
What is HTML?

HTML is the standard markup language for creating Web pages.

• HTML stands for Hyper Text Markup Language

• HTML describes the structure of Web pages using markup

• HTML elements are the building blocks of HTML pages

• HTML elements are represented by tags

• HTML tags label pieces of content such as "heading", "paragraph", "table", and so on

• Browsers do not display the HTML tags, but use them to render the content of the page

Structure of HTML5
<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>

</body>

</html>

• The <!DOCTYPE html> declaration defines this document to be HTML5

• The <html> element is the root element of an HTML page

• The <head> element contains meta information about the document

• The <title> element specifies a title for the document

• The <body> element contains the visible page content

HTML Versions

Since the early days of the web, there have been many versions of HTML:

Version Year

HTML 1991

HTML 2.0 1995

HTML 3.2 1997

HTML 4.01 1999

XHTML 2000

HTML5 2014

There are many differences between HTML and HTML5 which are discussed below:

HTML HTML5

It didn’t support audio and video without the use of

flash player support.

It supports audio and video controls with the use

of <audio> and <video> tags.

It uses cookies to store temporary data. It uses SQL databases and application cache to

store offline data.

Does not allow JavaScript to run in browser. Allows JavaScript to run in background. This is

possible due to JS Web worker API in HTML5.

Vector graphics is possible in HTML with the help of

various technologies such as VML, Silver-light, Flash,

etc.

Vector graphics is additionally an integral a part

of HTML5 like SVG and canvas.

It does not allow drag and drop effects. It allows drag and drop effects.

Not possible to draw shapes like circle, rectangle,

triangle etc.

HTML5 allows to draw shapes like circle,

rectangle, triangle etc.

It works with all old browsers. It supported by all new browser like Firefox,

Mozilla, Chrome, Safari, etc.

Older version of HTML is less mobile-friendly. HTML5 language is more mobile-friendly.

Doctype declaration is too long and complicated. Doctype declaration is quite simple and easy.

Elements like nav, header were not present. New element for web structure like nav, header,

footer etc.

Character encoding is long and complicated. Character encoding is simple and easy.

It is almost impossible to get true GeoLocation of user

with the help of browser.

One can track the GeoLocation of a user easily

by using JS GeoLocation API.

It can not handle inaccurate syntax. It is capable of handling inaccurate syntax.

Attributes like charset, async and ping are absent in

HTML.

Attributes of charset, async and ping are a part of

HTML 5.

What is an HTML Element?

An HTML element is defined by a start tag, some content, and an end tag:

<tagname> Content goes here... </tagname>

The HTML element is everything from the start tag to the end tag:

<h1>My First Heading</h1>

<p>My first paragraph.</p>

Start tag Element content End tag

<h1> My First Heading </h1>

<p> My first paragraph. </p>

 None none

Note: Some HTML elements have no content (like the
 element). These elements are called empty

elements. Empty elements do not have an end tag!

The <!DOCTYPE> Declaration

The <!DOCTYPE> declaration represents the document type, and helps browsers to display web pages

correctly.

It must only appear once, at the top of the page (before any HTML tags).

The <!DOCTYPE> declaration is not case sensitive.

The <!DOCTYPE> declaration for HTML5 is:

<!DOCTYPE html>

COMMENT IN HTML

<!-- Write your comments here -->

HTML Ordered List | HTML Numbered List

HTML Ordered List or Numbered List displays elements in numbered format. The HTML ol tag

is used for ordered list. We can use ordered list to represent items either in numerical order format

or alphabetical order format, or any format where an order is emphasized. There can be different

types of numbered list:

o Numeric Number (1, 2, 3)

o Capital Roman Number (I II III)

o Small Romal Number (i ii iii)

o Capital Alphabet (A B C)

o Small Alphabet (a b c)

To represent different ordered lists, there are 5 types of attributes in tag.

Type Description

Type "1" This is the default type. In this type, the list items are numbered with numbers.

Type "I" In this type, the list items are numbered with upper case roman numbers.

Type "i" In this type, the list items are numbered with lower case roman numbers.

Type "A" In this type, the list items are numbered with upper case letters.

Type "a" In this type, the list items are numbered with lower case letters.

HTML Unordered List | HTML Bulleted List

HTML Unordered List or Bulleted List displays elements in bulleted format . We can use

unordered list where we do not need to display items in any particular order. The HTML ul tag is

used for the unordered list. There can be 4 types of bulleted list:

o disc

o circle

o square

o none

To represent different ordered lists, there are 4 types of attributes in tag.

Type Description

Type "disc" This is the default style. In this style, the list items are marked with bullets.

Type "circle" In this style, the list items are marked with circles.

Type "square" In this style, the list items are marked with squares.

Type "none" In this style, the list items are not marked .

HTML Description List or Definition List displays elements in definition form like in dictionary.

The <dl>, <dt> and <dd> tags are used to define description list.

The 3 HTML description list tags are given below:

1. <dl> tag defines the description list.

2. <dt> tag defines data term.

3. <dd> tag defines data definition (description).

HTML Table Colspan & Rowspan

HTML tables can have cells that spans over multiple rows and/or columns

HTML Table - Colspan

To make a cell span over multiple columns, use the colspan attribute:

<table border=”1”>

 <tr>

 <th colspan="2">Name</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Jill</td>

 <td>Smith</td>

 <td>43</td>

 </tr>

2022

FIESTA

 <tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>57</td>

 </tr>

</table>

Note: The value of the colspan attribute represents the number of columns to span.

Name Age

Jill Smith 43

Eve Jackson 57

HTML Table - Rowspan

To make a cell span over multiple rows, use the rowspan attribute:

<table border=”1”>

 <tr>

 <th>Name</th>

 <td>Jill</td>

 </tr>

 <tr>

 <th rowspan="2">Phone</th>

 <td>555-1234</td>

 </tr>

 <tr>

 <td>555-8745</td>

</tr>

</table>

Note: The value of the rowspan attribute represents the number of rows to span.

Name Jill

Phone

555-1234

555-8745

The <base> element

<!DOCTYPE html>

<html>

<head>

<base href="https://www.w3schools.com/" target="_blank">

</head>

<body>

<h1>The base element</h1>

<p><imgsrc="images/stickman.gif" width="24" height="39" alt="Stickman"> - Notice that we have only

specified a relative address for the image. Since we have specified a base URL in the head section, the

browser will look for the image at "https://www.w3schools.com/images/stickman.gif".</p>

<p>HTML base tag - Notice that the link opens in a new window, even if

it has no target="_blank" attribute. This is because the target attribute of the base element is set to

"_blank".</p>

</body>

</html>

Output:

The base element

 - Notice that we have only specified a relative address for the image. Since we have specified a

base URL in the head section, the browser will look for the image at

"https://www.w3schools.com/images/stickman.gif".

HTML base tag - Notice that the link opens in a new window, even if it has no target="_blank"

attribute. This is because the target attribute of the base element is set to "_blank".

Definition and Usage

The <base> tag specifies the base URL and/or target for all relative URLs in a document.

The <base> tag must have either an href or a target attribute present, or both.

There can only be one single <base> element in a document, and it must be inside the <head> element.

<link> tag

<!DOCTYPE html>

<html>

<head>

https://www.w3schools.com/tags/tag_base.asp

<link rel="stylesheet" href="styles.css">

</head>

<body>

<h1>Hello World!</h1>

<h2>I am formatted with a linked style sheet.</h2>

<p>Me too!</p>

</body>

</html>

Definition and Usage

The <link> tag defines the relationship between the current document and an external resource.

The <link> tag is most often used to link to external style sheets or to add a favicon to your website.

The <link> element is an empty element, it contains attributes only.

Text Formatting TAGS

<P> Tags
The paragraph defines whole textual information and is also a part of HTML text formatting

elements. Of course, you can have more than one paragraph on your website! Bear in mind

that every new paragraph you write begins from a new line.

Bold Text
Anything that appears within ... element, is displayed in bold as shown below −

https://www.w3schools.com/html/html_favicon.asp

Example

<!DOCTYPE html>

<html>

<head>

<title>Bold Text Example</title>

</head>

<body>

<p>The following word uses a boldtypeface.</p>

</body>

</html>

This will produce the following result −The following word uses a bold typeface.

Italic Text
Anything that appears within <i>...</i> element is displayed in italicized as shown below −

Example

<!DOCTYPE html>

<html>

<head>

<title>Italic Text Example</title>

</head>

<body>

<p>The following word uses an <i>italicized</i>typeface.</p>

</body>

</html>

This will produce the following result −The following word uses aitalicized typeface.

Underlined Text
Anything that appears within <u>...</u> element, is displayed with underline as shown below −

Example

<!DOCTYPE html>

<html>

<head>

<title>Underlined Text Example</title>

</head>

<body>

<p>The following word uses an <u>underlined</u>typeface.</p>

</body>

</html>

This will produce the following result −The following word uses aunderlined typeface.

Strike Text
Anything that appears within <strike>...</strike> element is displayed with strikethrough, which is a thin

line through the text as shown below −

Example

<!DOCTYPE html>

<html>

<head>

<title>Strike Text Example</title>

</head>

<body>

<p>The following word uses a <strike>strikethrough</strike>typeface.</p>

</body>

</html>

This will produce the following result −The following word uses a strikethrough typeface.

Monospaced Font
The content of a <tt>...</tt> element is written in monospaced font. Most of the fonts are known as

variable-width fonts because different letters are of different widths (for example, the letter 'm' is wider than

the letter 'i'). In a monospaced font, however, each letter has the same width.

Example

<!DOCTYPE html>

<html>

<head>

<title>Monospaced Font Example</title>

</head>

<body>

<p>The following word uses a <tt>monospaced</tt>typeface.</p>

</body>

</html>

This will produce the following result −The following word uses a mo no spaced typeface.

Superscript Text
The content of a ^{...} element is written in superscript; the font size used is the same size as the

characters surrounding it but is displayed half a character's height above the other characters.

Example

<!DOCTYPE html>

<html>

<head>

<title>Superscript Text Example</title>

</head>

<body>

<p>The following word uses a ^{superscript}typeface.</p>

</body>

</html>

This will produce the following result −The following word uses a superscript typeface.

Subscript Text
The content of a _{...} element is written in subscript; the font size used is the same as the

characters surrounding it, but is displayed half a character's height beneath the other characters.

Example

<!DOCTYPE html>

<html>

<head>

<title>Subscript Text Example</title>

</head>

<body>

<p>The following word uses a _{subscript}typeface.</p>

</body>

</html>

This will produce the following result −The following word uses a subscript typeface.

Inserted Text
Anything that appears within <ins>...</ins> element is displayed as inserted text.

Deleted Text
Anything that appears within ... element, is displayed as deleted text.

Example

<!DOCTYPE html>

<html>

<head>

<title>Inserted Text Example</title>

</head>

<body>

<p>I want to drink cola<ins>wine</ins></p>

</body>

</html>

This will produce the following result −I want to drink colawine

Larger Text
The content of the <big>...</big> element is displayed one font size larger than the rest of the text

surrounding it as shown below −

Example

<!DOCTYPE html>

<html>

<head>

<title>Larger Text Example</title>

</head>

<body>

<p>The following word uses a <big>big</big>typeface.</p>

</body>

</html>

This will produce the following result −The following word uses a big typeface.

Smaller Text
The content of the <small>...</small> element is displayed one font size smaller than the rest of the text

surrounding it as shown below −

Example

<!DOCTYPE html>

<html>

<head>

<title>Smaller Text Example</title>

</head>

<body>

<p>The following word uses a <small>small</small>typeface.</p>

</body>

</html>

This will produce the following result −The following word uses a small typeface.

<q> tags
The <q> element inserts quotation marks around the text. The full name of this tag is “quote” so,

it is used for inserting quotes, citing and so on. However, if you’re not quoting some other text,

https://www.bitdegree.org/learn/html-quote-tag/

you shouldn’t use this tag just for adding quotation marks. You can insert some attributes to this

element for suiting your needs.

<!DOCTYPE html>

<html>

<body>

<p>WWF's goal is to:

<q>Build a future where people live in harmony with nature.</q>

We hope they succeed.</p>

</body>

</html>

WWF's goal is to: “Build a future where people live in harmony with nature.” We hope they succeed.

<blockquote> tags
The <blockquote> element is quite similar to <q> tag, and it works almost in the same method.

However, while using this HTML text formatting tag, bear in mind, that this quote will appear on a

new line and have an intend for each line it contains. It makes it look like a block of text, and this is

where its name came from.

<!DOCTYPE html>

<html>

<body>

<h1>About WWF</h1>

<p>Here is a quote from WWF's website:</p>

<blockquote cite="http://www.worldwildlife.org/who/index.html">

For 50 years, WWF has been protecting the future of nature. The world's leading conservation organization, WWF works in 100

countries and is supported by 1.2 million members in the United States and close to 5 million globally.

</blockquote>

</body>

</html>

<marquee> Tag

The HTML <marquee> tag is used for scrolling piece of text or image displayed either horizontally across or

vertically down your web site page depending on the settings.

https://www.bitdegree.org/learn/blockquote-html/
https://www.bitdegree.org/learn/html-quote-tag/

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML marquee Tag</title>

</head>

<body>

<marquee>This is basic example of marquee</marquee>

<marqueedirection="up">The direction of text will be from bottom to top.</marquee>

</body>

</html>

Specific Attributes
The HTML <marquee> tag also supports the following additional attributes −

Attribute Value Description

behavior scroll

slide

alternate

Defines the type of scrolling.

