

The input's valid state 1s:

false

Trv writing 1inn the input field:

| Good Morrmming

The input's valid state 1s:

true

> Example

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">
</script>

<body ng-app="">

<p>Try leaving the first input field blank:</p>

<form name="myForm">

<p>Name:

<input name="myName" ng-model="myName" required>

The name is
reguired.

</p>

<p>Address:
<input name="myAddress” ng-model="myAddress" required>

</p>
</form>

<p>We use the ng-show directive to only show the error message if the field
has been touched AND is empty.</p>

</body>
</html>

> Output

Try leaving the first input field blank:

Name: | |

Address: ‘

We use the ng-show directive to only show the error message if the field has been touched AND 1s
empty.

Try leaving the first input field blank:

Name:] The name 1s required.

Address: |

We use the ng-show directive to only show the error message 1f the field has been touched AND 15
empty.