Bgcolor rgb(x,x,x)

#xxxxxx

colorname

Deprecated − Defines the direction of scrolling the content.

direction up

down

left

right

Defines the direction of scrolling the content.

Height pixels or % Defines the height of marquee.

Hspace Pixels Specifies horizontal space around the marquee.

Loop Number Specifies how many times to loop. The default value is

INFINITE, which means that the marquee loops endlessly.

scrolldelay Seconds Defines how long to delay between each jump.

scrollamount Number Defines how how far to jump.

Width pixels or % Defines the width of marquee.

Vspace Pixels Specifies vertical space around the marquee.

HTML Block and Inline Elements

<header> Tag

The <header> element represents a container for introductory content or a set of navigational links.

A <header> element typically contains:

• one or more heading elements (<h1> - <h6>)

• logo or icon

• authorship information

You can have several <header> elements in one document.

<!DOCTYPE html>

<html>

<body>

<article>

<header>

<h1>Most important heading here</h1>

<h3>Less important heading here</h3>

<p>Some additional information here.</p>

</header>

<p>LoremIpsumdolor set amet....</p>

</article>

</body>

</html>

Most important heading here

Less important heading here

Some additional information here.

LoremIpsumdolor set amet....

<footer> Tag

The <footer> tag defines a footer for a document or section.

A <footer> element should contain information about its containing element.

A <footer> element typically contains:

• authorship information

• copyright information

• contact information

• sitemap

• back to top links

• related documents

You can have several <footer> elements in one document.

<!DOCTYPE html>

<html>

<body>

<footer>

<p>Posted by: HegeRefsnes</p>

<p>Contact information: someone@example.com.</p>

</footer>

<p>Note: The footer tag is not supported in Internet Explorer 8 and earlier versions.</p>

</body>

</html>

Posted by: HegeRefsnes

Contact information: someone@example.com.

Note: The footer tag is not supported in Internet Explorer 8 and earlier versions.

<h1> to <h6> Tags

The <h1> to <h6> tags are used to define HTML headings.

<h1> defines the most important heading. <h6> defines the least important heading.

Attributes

mailto:someone@example.com

Attribute Value Description

align left

center

right

justify

Not supported in HTML5.

Specifies the alignment of a heading

<!DOCTYPE html>

<html>

<body>

<h1>This is heading 1</h1>

<h2>This is heading 2</h2>

<h3>This is heading 3</h3>

<h4>This is heading 4</h4>

<h5>This is heading 5</h5>

<h6>This is heading 6</h6>

</body>

</html>

<hr> Tag

The <hr> tag defines a thematic break in an HTML page. The <hr> element is used to separate content (or

define a change) in an HTML page.

Attributes

Attribute Value Description

align left

center

right

Not supported in HTML5.

Specifies the alignment of a <hr> element

https://www.w3schools.com/tags/att_hn_align.asp
https://www.w3schools.com/tags/att_hr_align.asp

noshade Noshade Not supported in HTML5.

Specifies that a <hr> element should render in one solid color

(noshaded), instead of a shaded color

size Pixels Not supported in HTML5.

Specifies the height of a <hr> element

width pixels

%

Not supported in HTML5.

Specifies the width of a <hr> element

<!DOCTYPE html>

<html>

<body>

<h1>HTML</h1>

<p>HTML is a language for describing web pages.</p>

<hr>

<h1>CSS</h1>

<p>CSS defines how to display HTML elements.</p>

</body>

</html>

HTML

HTML is a language for describing web pages.

CSS

CSS defines how to display HTML elements.

<pre> Tag

The <pre> tag defines preformatted text.

Text in a <pre> element is displayed in a fixed-width font (usually Courier), and it preserves both spaces and

line breaks.

Attributes

Attribute Value Description

width number Not supported in HTML5.

https://www.w3schools.com/tags/att_hr_noshade.asp
https://www.w3schools.com/tags/att_hr_size.asp
https://www.w3schools.com/tags/att_hr_width.asp
https://www.w3schools.com/tags/att_pre_width.asp

Specifies the maximum number of characters per line

<!DOCTYPE html>

<html>

<body>

<pre>

Text in a pre element

is displayed in a fixed-width

font, and it preserves

both spaces and

line breaks

</pre>

</body>

</html>

Text in a pre element

is displayed in a fixed-width

font, and it preserves

both spaces and

line breaks

<section> Tag
The <section> tag defines sections in a document, such as chapters, headers, footers, or any other sections of

the document.

<!DOCTYPE html>

<html>

<body>

<section>

<h1>WWF</h1>

<p>The World Wide Fund for Nature (WWF) is an international organization working on issues regarding the conservation, research

and restoration of the environment, formerly named the World Wildlife Fund. WWF was founded in 1961.</p>

</section>

<section>

<h1>WWF's Panda symbol</h1>

<p>The Panda has become the symbol of WWF. The well-known panda logo of WWF originated from a panda named Chi Chi that

was transferred from the Beijing Zoo to the London Zoo in the same year of the establishment of WWF.</p>

</section>

</body>

</html>

WWF

The World Wide Fund for Nature (WWF) is an international organization working on issues regarding the

conservation, research and restoration of the environment, formerly named the World Wildlife Fund. WWF

was founded in 1961.

WWF's Panda symbol

The Panda has become the symbol of WWF. The well-known panda logo of WWF originated from a panda

named Chi Chi that was transferred from the Beijing Zoo to the London Zoo in the same year of the

establishment of WWF.

<abbr> Tag
The <abbr> tag defines an abbreviation or an acronym, like "Mr.", "Dec.", "ASAP", "ATM".

<!DOCTYPE html>

<html>

<body>

<p>The <abbr title="World Health Organization">WHO</abbr> was founded in 1948.</p>

</body>

</html>

HTML lists
Lists are used to group together related pieces of information so they are clearly associated with each other and easy to

read. In modern web development, lists are workhorse elements, frequently used for navigation as well as general

content.

Lists are good from a structural point of view as they help create a well-structured, more accessible, easy-to-maintain

document. They are also useful because they provide specialized elements to which you can attach CSS styles. Finally,

semantically correct lists help visitors read your web site, and they simplify maintenance when your pages need to be

updated.

The three list types

There are three list types in HTML:

unordered list — used to group a set of related items in no particular order

ordered list — used to group a set of related items in a specific order

description list — used to display name/value pairs such as terms and definitions

Each list type has a specific purpose and meaning in a web page.

Unordered lists

Unordered (bulleted) lists are used when a set of items can be placed in any order. An example is a shopping list:

• milk

• bread

• butter

• coffee beans

Unordered lists use one set of tags wrapped around one or more sets of tags:

bread

coffee beans

milk

butter

Attribute Value Description

compact Compact Not supported in HTML5.

Specifies that the list should render smaller than normal

type disc

square

circle

Not supported in HTML5.

Specifies the kind of marker to use in the list

Ordered lists

Ordered (numbered) lists are used to display a list of items that should be in a specific order. An example would be

cooking instructions:

1. Gather ingredients

2. Mix ingredients together

3. Place ingredients in a baking dish

4. Bake in oven for an hour

5. Remove from oven

6. Allow to stand for ten minutes

7. Serve

Gather ingredients

Mix ingredients together

Place ingredients in a baking dish

Bake in oven for an hour

Remove from oven

Allow to stand for ten minutes

Serve

Attribute Value Description

compact Compact Not supported in HTML5.

Specifies that the list should render smaller than normal

https://www.w3schools.com/tags/att_ul_compact.asp
https://www.w3schools.com/tags/att_ul_type.asp
https://www.w3schools.com/tags/att_ol_compact.asp

start Number Specifies the start value of an ordered list

type 1

A

a

I

i

Specifies the kind of marker to use in the list

Ordered lists can be displayed with several sequencing options. The default in most browsers is decimal numbers, but

there are others available:

• Letters

o Lowercase ascii letters (a, b, c…)

o Uppercase ascii letters (A, B, C…).

o Lowercase classical Greek: (έ, ή, ί…)

• Numbers

o Decimal numbers (1, 2, 3…)

o Decimal numbers with leading zeros (01, 02, 03…)

o Lowercase Roman numerals (i, ii, iii…)

o Uppercase Roman numerals (I, II, III…)

o Traditional Georgian numbering (an, ban, gan…)

o Traditional Armenian numbering (mek, yerku, yerek…)

Description lists
Description lists (previously called definition lists, but renamed in HTML5) associate specific names and values within

a list. Examples might be items in an ingredient list and their descriptions, article authors and brief bios, or competition

winners and the years in which they won. You can have as many name-value groups as you like, but there must be at

least one name and at least one value in each pair.

Description lists use one set of <dl></dl> tags wrapped around one or more groups of <dt></dt> (name)

and <dd></dd> (value) tags. You must pair at least one <dt></dt> with at least one <dd></dd>, and

the <dt></dt>should always come first in the source order.

<dl>

<dt>Name1</dt>

<dd>Value that applies to Name1</dd>

<dt>Name2</dt>

<dt>Name3</dt>

<dd>Value that applies to both Name2 and Name3</dd>

<dt>Name4</dt>

<dd>One value that applies to Name4</dd>

<dd>Another value that applies to Name4</dd>

</dl>
Result:

Name1

 Value that applies to Name1

Name2

Name3

 Value that applies to both Name2 and Name3

Name4

 One value that applies to Name4

 Another value that applies to Name4

HTML list advantages

https://www.w3schools.com/tags/att_ol_start.asp
https://www.w3schools.com/tags/att_ol_type.asp

• Flexibility: If you have to change the order of the list items in an ordered list, you simply move around the list

item elements; when the browser renders the list, it will be properly ordered.

• Styling: Using an HTML list allows you to style the list properly using CSS. The list item tags are

different from the other tags in your document, so you can specifically target CSS rules to them.

• Semantics: HTML lists give the content the proper semantic structure. This has important benefits, such as

allowing screen readers to tell users with visual impairments that they are reading a list, rather than just

reading out a confusing jumble of text and numbers.

To put it another way, don’t code list items using regular text tags. Using text instead of a list makes more work for you

and can create problems for your document’s readers. So if your document needs a list, you should use the correct

HTML list format.

HTML Links - Hyperlinks
HTML links are hyperlinks. You can click on a link and jump to another document. When you move the

mouse over a link, the mouse arrow will turn into a little hand.

Creating a links:

➢ Links are created in a web page by using the <A> and tag.

➢ Anything returns between the <a> compared tag becameshyperlinkor hotspot.

➢ Documents to be navigated needs to be specified.

➢ By using the HREF attribute of the <A>, the next navigation web page or image can be specified.

Types of links: There are three types of links:

1) Links to an external document:

2) Links to a specified place within the same document:

3) Link to a particular file on a particular position:<A HREF=”URL”#”location”

Attribute Value Description

crossorigin anonymous

use-credentials

Specifies how the element handles cross-origin requests

href URL Specifies the location of the linked document

hreflang language_code Specifies the language of the text in the linked document

media media_query Specifies on what device the linked document will be displayed

rel alternate

author

dns-prefetch

help

icon

license

next

pingback

preconnect

prefetch

preload

prerender

prev

search

stylesheet

Required. Specifies the relationship between the current document

and the linked document

https://www.w3schools.com/tags/att_link_href.asp
https://www.w3schools.com/tags/att_link_hreflang.asp
https://www.w3schools.com/tags/att_link_media.asp
https://www.w3schools.com/tags/att_link_rel.asp

sizes HeightxWidth

any

Specifies the size of the linked resource. Only for rel="icon"

target _blank

_self

_top

_parent

frame_name

Not supported in HTML5.

Specifies where the linked document is to be loaded

type media_type Specifies the media type of the linked document

<!DOCTYPE html>

<html>

<body>

<h2>HTML Links</h2>

Visit our HTML tutorial

</body>

</html>

HTML Links

Visit our HTML tutorial

Using the #id selector / Bookmark in HTML

In CSS, "#id" is a selector that may be used to designate an area that a link should point to, similar

to anchor in HTML. In the following example, you'll see how to apply #id to an HTML tag, and then how to

link to it. This example will link to the first paragraph at the top of this page.

<!DOCTYPE html>

<html>

<body>

<p>Jump to Chapter 4</p>

<h2>Chapter 1</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 2</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 3</h2>

<p>This chapter explains bablabla</p>

<h2 id="C4">Chapter 4</h2>

https://www.w3schools.com/tags/att_link_sizes.asp
https://www.w3schools.com/tags/att_link_target.asp
https://www.w3schools.com/tags/att_link_type.asp
https://www.w3schools.com/html/
https://www.computerhope.com/jargon/c/css.htm
https://www.computerhope.com/jargon/a/anchor.htm
https://www.computerhope.com/jargon/h/html.htm
https://www.computerhope.com/jargon/t/tag.htm

<p>This chapter explains bablabla</p>

<h2>Chapter 5</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 6</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 7</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 8</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 9</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 10</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 11</h2>

<p>This chapter explains bablabla</p>

<h2>Chapter 12</h2>

<p>This chapter explains bablabla</p>

</body>

</html>

Jump to Chapter 4

Chapter 1

This chapter explains bablabla

Chapter 2

This chapter explains bablabla

Chapter 3

This chapter explains bablabla

Chapter 4

This chapter explains bablabla

Chapter 5

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_links_bookmark#C4

This chapter explains bablabla

Chapter 6

This chapter explains bablabla

Chapter 7

This chapter explains bablabla

Chapter 8

This chapter explains bablabla

Chapter 9

This chapter explains bablabla

Chapter 10

This chapter explains bablabla

Chapter 11

This chapter explains bablabla

Chapter 12

This chapter explains bablabla

Defining an HTML Table

An HTML table is defined with the <table> tag.

Each table row is defined with the <tr> tag. A table header is defined with the <th> tag. By default, table

headings are bold and centered. A table data/cell is defined with the <td> tag.

The <tr> element defines a table row, the <th> element defines a table header, and the <td> element defines

a table cell.

A more complex HTML table may also include <caption>, <col>, <colgroup>, <thead>, <tfoot>, and

<tbody> elements.

Attributes

Attribute Value Description

align left

center

right

Not supported in HTML5.

Specifies the alignment of a table according to surrounding text

Valign Top

Middle

Bottom

Controls the vertical alignment of cell contain it acceptor the

value

bgcolor rgb(x,x,x)

#xxxxxx

colorname

Not supported in HTML5.

Specifies the background color for a table

border 1

0

Not supported in HTML5.

Specifies whether or not the table is being used for layout

purposes

cellpadding Pixels Not supported in HTML5.

Specifies the space between the cell wall and the cell content

cellspacing Pixels Not supported in HTML5.

Specifies the space between cells

size Numeric value Specifies the Horizontal size of the textbox.

maxlength Numeric value Specifies the Maximum Number of Character that user can enter.

Cheked - Not supported in HTML5.

This attribute should be used only for check box and Radio Button

from control. It indicates checked status.

width pixels

%

Not supported in HTML5.

Specifies the width of a table

DISABLE - Turn off a from control

READONLY - Prevent the form controls value from being chang.

<!DOCTYPE html>

<html>

<head>

<style>

</style>

</head>

<body>

<table>

https://www.w3schools.com/tags/att_table_align.asp
https://www.w3schools.com/tags/att_table_bgcolor.asp
https://www.w3schools.com/tags/att_table_border.asp
https://www.w3schools.com/tags/att_table_cellpadding.asp
https://www.w3schools.com/tags/att_table_cellspacing.asp
https://www.w3schools.com/tags/att_table_rules.asp
https://www.w3schools.com/tags/att_table_summary.asp
https://www.w3schools.com/tags/att_table_width.asp

<tr>

<th>Month</th>

<th>Savings</th>

</tr>

<tr>

<td>January</td>

<td>$100</td>

</tr>

<tr>

<td>February</td>

<td>$80</td>

</tr>

</table>

</body>

</html>

HTML Forms

An HTML form contains form elements.–––

Form elements are different types of input elements, like text fields, checkboxes, radio buttons, submit

buttons, and more.

The <input> Element

The <input> element is the most important form element.

The <input> element can be displayed in several ways, depending on the type attribute.

Here are some examples:

Type Description

<input type="text"> Defines a one-line text input field

<input type="radio"> Defines a radio button (for selecting one of many choices)

<input type="submit"> Defines a submit button (for submitting the form)

Attribute Values

Value Description

button Defines a clickable button (mostly used with a JavaScript to activate a script)

checkbox Defines a checkbox

color Defines a color picker

date Defines a date control (year, month, day (no time))

datetime-local Defines a date and time control (year, month, day, time (no timezone)

email Defines a field for an e-mail address

file Defines a file-select field and a "Browse" button (for file uploads)

hidden Defines a hidden input field

image Defines an image as the submit button

month Defines a month and year control (no timezone)

number Defines a field for entering a number

password Defines a password field

radio Defines a radio button

range Defines a range control (like a slider control)

reset Defines a reset button

search Defines a text field for entering a search string

submit Defines a submit button

tel Defines a field for entering a telephone number

text Default. Defines a single-line text field

time Defines a control for entering a time (no timezone)

url Defines a field for entering a URL

week Defines a week and year control (no timezone)

The Action Attribute

The action attribute defines the action to be performed when the form is submitted.

Normally, the form data is sent to a web page on the server when the user clicks on the submit button.

In the example above, the form data is sent to a page on the server called "/action_page.php". This page

contains a server-side script that handles the form data:

https://www.w3schools.com/tags/att_input_type_button.asp
https://www.w3schools.com/tags/att_input_type_checkbox.asp
https://www.w3schools.com/tags/att_input_type_color.asp
https://www.w3schools.com/tags/att_input_type_date.asp
https://www.w3schools.com/tags/att_input_type_datetime-local.asp
https://www.w3schools.com/tags/att_input_type_email.asp
https://www.w3schools.com/tags/att_input_type_file.asp
https://www.w3schools.com/tags/att_input_type_hidden.asp
https://www.w3schools.com/tags/att_input_type_image.asp
https://www.w3schools.com/tags/att_input_type_month.asp
https://www.w3schools.com/tags/att_input_type_number.asp
https://www.w3schools.com/tags/att_input_type_password.asp
https://www.w3schools.com/tags/att_input_type_radio.asp
https://www.w3schools.com/tags/att_input_type_range.asp
https://www.w3schools.com/tags/att_input_type_reset.asp
https://www.w3schools.com/tags/att_input_type_search.asp
https://www.w3schools.com/tags/att_input_type_submit.asp
https://www.w3schools.com/tags/att_input_type_tel.asp
https://www.w3schools.com/tags/att_input_type_text.asp
https://www.w3schools.com/tags/att_input_type_time.asp
https://www.w3schools.com/tags/att_input_type_url.asp
https://www.w3schools.com/tags/att_input_type_week.asp

<form action="/Page1.html">

If the action attribute is omitted, the action is set to the current page.

The Target Attribute

The target attribute specifies if the submitted result will open in a new browser tab, a frame, or in the current

window.

The default value is "_self" which means the form will be submitted in the current window.

To make the form result open in a new browser tab, use the value "_blank":

<!DOCTYPE html>

<html>

<body>

<h2>The target Attribute</h2>

<p>When submitting this form, the result will be opened in a new browser tab:</p>

<form action="/Page1.html" target="_blank">

 First name:

<input type="text" name="firstname" value="Mickey">

 Last name:

<input type="text" name="lastname" value="Mouse">

<input type="submit" value="Submit">

</form>

</body>

</html>

The Method Attribute

The method attribute specifies the HTTP method (GET or POST) to be used when submitting the form

data:

<!DOCTYPE html>

<html>

<body>

<h2>The method Attribute</h2>

<p>This form will be submitted using the GET method:</p>

<form action="/Page1.html" target="_blank" method="GET">

 First name:

<input type="text" name="firstname" value="Mickey">

 Last name:

<input type="text" name="lastname" value="Mouse">

<input type="submit" value="Submit">

</form>

<p>After you submit, notice that the form values is visible in the address bar of the new browser tab.</p>

</body>

</html>

When to Use GET?

The default method when submitting form data is GET.

However, when GET is used, the submitted form data will be visible in the page address field:

/action_page.php?firstname=Mickey&lastname=Mouse

When to Use POST?

Always use POST if the form data contains sensitive or personal information. The POST method does not

display the submitted form data in the page address field.

The Name Attribute

Each input field must have a name attribute to be submitted.

If the name attribute is omitted, the data of that input field will not be sent at all.

Additional attributes Section
In addition to the attributes that operate on all <input> elements regardless of their type, email inputs support the

following attributes:

Attribute Description
maxlength The maximum number of characters the input should accept

minlength The minimum number of characters long the input can be and still be considered

valid

multiple Whether or not to allow multiple, comma-separated, e-mail addresses to be entered

pattern A regular expression the input's contents must match in order to be valid

placeholder An exemplar value to display in the input field whenever it is empty

readonly A Boolean attribute indicating whether or not the contents of the input should be

read-only

size A number indicating how many characters wide the input field should be

spellcheck Controls whether or not to enable spell checking for the input field, or if the default

spell checking configuration should be used

HTML <textarea>

<!DOCTYPE html>

<html>

<body>

<form action="/Page1.html" id="usrform">

 Name: <input type="text" name="usrname">

<input type="submit">

</form>

<textarea rows="4" cols="50" name="comment" form="usrform">

Enter text here...</textarea>

<p>The text area above is outside the form element, but should still be a part of the form.</p>

<p>Note: The form attribute is not supported in IE.</p>

</body>

</html>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#Additional_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#maxlength
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#minlength
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#multiple
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#pattern
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#placeholder
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#readonly
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#size
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email#spellcheck

HTML <option> selected Attribute

The selected attribute is a boolean attribute.

When present, it specifies that an option should be pre-selected when the page loads.

The pre-selected option will be displayed first in the drop-down list.

<!DOCTYPE html>

<html>

<body>

<select>

<option value="volvo">Volvo</option>

<option value="saab">Saab</option>

<option value="vw">VW</option>

<option value="audi" selected>Audi</option>

</select>

</body>

</html>

HTML <button> form action Attribute

The form action attribute specifies where to send the form-data when a form is submitted. This attribute

overrides the form's action attribute.

The form action attribute is only used for buttons with type="submit".

<!DOCTYPE html>

<html>

<body>

https://www.w3schools.com/tags/att_form_action.asp

<form action="/action_page.php" method="get">

 First name: <input type="text" name="fname">

 Last name: <input type="text" name="lname">

<button type="submit">Submit</button>

<button type="submit" formaction="/action_page2.php">Submit to another page</button>

</form>

</body>

</html>

HTML <link> target Attribute

Syntax
<link target="_blank|_self|_parent|_top|framename">

Attribute Values

Value Description

_blank Load in a new window

_self Load in the same frame as it was clicked

_parent Load in the parent frameset

_top Load in the full body of the window

framename Load in a named frame

<head>

 <link rel="parent" href="wildcats.htm" target="_blank">

</head>

HTML Images

In HTML, images are defined with the tag.

The tag is empty, it contains attributes only, and does not have a closing tag.

The src attribute specifies the URL (web address) of the image:

Attribute Value Description

align top

bottom

middle

left

right

Not supported in HTML5.

Specifies the alignment of an image according to surrounding

elements

alt Text Specifies an alternate text for an image

border Pixels Not supported in HTML5.

Specifies the width of the border around an image

crossorigin anonymous

use-credentials

Allow images from third-party sites that allow cross-origin access to

be used with canvas

height Pixels Specifies the height of an image

hspace Pixels Not supported in HTML5.

Specifies the whitespace on left and right side of an image

ismap Ismap Specifies an image as a server-side image-map

longdesc URL Specifies a URL to a detailed description of an image

sizes Specifies image sizes for different page layouts

src URL Specifies the URL of an image

srcset URL Specifies the URL of the image to use in different situations

usemap #mapname Specifies an image as a client-side image-map

vspace Pixels Not supported in HTML5.

Specifies the whitespace on top and bottom of an image

width Pixels Specifies the width of an image

HTML5 - AUDIO & VIDEO

HTML5 features include native audio and video support without the need for Flash.

The HTML5 <audio> and <video> tags make it simple to add media to a website. You need to

set src attribute to identify the media source and include a controls attribute so the user can play

and pause the media.

Embedding Video

Here is the simplest form of embedding a video file in your webpage −

https://www.w3schools.com/tags/att_img_align.asp
https://www.w3schools.com/tags/att_img_alt.asp
https://www.w3schools.com/tags/att_img_border.asp
https://www.w3schools.com/tags/att_img_height.asp
https://www.w3schools.com/tags/att_img_hspace.asp
https://www.w3schools.com/tags/att_img_ismap.asp
https://www.w3schools.com/tags/att_img_longdesc.asp
https://www.w3schools.com/tags/att_img_src.asp
https://www.w3schools.com/tags/att_img_usemap.asp
https://www.w3schools.com/tags/att_img_vspace.asp
https://www.w3schools.com/tags/att_img_width.asp

<video src = "foo.mp4" width = "300" height = "200" controls>

 Your browser does not support the <video> element.

</video>

The current HTML5 draft specification does not specify which video formats browsers should

support in the video tag. But most commonly used video formats are −

• Ogg − Ogg files with Thedora video codec and Vorbis audio codec.

• mpeg4 − MPEG4 files with H.264 video codec and AAC audio codec.

You can use <source> tag to specify media along with media type and many other attributes. A

video element allows multiple source elements and browser will use the first recognized format −

<!DOCTYPE HTML>

<html>

<body>

<videowidth="300"height="200"controlsautoplay>

<sourcesrc="/html5/foo.ogg"type="video/ogg"/>

<sourcesrc="/html5/foo.mp4"type="video/mp4"/>

 Your browser does not support the <video> element.

</video>

</body>

</html>

This will produce the following result −

Video Attribute Specification

The HTML5 video tag can have a number of attributes to control the look and feel and various

functionalities of the control −

Sr.No. Attribute & Description

1
Autoplay

This Boolean attribute if specified, the video will automatically begin to play back as soon as it

can do so without stopping to finish loading the data.

2
Autobuffer

This Boolean attribute if specified, the video will automatically begin buffering even if it's not set

to automatically play.

3
Controls

If this attribute is present, it will allow the user to control video playback, including volume,

seeking, and pause/resume playback.

4
Height

This attribute specifies the height of the video's display area, in CSS pixels.

5
Loop

This Boolean attribute if specified, will allow video automatically seek back to the start after

reaching at the end.

6
Preload

This attribute specifies that the video will be loaded at page load, and ready to run. Ignored if

autoplay is present.

7
Poster

This is a URL of an image to show until the user plays or seeks.

8
Src

The URL of the video to embed. This is optional; you may instead use the <source> element

within the video block to specify the video to embed.

9
Width

This attribute specifies the width of the video's display area, in CSS pixels.

Embedding Audio

HTML5 supports <audio> tag which is used to embed sound content in an HTML or XHTML

document as follows.

<audio src = "foo.wav" controls autoplay>

 Your browser does not support the <audio> element.

</audio>

The current HTML5 draft specification does not specify which audio formats browsers should

support in the audio tag. But most commonly used audio formats are ogg, mp3 and wav.

You can use tag to specify media along with media type and many other attributes. An audio

element allows multiple source elements and browser will use the first recognized format −

<!DOCTYPE HTML>

<html>

<body>

<audiocontrolsautoplay>

<sourcesrc="/html5/audio.ogg"type="audio/ogg"/>

<sourcesrc="/html5/audio.wav"type="audio/wav"/>

 Your browser does not support the <audio> element.

</audio>

</body>

</html>

This will produce the following result −

Audio Attribute Specification

The HTML5 audio tag can have a number of attributes to control the look and feel and various

functionalities of the control −

Sr.No. Attribute & Description

1
Autoplay

This Boolean attribute if specified, the audio will automatically begin to play back as soon as it

can do so without stopping to finish loading the data.

2
Autobuffer

This Boolean attribute if specified, the audio will automatically begin buffering even if it's not set

to automatically play.

3
Controls

If this attribute is present, it will allow the user to control audio playback, including volume,

seeking, and pause/resume playback.

4
Loop

This Boolean attribute if specified, will allow audio automatically seek back to the start after

reaching at the end.

5
Preload

This attribute specifies that the audio will be loaded at page load, and ready to run. Ignored if

autoplay is present.

6
Src

The URL of the audio to embed. This is optional; you may instead use the <source> element

within the video block to specify the video to embed.

Handling Media Events

The HTML5 audio and video tag can have a number of attributes to control various functionalities

of the control using JavaScript −

S.No. Event & Description

1
Abort

This event is generated when playback is aborted.

2
Canplay

This event is generated when enough data is available that the media can be played.

3
Ended

This event is generated when playback completes.

4
Error

This event is generated when an error occurs.

5
Loadeddata

This event is generated when the first frame of the media has finished loading.

6
Loadstart

This event is generated when loading of the media begins.

7 Pause

This event is generated when playback is paused.

8
Play

This event is generated when playback starts or resumes.

9
Progress

This event is generated periodically to inform the progress of the downloading the media.

10
Ratechange

This event is generated when the playback speed changes.

11
Seeked

This event is generated when a seek operation completes.

12
Seeking

This event is generated when a seek operation begins.

13
Suspend

This event is generated when loading of the media is suspended.

14
Volumechange

This event is generated when the audio volume changes.

15
Waiting

This event is generated when the requested operation suchasplayback is delayed pending the

completion of another operation.

Following is the example which allows to play the given video −

<!DOCTYPE HTML>

<html>

<head>

</head>

<body>

<video width="320" height="240" controls>

 <source src="movie.mp4" type="video/mp4">

 <source src="movie.ogg" type="video/ogg">

Your browser does not support the video tag.

</video>

</body>

</html>

This will produce the following result −

Configuring Servers for Media Type

Most servers don't by default serve Ogg or mp4 media with the correct MIME types, so you'll likely

need to add the appropriate configuration for this.

AddType audio/ogg .oga

AddType audio/wav .wav

AddType video/ogg .ogv .ogg

AddType video/mp4 .mp4

CSS

CSS is the language we use to style a Web page.

What is CSS?

CSS stands for Cascading Style Sheets

CSS describes how HTML elements are to be displayed on screen, paper, or in other media

CSS saves a lot of work. It can control the layout of multiple web pages all at once

External stylesheets are stored in CSS files

CSS is the language we use to style a Web page.

What is CSS

CSS stands for Cascading Style Sheets. It is a style sheet language which is used to describe the look and

formatting of a document written in markup language. It provides an additional feature to HTML. It is

generally used with HTML to change the style of web pages and user interfaces. It can also be used with

any kind of XML documents including plain XML, SVG and XUL.

CSS is used along with HTML and JavaScript in most websites to create user interfaces for web

applications and user interfaces for many mobile applications.

What does CSS do

You can add new looks to your old HTML documents.

You can completely change the look of your website with only a few changes in CSS code.

Why use CSS

These are the three major benefits of CSS:

1) Solves a big problem

Before CSS, tags like font, color, background style, element alignments, border and size had to be

repeated on every web page. This was a very long process. For example: If you are developing a large

website where fonts and color information are added on every single page, it will be become a long and

expensive process. CSS was created to solve this problem. It was a W3C recommendation.

2) Saves a lot of time

CSS style definitions are saved in external CSS files so it is possible to change the entire website by

changing just one file.

3) Provide more attributes

CSS provides more detailed attributes than plain HTML to define the look and feel of the website.

CSS Syntax

A CSS rule set contains a selector and a declaration block.

Selector: Selector indicates the HTML element you want to style. It could be any tag like <h1>, <title>

etc.

Declaration Block: The declaration block can contain one or more declarations separated by a

semicolon. For the above example, there are two declarations:

1. color: yellow;

2. font-size: 11 px;

Each declaration contains a property name and value, separated by a colon.

Property: A Property is a type of attribute of HTML element. It could be color, border etc.

Value: Values are assigned to CSS properties. In the above example, value "yellow" is assigned to color

property.

Selector{Property1: value1; Property2: value2;;}

CSS Selector

CSS selectors are used to select the content you want to style. Selectors are the part of CSS rule set. CSS

selectors select HTML elements according to its id, class, type, attribute etc.

There are several different types of selectors in CSS.

1. CSS Element Selector

2. CSS Id Selector

3. CSS Class Selector

4. CSS Universal Selector

5. CSS Group Selector

1. CSS Element Selector

The element selector selects the HTML element by name.

<!DOCTYPE html>

<html>

<head>

<style>

p{

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<p>This style will be applied on every paragraph.</p>

<p>And me!</p>

</body>

</html>

Output:

This style will be applied on every paragraph.

Me too!

And me!

2) CSS Id Selector

The id selector selects the id attribute of an HTML element to select a specific element. An id is always

unique within the page so it is chosen to select a single, unique element.

It is written with the hash character (#), followed by the id of the element.

Let?s take an example with the id "para1".

<!DOCTYPE html>

<html>

<head>

<style>

#para1 {

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<p id="para1">Hello Javatpoint.com</p>

<p>This paragraph will not be affected.</p>

</body>

</html>

Output:

Hello Javatpoint.com

This paragraph will not be affected.

3) CSS Class Selector

The class selector selects HTML elements with a specific class attribute. It is used with a period

character . (full stop symbol) followed by the class name.

Note: A class name should not be started with a number.

Let's take an example with a class "center".

<!DOCTYPE html>

<html>

<head>

<style>

.center {

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<h1 class="center">This heading is blue and center-aligned.</h1>

<p class="center">This paragraph is blue and center-aligned.</p>

</body>

</html>

Output:

This heading is blue and center-aligned.

This paragraph is blue and center-aligned.

CSS Class Selector for specific element

If you want to specify that only one specific HTML element should be affected then you should use the

element name with class selector.

Let's see an example.

<!DOCTYPE html>

<html>

<head>

<style>

p.center {

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<h1 class="center">This heading is not affected</h1>

<p class="center">This paragraph is blue and center-aligned.</p>

</body>

</html>

OUTPUT

This heading is not affected

This paragraph is blue and center-aligned.

4) CSS Universal Selector

The universal selector is used as a wildcard character. It selects all the elements on the pages.

<!DOCTYPE html>

<html>

<head>

<style>

* {

 color: green;

 font-size: 20px;

}

</style>

</head>

<body>

<h2>This is heading</h2>

<p>This style will be applied on every paragraph.</p>

<p id="para1">Me too!</p>

<p>And me!</p>

</body>

</html>

Output:

This is heading

This style will be applied on every paragraph.

Me too!

And me!

5) CSS Group Selector

The grouping selector is used to select all the elements with the same style definitions.

Grouping selector is used to minimize the code. Commas are used to separate each selector in grouping.

Let's see the CSS code without group selector.

h1 {

 text-align: center;

 color: blue;

}

h2 {

 text-align: center;

 color: blue;

}

p {

 text-align: center;

 color: blue;

}

As you can see, you need to define CSS properties for all the elements. It can be grouped in following

ways:

h1,h2,p {

 text-align: center;

 color: blue;

}

<!DOCTYPE html>

<html>

<head>

<style>

h1, h2, p {

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<h1>Hello Javatpoint.com</h1>

<h2>Hello Javatpoint.com (In smaller font)</h2>

<p>This is a paragraph.</p>

</body>

</html>

Output:

Hello Javatpoint.com

Hello Javatpoint.com (In smaller font)

This is a paragraph.

How to add CSS

CSS is added to HTML pages to format the document according to information in the style sheet. There

are three ways to insert CSS in HTML documents.

Inline CSS

Internal CSS

External CSS

1) Inline CSS

Inline CSS is used to apply CSS on a single line or element.

For example:

<p style="color:blue">Hello CSS</p>

For more visit here: Inline CSS

2) Internal CSS

Internal CSS is used to apply CSS on a single document or page. It can affect all the elements of the

page. It is written inside the style tag within head section of html.

For example:

https://www.javatpoint.com/inline-css
https://www.javatpoint.com/inline-css

<style>

p{color:blue}

</style>

3) External CSS

External CSS is used to apply CSS on multiple pages or all pages. Here, we write all the CSS code in a

css file. Its extension must be .css for example style.css.

For example:

p{color:blue}

You need to link this style.css file to your html pages like this:

<link rel="stylesheet" type="text/css" href="style.css">

The link tag must be used inside head section of html.

1. Inline CSS

We can apply CSS in a single element by inline CSS technique.

The inline CSS is also a method to insert style sheets in HTML document. This method mitigates some

advantages of style sheets so it is advised to use this method sparingly.

If you want to use inline CSS, you should use the style attribute to the relevant tag.

Syntax:

<htmltag style="cssproperty1:value; cssproperty2:value;"> </htmltag>

Example:

<h2 style="color:red;margin-left:40px;">Inline CSS is applied on this heading.</h2>

<p>This paragraph is not affected.</p>

Output:

Inline CSS is applied on this heading.

This paragraph is not affected.

Disadvantages of Inline CSS

You cannot use quotations within inline CSS. If you use quotations the browser will interpret this as an

end of your style value.

These styles cannot be reused anywhere else.

These styles are tough to be edited because they are not stored at a single place.

It is not possible to style pseudo-codes and pseudo-classes with inline CSS.

Inline CSS does not provide browser cache advantages.

2. Internal CSS

The internal style sheet is used to add a unique style for a single document. It is defined in <head>

section of the HTML page inside the <style> tag.

Example:

<!DOCTYPE html>

<html>

<head>

<style>

body {

 background-color: linen;

}

h1 {

 color: red;

 margin-left: 80px;

}

</style>

</head>

<body>

<h1>The internal style sheet is applied on this heading.</h1>

<p>This paragraph will not be affected.</p>

</body>

</html>

3. External CSS

The external style sheet is generally used when you want to make changes on multiple pages. It is ideal

for this condition because it facilitates you to change the look of the entire web site by changing just one

file.

It uses the <link> tag on every pages and the <link> tag should be put inside the head section.

Example:

<head>

<link rel="stylesheet" type="text/css" href="mystyle.css">

</head>

The external style sheet may be written in any text editor but must be saved with a .css extension. This

file should not contain HTML elements.

Let's take an example of a style sheet file named "mystyle.css".

File: mystyle.css

body {

 background-color: lightblue;

}

h1 {

 color: navy;

 margin-left: 20px;

}

Note: You should not use a space between the property value and the unit. For example: It should be

margin-left:20px not margin-left:20 px.

CSS Comments

CSS comments are generally written to explain your code. It is very helpful for the users who reads your

code so that they can easily understand the code.

Comments are ignored by browsers.

Comments are single or multiple lines statement and written within /*............*/ .

<!DOCTYPE html>

<html>

<head>

<style>

p {

 color: blue;

 /* This is a single-line comment */

 text-align: center;

}

/* This is

a multi-line

comment */

</style>

</head>

<body>

<p>Hello Javatpoint.com</p>

<p>This statement is styled with CSS.</p>

<p>CSS comments are ignored by the browsers and not shown in the output.</p>

</body>

</html>

Output:

Hello Javatpoint.com

This statement is styled with CSS.

CSS comments are ignored by the browsers and not shown in the output.

NOTE:

Difference between id and class attribute: The only difference between them is that

“id” is unique in a page and can only apply to at most one element, while “class” selector

can apply to multiple elements.

HTML Links - Hyperlinks

HTML links are hyperlinks.

You can click on a link and jump to another document.

When you move the mouse over a link, the mouse arrow will turn into a little hand.

Note: A link does not have to be text. A link can be an image or any other HTML
element!

HTML Links - Syntax

The HTML <a> tag defines a hyperlink. It has the following syntax:

link text

The most important attribute of the <a> element is the href attribute, which indicates the

link's destination.

The link text is the part that will be visible to the reader.

Clicking on the link text, will send the reader to the specified URL address.

Visit W3Schools.com!

By default, links will appear as follows in all browsers:

• An unvisited link is underlined and blue

• A visited link is underlined and purple
• An active link is underlined and red

Tip: Links can of course be styled with CSS, to get another look!

HTML Links - The target Attribute

By default, the linked page will be displayed in the current browser window. To change
this, you must specify another target for the link.

The target attribute specifies where to open the linked document.

The target attribute can have one of the following values:

• _self - Default. Opens the document in the same window/tab as it was clicked

• _blank - Opens the document in a new window or tab

• _parent - Opens the document in the parent frame

• _top - Opens the document in the full body of the window

Example

Use target="_blank" to open the linked document in a new browser window or tab:

Visit W3Schools!

Absolute URLs vs. Relative URLs

Both examples above are using an absolute URL (a full web address) in
the href attribute.

A local link (a link to a page within the same website) is specified with a relative
URL (without the "https://www" part):

Example

<h2>Absolute URLs</h2>

<p>W3C</p>

<p>Google</p>

<h2>Relative URLs</h2>

<p>HTML Images</p>

<p>CSS Tutorial</p>

CSS Background

CSS background property is used to define the background effects on element. There are 5 CSS

background properties that affects the HTML elements:

background-color
background-image
background-repeat
background-attachment
background-position

Property Values

scroll: It is the default value that prevents the element from scrolling with the contents, but scrolls

with the page.

fixed: Using this value, the background image doesn't move with the element, even the element has a

scrolling mechanism. It causes the image to be locked inone place, even the rest of the document scrolls.

Value Description

Repeat The background image is repeated both vertically and
horizontally. The last image will be clipped if it does

not fit. This is default

repeat-x The background image is repeated only horizontally

repeat-y The background image is repeated only vertically

no-repeat The background-image is not repeated. The image will

only be shown once

local: Using this value, if the element has a scrolling mechanism, the background image scrolls with the

content of the element.

initial: It sets the property to its default value.

CSS Font

CSS Font property is used to control the look of texts. By the use of CSS font property you can

change the text size, color, style and more. You have already studied how to make text bold or

underlined. Here, you will also know how to resize your font using percentage.

These are some important font attributes:

1. CSS Font color: This property is used to change the color of the text. (standalone attribute)

2. CSS Font family: This property is used to change the face of the font.

3. CSS Font size: This property is used to increase or decrease the size of the font.

4. CSS Font style: This property is used to make the font bold, italic or oblique.

5. CSS Font variant: This property creates a small-caps effect.

6. CSS Font weight: This property is used to increase or decrease the boldness and lightness of the

font.

CSS font family can be divided in two types:

o Generic family: It includes Serif, Sans-serif, and Monospace.

o Font family: It specifies the font family name like Arial, New Times Roman etc.

Serif: Serif fonts include small lines at the end of characters. Example of serif: Times new roman,

Georgia etc.

Sans-serif: A sans-serif font doesn't include the small lines at the end of characters. Example of

Sans-serif: Arial, Verdana etc.

 monospaced font, also called a fixed-pitch, fixed-width, or non-proportional font, is a font whose letters

and characters each occupy the same amount of horizontal space. This contrasts with variable-width fonts,

where the letters and spacings have different widths.

Oblique type is a form of type that slants slightly to the right, used for the same purposes as italic

type.

https://en.wikipedia.org/wiki/Font
https://en.wikipedia.org/wiki/Typeface#Proportion

Font Size Value Description

xx-small used to display the extremely small text size.

x-small used to display the extra small text size.

small used to display small text size.

medium used to display medium text size.

large used to display large text size.

x-large used to display extra large text size.

xx-large used to display extremely large text size.

smaller used to display comparatively smaller text size.

larger used to display comparatively larger text size.

size in pixels or % used to set value in percentage or in pixels.

CSS Border

The CSS border is a shorthand property used to set the border on an element.

The CSS border properties are use to specify the style, color and size of the border of an element.

The CSS border properties are given below

o border-style

o border-color

o border-width

CSS Margins

The CSS margin properties are used to create space around elements, outside of any

defined borders.

With CSS, you have full control over the margins. There are properties for setting the
margin for each side of an element (top, right, bottom, and left).

All the margin properties can have the following values:

• auto - the browser calculates the margin
• length - specifies a margin in px, pt, cm, etc.

• % - specifies a margin in % of the width of the containing element

https://www.javatpoint.com/css-tutorial

CSS Padding
Padding is used to create space around an element's content, inside of any defined

borders.

Different List Item Markers

The list-style-type property specifies the type of list item marker.

ul.a {

 list-style-type: circle;

}

ul.b {

 list-style-type: square;

}

ol.c {

 list-style-type: upper-roman;

}

ol.d {

 list-style-type: lower-alpha;

}

An Image as The List Item Marker

The list-style-image property specifies an image as the list item marker:

ul {

 list-style-image: url('sqpurple.gif');

}

position The List Item Markers

The list-style-position property specifies the position of the list-item markers (bullet

points).

ul.a {
 list-style-position: outside;
}

ul.b {
 list-style-position: inside;
}

CSS Text
body {

 color: blue;

}

h1 {

 color: green;

}

h1 {

 text-align: center;

}

h2 {

 text-align: left;

}

h3 {

 text-align: right;

}

h1 {

 text-decoration: overline;

}

h2 {

 text-decoration: line-through;

}

h3 {

 text-decoration: underline;

}

p.ex {

 text-decoration: overline underline;

}

p{

 text-transform: uppercase;

 text-transform: lowercase;

 text-transform: capitalize;}

CSS Text Spacing

Property Description

letter-spacing Specifies the space between characters in a text

line-height Specifies the line height

text-indent Specifies the indentation of the first line in a text-block

white-space Specifies how to handle white-space inside an element

word-spacing Specifies the space between words in a text

The text-indent property is used to specify the indentation of the first line of a text:

p {

 text-indent: 50px;

}

https://www.w3schools.com/cssref/pr_text_letter-spacing.asp
https://www.w3schools.com/cssref/pr_dim_line-height.asp
https://www.w3schools.com/cssref/pr_text_text-indent.asp
https://www.w3schools.com/cssref/pr_text_white-space.asp
https://www.w3schools.com/cssref/pr_text_word-spacing.asp

Letter Spacing

The letter-spacing property is used to specify the space between the characters in a

text.

h1 {

 letter-spacing: 5px;

}

h2 {

 letter-spacing: -2px;

}

Line Height

The line-height property is used to specify the space between lines:

p.small {

 line-height: 0.8;

}

p.big {

 line-height: 1.8;

}

Word Spacing

The word-spacing property is used to specify the space between the words in a text.

p.one {

 word-spacing: 10px;

}

p.two {

 word-spacing: -2px;

}

White Space

The white-space property specifies how white-space inside an element is handled.

p {

 white-space: nowrap;

}

Differences Between <datalist> and <select> tag

<select> tag <datalist> tag

The user can choose only one option The user can choose any option from the given list but can

from the given list. also use its own input.

This tag is a form input type. This tag is not a form input type.

The user has to scan a long list so as to

select an option.

The user can easily input the option and get the hints and

then can be chosen by the user.

The user can be restricted to a list of

options. The user is not restricted by the list of options.

It doesn’t provide the auto-complete

feature. It provides the auto-complete feature.

HTML Div Tag

The HTML <div> tag is used to group the large section of HTML elements together.

We know that every tag has a specific purpose e.g. p tag is used to specify paragraph, <h1> to

<h6> tag are used to specify headings but the <div> tag is just like a container unit which is used

to encapsulate other page elements and divides the HTML documents into sections.

The div tag is generally used by web developers to group HTML elements together and apply CSS

styles to many elements at once. For example: If you wrap a set of paragraph elements into a div

element so you can take the advantage of CSS styles and apply font style to all paragraphs at once

instead of coding the same style for each paragraph element.

<div style="border:1px solid pink;padding:20px;font-size:20px">

<p>Welcome to Javatpoint.com, Here you get tutorials on latest technologies.</p>

<p>This is second paragraph</p>

</div>

Difference between HTML div tag and span tag

div tag span tag

HTML div is a block element. HTML span is an inline element

HTML div element is used to wrap large

sections of elements.

HTML span element is used to wrap small portion of

texts, image etc.

HTML tag

HTML tag is used as a generic container of inline elements. It is used for styling purpose to

the grouped inline elements (using class and id attribute or inline style).

The tag does not have any default meaning or rendering.

The tag can be useful for the following task:

o To change the language of a part of the text.

o To change the color, font, background of a part of text using CSS

o To apply the scripts to the particular part of the text.

Note: HTML is much similar as <div> tag, but <div> is used for block-level elements and

 tag is used for inline elements.

Syntax

Write your content here......

Example

<!DOCTYPE html>

<html>

<head>

 <title>Span Tag</title>

 </head>

<body>

 <h2>Example of span tag</h2>

 <p>I have choosen only

 red,

 blue, and

 green colors for my painting.

 </p>

</body>

</html>

Output:

HTML Section Tag

The HTML <section> tag is used to define sections in a document. When you put your content on

a web page, it may contains many chapters, headers, footers, or other sections on a web page that

is why HTML <section> tag is used.

HTML <section> is a new tag introduced in HTML5.

HTML section tag example

CSS code:

section{

border:1px solid pink;

padding:15px;

margin:10px;

}

HTML code:

<h2> Indian Leader</h2>

<section>

<h3> Jawaharlal Nehru </h3>

<p> Jawaharlal Nehru was the first Prime Minister of India and a central figure in

Indian politics for much of the 20th century. He emerged as the paramount leader of the Indian

independence movement under the tutelage of Mahatma Gandhi. -Source Wikipedia </p>

</section>

<section>

<h3>Subhas Chandra Bose </h3>

<p>Subhas Chandra Bose was an Indian nationalist whose attempt during World War II to rid India of

British rule with the help of Nazi Germany and Japan left a troubled legacy.

The honorific Netaji (Hindustani language: "Respected Leader"), first applied to Bose in Germany,

 by the Indian soldiers of the Indische Legion and by the German and Indian officials

 in the Special Bureau for India in Berlin, in early 1942, is now used widely throughout India. -

source Wikipedia</p>

</section>

HTML Header Tag

HTML <header> tag is used as a container of introductory content or navigation links. Generally a

<header> element contains one or more heading elements, logo or icons or author's information.

You can use several <header> elements in one document, but a <header> element cannot be

placed within a <footer>, <address> or another <header> element.

HTML Header Tag Example

<header>

<h2>ABCOnline.com</h2>

<p> World's no.1 shopping website</p>

</header>

ABCOnline.com

World's no.1 shopping website

CSS Code:

header{

border: 1px solid pink;

background-color:pink;

padding:10px;

border-radius:5px;

}

HTML Code:

<header>

<h2>ABCOnline.com</h2>

<p> World's no.1 shopping website</p>

</header>

HTML Footer Tag

HTML <footer> tag is used to define a footer for a document or a section. It is generally used in

the last of the section (bottom of the page).

The footer tag is included in HTML5.

HTML <footer> tag contains information about its containing elements for example:

o author information

o contact information

o copyright information

o sitemap

o back to top links

o related documents etc.

Note: You can have one or many footer elements in one document.

If you want to put information like address, e-mail etc. about the author on your web page, all the

relevant elements should be included into the footer element.

<!DOCTYPE>

<html>

<body>

<footer>

<p>Posted by: Sonoo Jaiswal</p>

<p>

<address> JavaTpoint, plot no. 6, near MMX Mall,Mohan Nagar, Ghaziabad Pin no. 201007

</address>

</p>

<p>Contact information:

sonoojaiswal1987@gmail.com.

</p>

</footer>

</body>

</html>

HTML Audio Tag

HTML audio tag is used to define sounds such as music and other audio clips. Currently there are

three supported file format for HTML 5 audio tag.

1. mp3

2. wav

3. ogg

HTML5 supports <video> and <audio> controls. The Flash, Silverlight and similar technologies are

used to play the multimedia items.

This table defines that which web browser supports which audio file format.

Browser mp3 wav ogg

 Internet Explorer yes no no

 Google Chrome yes yes yes

 Mozilla Firefox yes* yes yes

 Opera no yes yes

 Apple Safari yes yes no

HTML Audio Tag Example

Let's see the code to play mp3 file using HTML audio tag.

<!DOCTYPE>

<html>

<body>

<audio controls>

 <source src="koyal.mp3" type="audio/mpeg">

Your browser does not support the html audio tag.

</audio>

</body>

</html>

Attributes of HTML Audio Tag

There is given a list of HTML audio tag.

Attribute Description

controls It defines the audio controls which is displayed with play/pause buttons.

autoplay It specifies that the audio will start playing as soon as it is ready.

loop It specifies that the audio file will start over again, every time when it is completed.

muted It is used to mute the audio output.

preload It specifies the author view to upload audio file when the page loads.

src It specifies the source URL of the audio file.

HTML Audio Tag Attribute Example

Here we are going to use controls, autoplay, loop and src attributes of HTML audio tag.

<audio controls autoplay loop>

 <source src="koyal.mp3" type="audio/mpeg"></audio>

MIME(Multipurpose Internet Mail Extensions) Types for HTML
Audio format

The available MIME type HTML audio tag is given below.

Audio Format MIME Type

mp3 audio/mpeg

Ogg audio/ogg

Wav audio/wav

HTML Video Tag

HTML 5 supports <video> tag also. The HTML video tag is used for streaming video files such as a

movie clip, song clip on the web page.

Currently, there are three video formats supported for HTML video tag:

1. mp4

2. webM

3. ogg

Let's see the table that defines which web browser supports video file format.

Browser mp4 webM ogg

 Internet Explorer yes No no

 Google Chrome yes Yes yes

 Mozilla Firefox yes Yes yes

 Opera no Yes yes

 Apple Safari yes No no

Android also supports mp4 format.

HTML Video Tag Example

Let's see the code to play mp4 file using HTML video tag.

<video controls>

 <source src="movie.mp4" type="video/mp4">

 Your browser does not support the html video tag.

</video>

Attributes of HTML Video Tag

Let's see the list of HTML 5 video tag attributes.

Attribute Description

controls It defines the video controls which is displayed with play/pause buttons.

height It is used to set the height of the video player.

width It is used to set the width of the video player.

poster It specifies the image which is displayed on the screen when the video is not played.

autoplay It specifies that the video will start playing as soon as it is ready.

loop It specifies that the video file will start over again, every time when it is completed.

muted It is used to mute the video output.

preload It specifies the author view to upload video file when the page loads.

src It specifies the source URL of the video file.

HTML Video Tag Attribute Example

Let's see the example of video tag in HTML where are using height, width, autoplay, controls and

loop attributes.

1. <video width="320" height="240" controls autoplay loop>

2. <source src="movie.mp4" type="video/mp4">

3. Your browser does not support the html video tag.

4. </video>

MIME Types for HTML Video format

The available MIME type HTML video tag is given below.

Video Format MIME Type

mp4 video/mp4

Ogg video/ogg

webM video/webM

HTML Form Attributes

The Action Attribute

The action attribute defines the action to be performed when the form is submitted.

Usually, the form data is sent to a file on the server when the user clicks on the submit

button.

In the example below, the form data is sent to a file called "action_page.php". This file

contains a server-side script that handles the form data:

<form action="/action_page.php">

 <label for="fname">First name:</label>

 <input type="text" id="fname" name="fname" value="John">

 <label for="lname">Last name:</label>

 <input type="text" id="lname" name="lname" value="Doe">

 <input type="submit" value="Submit">

</form>

Tip: If the action attribute is omitted, the action is set to the current page.

The Target Attribute

The target attribute specifies where to display the response that is received after

submitting the form.

The target attribute can have one of the following values:

Value Description

_blank The response is displayed in a new window or tab

_self The response is displayed in the current window

_parent The response is displayed in the parent frame

_top The response is displayed in the full body of the window

framename The response is displayed in a named iframe

The default value is _self which means that the response will open in the current

window.

<form action="/action_page.php" target="_blank">

The Method Attribute

The method attribute specifies the HTTP method to be used when submitting the form data.

The form-data can be sent as URL variables (with method="get") or as HTTP post

transaction (with method="post").

The default HTTP method when submitting form data is GET.

<form action="/action_page.php" method="get">

<form action="/action_page.php" method="post">

Notes on GET:

• Appends the form data to the URL, in name/value pairs
• NEVER use GET to send sensitive data! (the submitted form data is visible in the

URL!)
• The length of a URL is limited (2048 characters)
• Useful for form submissions where a user wants to bookmark the result

• GET is good for non-secure data, like query strings in Google

Notes on POST:

• Appends the form data inside the body of the HTTP request (the submitted form
data is not shown in the URL)

• POST has no size limitations, and can be used to send large amounts of data.
• Form submissions with POST cannot be bookmarked

Tip: Always use POST if the form data contains sensitive or personal information!

The Autocomplete Attribute

The autocomplete attribute specifies whether a form should have autocomplete on or off.

When autocomplete is on, the browser automatically complete values based on values

that the user has entered before.

<form action="/action_page.php" autocomplete="on">

The Novalidate Attribute

The novalidate attribute is a boolean attribute.

When present, it specifies that the form-data (input) should not be validated when

submitted.

<form action="/action_page.php" novalidate>

List of All <form> Attributes

Attribute Description

accept-

charset

Specifies the character encodings used for form submission

action Specifies where to send the form-data when a form is submitted

autocomplete Specifies whether a form should have autocomplete on or off

enctype Specifies how the form-data should be encoded when submitting it to the server (only for

method="post")

method Specifies the HTTP method to use when sending form-data

name Specifies the name of the form

novalidate Specifies that the form should not be validated when submitted

rel Specifies the relationship between a linked resource and the current document

target Specifies where to display the response that is received after submitting the form

https://www.w3schools.com/tags/att_form_accept_charset.asp
https://www.w3schools.com/tags/att_form_accept_charset.asp
https://www.w3schools.com/tags/att_form_action.asp
https://www.w3schools.com/tags/att_form_autocomplete.asp
https://www.w3schools.com/tags/att_form_enctype.asp
https://www.w3schools.com/tags/att_form_method.asp
https://www.w3schools.com/tags/att_form_name.asp
https://www.w3schools.com/tags/att_form_novalidate.asp
https://www.w3schools.com/tags/att_form_rel.asp
https://www.w3schools.com/tags/att_form_target.asp

What is Bootstrap?

• Bootstrap is a free front-end framework for faster and easier web development

• Bootstrap includes HTML and CSS based design templates for typography, forms, buttons, tables,

navigation, modals, image carousels and many other, as well as optional JavaScript plugins

• Bootstrap also gives you the ability to easily create responsive designs

What is Responsive Web Design?

Responsive web design is about creating web sites which automatically adjust themselves to look good

on all devices, from small phones to large desktops.

Bootstrap Versions

This tutorial follows Bootstrap 4, which was released in 2018, as an upgrade to Bootstrap 3, with new

components, faster stylesheetc, more responsiveness, etc.

Bootstrap 5 (released 2021) is the newest version of Bootstrap; It supports the latest, stable releases of

all major browsers and platforms. However, Internet Explorer 11 and down is not supported.

The main differences between Bootstrap 5 and Bootstrap 3 & 4, is that Bootstrap 5 has switched

to JavaScript instead of jQuery.

Note: Bootstrap 3 and Bootstrap 4 is still supported by the team for critical bugfixes and documentation

changes, and it is perfectly safe to continue to use them. However, new features will NOT be added to

them.

Why Use Bootstrap?

Advantages of Bootstrap:

• Easy to use: Anybody with just basic knowledge of HTML and CSS can start using Bootstrap

• Responsive features: Bootstrap's responsive CSS adjusts to phones, tablets, and desktops

• Mobile-first approach: In Bootstrap, mobile-first styles are part of the core framework

• Browser compatibility: Bootstrap 4 is compatible with all modern browsers (Chrome, Firefox,

Internet Explorer 10+, Edge, Safari, and Opera)

Where to Get Bootstrap 4?

There are two ways to start using Bootstrap 4 on your own web site.

You can:

• Include Bootstrap 4 from a CDN

• Download Bootstrap 4 from getbootstrap.com

Bootstrap 4 CDN

If you don't want to download and host Bootstrap 4 yourself, you can include it from a CDN (Content

Delivery Network).

jsDelivr provides CDN support for Bootstrap's CSS and JavaScript. You must also include jQuery:

https://www.w3schools.com/bootstrap/default.asp
https://www.w3schools.com/bootstrap5/index.php
https://www.w3schools.com/bootstrap/default.asp
https://www.w3schools.com/js/default.asp
https://www.w3schools.com/jquery/default.asp
https://www.w3schools.com/bootstrap/default.asp

jsDelivr:

<!-- Latest compiled and minified CSS -->

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min

.css">

<!-- jQuery library -->

<script src="https://cdn.jsdelivr.net/npm/jquery@3.6.0/dist/jquery.slim.min.js"></script>

<!-- Popper JS -->

<script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1/dist/umd/popper.min.js"></script>

<!-- Latest compiled JavaScript -->

<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></scr

ipt>

Downloading Bootstrap 4

If you want to download and host Bootstrap 4 yourself, go to https://getbootstrap.com/, and follow the

instructions there.

Create First Web Page With Bootstrap 4

1. Add the HTML5 doctype

Bootstrap 4 uses HTML elements and CSS properties that require the HTML5 doctype.

Always include the HTML5 doctype at the beginning of the page, along with the lang attribute and the

correct character set:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

</html>

2. Bootstrap 4 is mobile-first

Bootstrap 4 is designed to be responsive to mobile devices. Mobile-first styles are part of the core

framework.

To ensure proper rendering and touch zooming, add the following <meta> tag inside the <head> element:

<meta name="viewport" content="width=device-width, initial-scale=1">

The width=device-width part sets the width of the page to follow the screen-width of the device (which will

vary depending on the device).

The initial-scale=1 part sets the initial zoom level when the page is first loaded by the browser.

3. Containers

Bootstrap 4 also requires a containing element to wrap site contents.

There are two container classes to choose from:

1. The .container class provides a responsive fixed width container

https://getbootstrap.com/

2. The .container-fluid class provides a full width container, spanning the entire width of the

viewport

.container

.container-fluid

Two Basic Bootstrap 4 Pages

The following example shows the code for a basic Bootstrap 4 page (with a responsive fixed width

container):

Container Example

<!DOCTYPE html>

<html lang="en">

<head>

 <title>Bootstrap 4 Example</title>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.m

in.css">

 <script src="https://cdn.jsdelivr.net/npm/jquery@3.6.0/dist/jquery.slim.min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1/dist/umd/popper.min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></s

cript>

</head>

<body>

<div class="container">

 <h1>My First Bootstrap Page</h1>

 <p>This is some text.</p>

</div>

</body>

</html>

The following example shows the code for a basic Bootstrap 4 page (with a full width container):

Container Fluid Example

<!DOCTYPE html>

<html lang="en">

<head>

 <title>Bootstrap 4 Example</title>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.m

in.css">

 <script src="https://cdn.jsdelivr.net/npm/jquery@3.6.0/dist/jquery.slim.min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1/dist/umd/popper.min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></s

cript>

</head>

<body>

<div class="container-fluid">

 <h1>My First Bootstrap Page</h1>

 <p>This is some text.</p>

</div>

</body>

</html>

Bootstrap 4 Containers

Containers

Bootstrap requires a containing element to wrap site contents.

Containers are used to pad the content inside of them, and there are two container classes available:

1. The .container class provides a responsive fixed width container

2. The .container-fluid class provides a full width container, spanning the entire width of the

viewport

.container

.container-fluid

Fixed Container

Use the .container class to create a responsive, fixed-width container.

Note that its width (max-width) will change on different screen sizes:

Extra small

<576px
Small

≥576px

Medium

≥768px

Large

≥992px

Extra large

≥1200px

max-width 100% 540px 720px 960px 1140px

Open the example below and resize the browser window to see that the container width will change at

different breakpoints:

Example

<div class="container">

 <h1>My First Bootstrap Page</h1>

 <p>This is some text.</p>

</div>

Fluid Container

Use the .container-fluid class to create a full width container, that will always span the entire width of the

screen (width is always 100%):

Example

<div class="container-fluid">

 <h1>My First Bootstrap Page</h1>

 <p>This is some text.</p>

</div>

Container Padding

By default, containers have 15px left and right padding, with no top or bottom padding. Therefore, we

often use spacing utilities, such as extra padding and margins to make them look even better. For

example, .pt-3 means "add a top padding of 16px":

Example

<div class="container pt-3"></div>

Container Border and Color

Other utilities, such as borders and colors, are also often used together with containers:

Example

My First Bootstrap Page

This container has a border and some extra padding and margins.

My First Bootstrap Page

This container has a dark background color and a white text, and some extra padding and margins.

My First Bootstrap Page

This container has a blue background color and a white text, and some extra padding and margins.

<div class="container p-3 my-3 border"></div>

<div class="container p-3 my-3 bg-dark text-white"></div>

<div class="container p-3 my-3 bg-primary text-white"></div>

Class Extra small

<576px

Small

≥576px

Medium

≥768px

Large

≥992px

Extra large

≥1200px

.container-sm 100% 540px 720px 960px 1140px

.container-md 100% 100% 720px 960px 1140px

Responsive Containers

You can also use the .container-sm|md|lg|xl classes to create responsive containers.

The max-width of the container will change on different screen sizes/viewports:

Example

<div class="container-sm">.container-sm</div>

<div class="container-md">.container-md</div>

<div class="container-lg">.container-lg</div>

<div class="container-xl">.container-xl</div>

Bootstrap 4 Grids

Bootstrap 4 Grid System

Bootstrap's grid system is built with flexbox and allows up to 12 columns across the page.

If you do not want to use all 12 columns individually, you can group the columns together to create

wider columns:

span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1

 span 4 span 4 span 4

span 4 span 8

span 6 span 6

span 12

The grid system is responsive, and the columns will re-arrange automatically depending on the screen

size.

Make sure that the sum adds up to 12 or fewer (it is not required that you use all 12 available columns).

Class Extra small

<576px

Small

≥576px

Medium

≥768px

Large

≥992px

Extra large

≥1200px

.container-lg 100% 100% 100% 960px 1140px

.container-xl 100% 100% 100% 100% 1140px

Grid Classes

The Bootstrap 4 grid system has five classes:

• .col- (extra small devices - screen width less than 576px)

• .col-sm- (small devices - screen width equal to or greater than 576px)

• .col-md- (medium devices - screen width equal to or greater than 768px)

• .col-lg- (large devices - screen width equal to or greater than 992px)

• .col-xl- (xlarge devices - screen width equal to or greater than 1200px)

The classes above can be combined to create more dynamic and flexible layouts.

Tip: Each class scales up, so if you wish to set the same widths for sm and md, you only need to specify sm.

Basic Structure of a Bootstrap 4 Grid

The following is a basic structure of a Bootstrap 4 grid:

<!-- Control the column width, and how they should appear on different devices -->

<div class="row">

 <div class="col-*-*"></div>

 <div class="col-*-*"></div>

</div>

<div class="row">

 <div class="col-*-*"></div>

 <div class="col-*-*"></div>

 <div class="col-*-*"></div>

</div>

<!-- Or let Bootstrap automatically handle the layout -->

<div class="row">

 <div class="col"></div>

 <div class="col"></div>

 <div class="col"></div>

</div>

First example: create a row (<div class="row">). Then, add the desired number of columns (tags with

appropriate .col-*-* classes). The first star (*) represents the responsiveness: sm, md, lg or xl, while the

second star represents a number, which should add up to 12 for each row.

Second example: instead of adding a number to each col, let bootstrap handle the layout, to create

equal width columns: two "col" elements = 50% width to each col. three cols = 33.33% width to each

col. four cols = 25% width, etc. You can also use .col-sm|md|lg|xl to make the columns responsive.

Below we have collected some examples of basic Bootstrap 4 grid layouts.

Three Equal Columns
.col

.col

.col

The following example shows how to create three equal-width columns, on all devices and screen

widths:

Example

<div class="row">

 <div class="col">.col</div>

 <div class="col">.col</div>

 <div class="col">.col</div>

</div>

Responsive Columns
.col-sm-3

.col-sm-3

.col-sm-3

.col-sm-3

The following example shows how to create four equal-width columns starting at tablets and scaling to

extra large desktops. On mobile phones or screens that are less than 576px wide, the columns

will automatically stack on top of each other:

Example

<div class="row">

 <div class="col-sm-3">.col-sm-3</div>

 <div class="col-sm-3">.col-sm-3</div>

 <div class="col-sm-3">.col-sm-3</div>

 <div class="col-sm-3">.col-sm-3</div>

</div>

Unequal Responsive Columns
.col-sm-4

.col-sm-8

The following example shows how to get two various-width columns starting at tablets and scaling to

large extra desktops:

Example

<div class="row">

 <div class="col-sm-4">.col-sm-4</div>

 <div class="col-sm-8">.col-sm-8</div>

</div>

<body>

<div class="container-fluid">

 <h1>Three equal width columns</h1>

 <p>Note: Try to add a new div with class="col" inside the row class - this will create four

equal-width columns.</p>

 <div class="row">

 <div class="col" style="background-color:lavender;">.col</div>

 <div class="col" style="background-color:orange;">.col</div>

 <div class="col" style="background-color:lavender;">.col</div>

 </div>

</div>

</body>

<div class="container-fluid">

 <h1>Responsive Columns</h1>

 <p>Resize the browser window to see the effect.</p>

 <p>The columns will automatically stack on top of each other when the screen is less than

576px wide.</p>

 <div class="row">

 <div class="col-sm-3" style="background-color:lavender;">.col-sm-3</div>

 <div class="col-sm-3" style="background-color:lavenderblush;">.col-sm-3</div>

 <div class="col-sm-3" style="background-color:lavender;">.col-sm-3</div>

 <div class="col-sm-3" style="background-color:lavenderblush;">.col-sm-3</div>

 </div>

</div>

<div class="container-fluid">

 <h1>Two Unequal Responsive Columns</h1>

 <p>Resize the browser window to see the effect.</p>

 <p>The columns will automatically stack on top of each other when the screen is less than

576px wide.</p>

 <div class="row">

 <div class="col-sm-4" style="background-color:lavender;">.col-sm-4</div>

 <div class="col-sm-8" style="background-color:lavenderblush;">.col-sm-8</div>

 </div>

</div>

Bootstrap 4 Alerts

Bootstrap 4 provides an easy way to create predefined alert messages:

×Success! This alert box indicates a successful or positive action.

×Info! This alert box indicates a neutral informative change or action.

×Warning! This alert box indicates a warning that might need attention.

×Danger! This alert box indicates a dangerous or potentially negative action.

×Primary! This alert box indicates an important action.

×Secondary! This alert box indicates a less important action.

×Dark! Dark grey alert box.

×Light! Light grey alert box.

Alerts are created with the .alert class, followed by one of the contextual classes .alert-success, .alert-

info, .alert-warning, .alert-danger, .alert-primary, .alert-secondary, .alert-light or .alert-dark:

Example

<div class="alert alert-success">

 Success! Indicates a successful or positive action.

</div>

Alert Links

Add the alert-link class to any links inside the alert box to create "matching colored links":

Success! You should read this message.

Info! You should read this message.

Warning! You should read this message.

Danger! You should read this message.

Primary! You should read this message.

Secondary! You should read this message.

Dark! You should read this message.

Light! You should read this message.

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Example

<div class="alert alert-success">

 Success! You should read this message.

</div>

Closing Alerts

×Click on the "x" symbol to the right to close me.

To close the alert message, add a .alert-dismissible class to the alert container. Then

add class="close" and data-dismiss="alert" to a link or a button element (when you click on this the alert box

will disappear).

Example

<div class="alert alert-success alert-dismissible">

 <button type="button" class="close" data-dismiss="alert">×</button>

 Success! Indicates a successful or positive action.

</div>

Tip: × (×) is an HTML entity that is the preferred icon for close buttons, rather than the letter "x".

For a list of all HTML Entities, visit our HTML Entities Reference.

Animated Alerts

×Click on the "x" symbol to the right to close me. I will "fade" out.

The .fade and .show classes adds a fading effect when closing the alert message:

Example

<div class="alert alert-danger alert-dismissible fade show">

Bootstrap 4 Table

Bootstrap 4 Basic Table

A basic Bootstrap 4 table has a light padding and horizontal dividers.

The .table class adds basic styling to a table:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

javascript:void(0)
https://www.w3schools.com/charsets/ref_html_entities_4.asp
https://www.w3schools.com/bootstrap4/bootstrap_alerts.asp

Striped Rows

The .table-striped class adds zebra-stripes to a table:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Bordered Table

The .table-bordered class adds borders on all sides of the table and cells:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Hover Rows

The .table-hover class adds a hover effect (grey background color) on table rows:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Black/Dark Table

The .table-dark class adds a black background to the table:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Dark Striped Table

Combine .table-dark and .table-striped to create a dark, striped table:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Hoverable Dark Table

The .table-hover class adds a hover effect (grey background color) on table rows:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Borderless Table

The .table-borderless class removes borders from the table:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Contextual Classes

Contextual classes can be used to color the whole table (<table>), the table rows (<tr>) or

table cells (<td>).

Example

Firstname Lastname Email

Default Defaultson def@somemail.com

Primary Joe joe@example.com

Success Doe john@example.com

Danger Moe mary@example.com

Info Dooley july@example.com

Warning Refs bo@example.com

Active Activeson act@example.com

Secondary Secondson sec@example.com

Light Angie angie@example.com

Dark Bo bo@example.com

The contextual classes that can be used are:

Class Description

.table-primary Blue: Indicates an important action

.table-success Green: Indicates a successful or positive action

.table-danger Red: Indicates a dangerous or potentially negative action

.table-info Light blue: Indicates a neutral informative change or action

.table-warning Orange: Indicates a warning that might need attention

.table-active Grey: Applies the hover color to the table row or table cell

.table-secondary Grey: Indicates a slightly less important action

.table-light Light grey table or table row background

.table-dark Dark grey table or table row background

Table Head Colors

The .thead-dark class adds a black background to table headers, and the .thead-light class

adds a grey background to table headers:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Small table

The .table-sm class makes the table smaller by cutting cell padding in half:

Example

Firstname Lastname Email

John Doe john@example.com

Mary Moe mary@example.com

July Dooley july@example.com

Responsive Tables

The .table-responsive class adds a scrollbar to the table when needed (when it is too big

horizontally):

Example

<div class="table-responsive">

 <table class="table">

 ...

 </table>

</div>

You can also decide when the table should get a scrollbar, depending on screen width:

Class Screen width

.table-responsive-sm < 576px

.table-responsive-md < 768px

.table-responsive-lg < 992px

.table-responsive-xl < 1200px

Example

<div class="table-responsive-sm">

 <table class="table">

 ...

 </table>

</div>

Bootstrap 4 Colors

Text Colors

Bootstrap 4 has some contextual classes that can be used to provide "meaning through
colors".

The classes for text colors are: .text-muted, .text-primary, .text-success, .text-info, .text-

warning, .text-danger, .text-secondary, .text-white, .text-dark, .text-body (default body

color/often black) and .text-light:

Example

This text is muted.

This text is important.

This text indicates success.

This text represents some information.

This text represents a warning.

This text represents danger.

Secondary text.

Dark grey text.

Body text.

Contextual text classes can also be used on links, which will add a darker hover color:

Example

Muted link. Primary link. Success link. Info link. Warning link. Danger link. Secondary link. Dark grey

link. Body/black link. Light grey link.

You can also add 50% opacity for black or white text with the .text-black-50 or .text-white-

50 classes:

Example

Black text with 50% opacity on white background

White text with 50% opacity on black background

Background Colors

The classes for background colors are: .bg-primary, .bg-success, .bg-info, .bg-warning, .bg-

danger, .bg-secondary, .bg-dark and .bg-light.

Note that background colors do not set the text color, so in some cases you'll want to use
them together with a .text-* class.

Example

This text is important.

This text indicates success.

This text represents some information.

This text represents a warning.

This text represents danger.

Secondary background color.

Dark grey background color.

Light grey background color.

Bootstrap 4 Forms

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Bootstrap 4's Default Settings

Form controls automatically receive some global styling with Bootstrap:

All textual <input>, <textarea>, and <select> elements with class .form-control have a width of

100%.

Bootstrap 4 Form Layouts

Bootstrap provides two types of form layouts:

• Stacked (full-width) form

• Inline form

The following example creates a stacked form with two input fields, one checkbox, and a

submit button.

Add a wrapper element with .form-group, around each form control, to ensure proper

margins:

Example

<form action="/action_page.php">

 <div class="form-group">

 <label for="email">Email address:</label>

 <input type="email" class="form-control" placeholder="Enter email" id="email">

 </div>

 <div class="form-group">

 <label for="pwd">Password:</label>

 <input type="password" class="form-control" placeholder="Enter

password" id="pwd">

 </div>

 <div class="form-group form-check">

 <label class="form-check-label">

 <input class="form-check-input" type="checkbox"> Remember me

 </label>

 </div>

 <button type="submit" class="btn btn-primary">Submit</button>

</form>

In an inline form, all of the elements are inline and left-aligned.

Note: This only applies to forms within viewports that are at least 576px wide. On
screens smaller than 576px, it will stack horizontally.

Additional rule for an inline form:

• Add class .form-inline to the <form> element

The following example creates an inline form with two input fields, one checkbox, and one
submit button:

Example

<form class="form-inline" action="/action_page.php">

 <label for="email">Email address:</label>

 <input type="email" class="form-control" placeholder="Enter email" id="email">

 <label for="pwd">Password:</label>

 <input type="password" class="form-control" placeholder="Enter password" id="pwd">

 <div class="form-check">

 <label class="form-check-label">

 <input class="form-check-input" type="checkbox"> Remember me

 </label>

 </div>

 <button type="submit" class="btn btn-primary">Submit</button>

</form>

Inline Form with Utilities

The inline form above feels "compressed", and will look much better with Bootstrap's
spacing utilities. The following example adds a right margin (.mr-sm-2) to each input on all

devices (small and up). And a margin bottom class (.mb-2) is used to style the input field

when it breaks (goes from horizontal to vertical due to not enough space/width):

Example

<form class="form-inline" action="/action_page.php">

 <label for="email" class="mr-sm-2">Email address:</label>

 <input type="email" class="form-control mb-2 mr-sm-2" placeholder="Enter

email" id="email">

 <label for="pwd" class="mr-sm-2">Password:</label>

 <input type="password" class="form-control mb-2 mr-sm-2" placeholder="Enter

password" id="pwd">

 <div class="form-check mb-2 mr-sm-2">

 <label class="form-check-label">

 <input class="form-check-input" type="checkbox"> Remember me

 </label>

 </div>

 <button type="submit" class="btn btn-primary mb-2">Submit</button>

</form>

Form Row/Grid

You can also use columns (.col) to control the width and alignment of form inputs without

using spacing utilities. Just remember to put them inside a .row container.

In the example below, we use two columns that will appear side by side.

Example

<form>

 <div class="row">

 <div class="col">

 <input type="text" class="form-control" id="email" placeholder="Enter

email" name="email">

 </div>

 <div class="col">

 <input type="password" class="form-control" placeholder="Enter

password" name="pswd">

 </div>

 </div>

</form>

If you want less grid margins (override default column gutters), use .form-row instead

of .row:

Example

<form>

 <div class="form-row">

 <div class="col">

 <input type="text" class="form-control" id="email" placeholder="Enter

email" name="email">

 </div>

 <div class="col">

 <input type="password" class="form-control" placeholder="Enter

password" name="pswd">

 </div>

 </div>

</form>

You can use different validation classes to provide valuable feedback to users. Add
either .was-validated or .needs-validation to the <form> element, depending on whether you

want to provide validation feedback before or after submitting the form. The input fields
will have a green (valid) or red (invalid) border to indicate what's missing in the form. You
can also add a .valid-feedback or .invalid-feedback message to tell the user explicitly what's

missing, or needs to be done before submitting the form

Bootstrap 4 Pagination

Basic Pagination

If you have a web site with lots of pages, you may wish to add some sort of pagination to
each page.

To create a basic pagination, add the .pagination class to an element. Then add

the .page-item to each element and a .page-link class to each link inside :

Example

<ul class="pagination">

 <li class="page-item">Previous

 <li class="page-item">1

 <li class="page-item">2

 <li class="page-item">3

 <li class="page-item">Next

Active State

The .active class is used to "highlight" the current page:

Example

<ul class="pagination">

 <li class="page-item">Previous

 <li class="page-item">1

 <li class="page-item active">2

 <li class="page-item">3

 <li class="page-item">Next

Disabled State

The .disabled class is used for un-clickable links:

Example

<ul class="pagination">

 <li class="page-item disabled">Previous

 <li class="page-item">1

 <li class="page-item">2

 <li class="page-item">3

 <li class="page-item">Next

Pagination Sizing

Pagination blocks can also be sized to a larger or a smaller size:

Add class .pagination-lg for larger blocks or .pagination-sm for smaller blocks:

Example

<ul class="pagination pagination-lg">

 <li class="page-item">Previous

 <li class="page-item">1

 <li class="page-item">2

 <li class="page-item">3

 <li class="page-item">Next

<ul class="pagination pagination-sm">

 <li class="page-item">Previous

 <li class="page-item">1

 <li class="page-item">2

 <li class="page-item">3

 <li class="page-item">Next

Pagination Alignment

Use utility classes to change the alignment of the pagination:

Example

<!-- Default (left-aligned) -->

<ul class="pagination" style="margin:20px 0">

 <li class="page-item">...

<!-- Center-aligned -->

<ul class="pagination justify-content-center" style="margin:20px 0">

 <li class="page-item">...

<!-- Right-aligned -->

<ul class="pagination justify-content-end" style="margin:20px 0">

 <li class="page-item">...

Breadcrumbs

Another form for pagination, is breadcrumbs:

The .breadcrumb and .breadcrumb-item classes indicates the current page's location within a

navigational hierarchy:

Example

<ul class="breadcrumb">

 <li class="breadcrumb-item">Photos

 <li class="breadcrumb-item">Summer 2017

 <li class="breadcrumb-item">Italy

 <li class="breadcrumb-item active">Rome

Bootstrap 4 Buttons

Button Styles

Bootstrap 4 provides different styles of buttons:

Basic Primary Secondary Success Info Warning Danger Dark Light Link

Example

<button type="button" class="btn">Basic</button>

<button type="button" class="btn btn-primary">Primary</button>

<button type="button" class="btn btn-secondary">Secondary</button>

<button type="button" class="btn btn-success">Success</button>

<button type="button" class="btn btn-info">Info</button>

<button type="button" class="btn btn-warning">Warning</button>

<button type="button" class="btn btn-danger">Danger</button>

<button type="button" class="btn btn-dark">Dark</button>

<button type="button" class="btn btn-light">Light</button>

<button type="button" class="btn btn-link">Link</button>

The button classes can be used on <a>, <button>, or <input> elements:

Example

Link Button

<button type="button" class="btn btn-info">Button</button>

<input type="button" class="btn btn-info" value="Input Button">

<input type="submit" class="btn btn-info" value="Submit Button">

Why do we put a # in the href attribute of the link?

Since we do not have any page to link it to, and we do not want to get a "404" message,
we put # as the link. In real life it should of course been a real URL to the "Search" page.

Button Outline

Bootstrap 4 provides eight outline/bordered buttons:

Primary Secondary Success Info Warning Danger Dark Light

Example

<button type="button" class="btn btn-outline-primary">Primary</button>

<button type="button" class="btn btn-outline-secondary">Secondary</button>

<button type="button" class="btn btn-outline-success">Success</button>

<button type="button" class="btn btn-outline-info">Info</button>

<button type="button" class="btn btn-outline-warning">Warning</button>

<button type="button" class="btn btn-outline-danger">Danger</button>

<button type="button" class="btn btn-outline-dark">Dark</button>

<button type="button" class="btn btn-outline-light text-dark">Light</button>

Button Sizes

Use the .btn-lg class for large buttons or .btn-sm class for small buttons:

Large Default Small

Example

<button type="button" class="btn btn-primary btn-lg">Large</button>

<button type="button" class="btn btn-primary">Default</button>

<button type="button" class="btn btn-primary btn-sm">Small</button>

Block Level Buttons

Add class .btn-block to create a block level button that spans the entire width of the

parent element.

Full-Width Button

Example

<button type="button" class="btn btn-primary btn-block">Full-Width Button</button>

Active/Disabled Buttons

A button can be set to an active (appear pressed) or a disabled (unclickable) state:

Active Primary Disabled Primary

The class .active makes a button appear pressed, and the disabled attribute makes a

button unclickable. Note that <a> elements do not support the disabled attribute and must

therefore use the .disabled class to make it visually appear disabled.

Example

<button type="button" class="btn btn-primary active">Active Primary</button>

<button type="button" class="btn btn-primary" disabled>Disabled Primary</button>

Disabled Link

Spinner Buttons

Example

<button class="btn btn-primary">

</button>

<button class="btn btn-primary">

 Loading..

</button>

<button class="btn btn-primary" disabled>

 Loading..

</button>

<button class="btn btn-primary" disabled>

 Loading..

</button>

Bootstrap 4 Button Groups

Button Groups

Bootstrap 4 allows you to group a series of buttons together (on a single line) in a button
group:

Use a <div> element with class .btn-group to create a button group:

Example

<div class="btn-group">

 <button type="button" class="btn btn-primary">Apple</button>

 <button type="button" class="btn btn-primary">Samsung</button>

 <button type="button" class="btn btn-primary">Sony</button>

</div>

Tip: Instead of applying button sizes to every button in a group, use class .btn-group-lg for

a large button group or the .btn-group-sm for a small button group:

Example

<div class="btn-group btn-group-lg">

 <button type="button" class="btn btn-primary">Apple</button>

 <button type="button" class="btn btn-primary">Samsung</button>

 <button type="button" class="btn btn-primary">Sony</button>

</div>

Vertical Button Groups

Bootstrap 4 also supports vertical button groups:

Use the class .btn-group-vertical to create a vertical button group:

Example

<div class="btn-group-vertical">

 <button type="button" class="btn btn-primary">Apple</button>

 <button type="button" class="btn btn-primary">Samsung</button>

 <button type="button" class="btn btn-primary">Sony</button>

</div>

Bootstrap 4 Images

Bootstrap 4 Image Shapes

Rounded Corners

The .rounded class adds rounded corners to an image:

Example

Circle

The .rounded-circle class shapes the image to a circle:

Example

Thumbnail

The .img-thumbnail class shapes the image to a thumbnail (bordered):

Example

Aligning Images

Float an image to the right with the .float-right class or to the left with .float-left:

Example

Centered Image

Center an image by adding the utility classes .mx-auto (margin:auto) and .d-

block (display:block) to the image:

Example

Responsive Images

Images come in all sizes. So do screens. Responsive images automatically adjust to fit the
size of the screen.

Create responsive images by adding an .img-fluid class to the tag. The image will

then scale nicely to the parent element.

The .img-fluid class applies max-width: 100%; and height: auto; to the image:

Example

Bootstrap 4 Media Objects

Media Objects

Bootstrap provides an easy way to align media objects (like images or videos) together
with content. Media objects are often used to display blog comments, tweets and so on:

Basic Media Object

To create a media object, add the .media class to a container element, and place media

content inside a child container with the .media-body class. Add padding and margins as

needed, with the spacing utilities:

Example

<div class="media border p-3">

 <img src="img_avatar3.png" alt="John Doe" class="mr-3 mt-3 rounded-

circle" style="width:60px;">

 <div class="media-body">

 <h4>John Doe <small><i>Posted on February 19, 2016</i></small></h4>

 <p>Lorem ipsum...</p>

 </div>

</div>

Nested Media Objects

Media objects can also be nested (a media object inside a media object):

To nest media objects, place a new .media container inside the .media-body container:

Example

<div class="media border p-3">

 <img src="img_avatar3.png" alt="John Doe" class="mr-3 mt-3 rounded-

circle" style="width:60px;">

 <div class="media-body">

 <h4>John Doe <small><i>Posted on February 19, 2016</i></small></h4>

 <p>Lorem ipsum...</p>

 <div class="media p-3">

 <img src="img_avatar2.png" alt="Jane Doe" class="mr-3 mt-3 rounded-

circle" style="width:45px;">

 <div class="media-body">

 <h4>Jane Doe <small><i>Posted on February 20 2016</i></small></h4>

 <p>Lorem ipsum...</p>

 </div>

 </div>

 </div>

</div>

Right-Aligned Media Image

To right-align the media image, add the image after the .media-body container:

Example

<div class="media border p-3">

 <div class="media-body">

 <h4>John Doe <small><i>Posted on February 19, 2016</i></small></h4>

 <p>Lorem ipsum...</p>

 </div>

 <img src="img_avatar3.png" alt="John Doe" class="ml-3 mt-3 rounded-

circle" style="width:60px;">

</div>

Top, Middle or Bottom Alignment

Use the flex utilities, align-self-* classes to place the media object on the top, middle or at

the bottom:

Example

<!-- Media top -->

<div class="media">

 <div class="media-body">

 <h4>Media Top</h4>

 <p>Lorem ipsum...</p>

 </div>

</div>

<!-- Media middle -->

<div class="media">

 <div class="media-body">

 <h4>Media Middle</h4>

 <p>Lorem ipsum...</p>

 </div>

</div>

<!-- Media bottom -->

<div class="media">

 <div class="media-body">

 <h4>Media Bottom</h4>

 <p>Lorem ipsum...</p>

 </div>

</div>

Bootstrap 4 Grid System

Bootstrap's grid system allows up to 12 columns across the page.

If you do not want to use all 12 column individually, you can group the columns together
to create wider columns:

span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1 span 1

 span 4 span 4 span 4

span 4 span 8

span 6 span 6

span 12

Bootstrap's grid system is responsive, and the columns will re-arrange depending on the
screen size: On a big screen it might look better with the content organized in three

columns, but on a small screen it would be better if the content items were stacked on top
of each other.

Grid Classes

The Bootstrap 4 grid system has five classes:

• .col- (extra small devices - screen width less than 576px)

• .col-sm- (small devices - screen width equal to or greater than 576px)

• .col-md- (medium devices - screen width equal to or greater than 768px)

• .col-lg- (large devices - screen width equal to or greater than 992px)

• .col-xl- (xlarge devices - screen width equal to or greater than 1200px)

The classes above can be combined to create more dynamic and flexible layouts.

Tip: Each class scales up, so if you wish to set the same widths for sm and md, you only

need to specify sm.

Grid System Rules

Some Bootstrap 4 grid system rules:

• Rows must be placed within a .container (fixed-width) or .container-fluid (full-width)

for proper alignment and padding

• Use rows to create horizontal groups of columns
• Content should be placed within columns, and only columns may be immediate

children of rows
• Predefined classes like .row and .col-sm-4 are available for quickly making grid

layouts
• Columns create gutters (gaps between column content) via padding. That padding is

offset in rows for the first and last column via negative margin on .rows

• Grid columns are created by specifying the number of 12 available columns you wish
to span. For example, three equal columns would use three .col-sm-4

• Column widths are in percentage, so they are always fluid and sized relative to their

parent element
• The biggest difference between Bootstrap 3 and Bootstrap 4 is that Bootstrap 4

now uses flexbox, instead of floats. One big advantage with flexbox is that grid
columns without a specified width will automatically layout as "equal width columns"

(and equal height). Example: Three elements with .col-sm will each automatically be

33.33% wide from the small breakpoint and up

Basic Structure of a Bootstrap 4 Grid

The following is a basic structure of a Bootstrap 4 grid:

<!-- Control the column width, and how they should appear on different devices -->

<div class="row">

 <div class="col-*-*"></div>

 <div class="col-*-*"></div>

 <div class="col-*-*"></div>

</div>

<!-- Or let Bootstrap automatically handle the layout -->

<div class="row">

 <div class="col"></div>

 <div class="col"></div>

 <div class="col"></div>

 <div class="col"></div>

</div>

First example: create a row (<div class="row">). Then, add the desired number of columns

(tags with appropriate .col-*-* classes). The first star (*) represents the responsiveness:

sm, md, lg or xl, while the second star represents a number, which should always add up

to 12 for each row.

Second example: instead of adding a number to each col, let bootstrap handle the layout,

to create equal width columns: two "col" elements = 50% width to each col. three cols =

33.33% width to each col. four cols = 25% width, etc. You can also use .col-sm|md|lg|xl to

make the columns responsive.

Grid Options

The following table summarizes how the Bootstrap 4 grid system works across different
screen sizes:

 Extra small

(<576px)

Small (>=576px) Medium

(>=768px)

Large (>=992px) Extra Large

(>=1200px)

Class

prefix

.col- .col-sm- .col-md- .col-lg- .col-xl-

Grid

behaviour

Horizontal at

all times

Collapsed to start,

horizontal above

breakpoints

Collapsed to start,

horizontal above

breakpoints

Collapsed to start,

horizontal above

breakpoints

Collapsed to start,

horizontal above

breakpoints

Container

width

None (auto) 540px 720px 960px 1140px

Suitable

for

Portrait

phones

Landscape

phones

Tablets Laptops Laptops and

Desktops

of

columns

12 12 12 12 12

Gutter

width

30px (15px on

each side of a

column)

30px (15px on

each side of a

column)

30px (15px on

each side of a

column)

30px (15px on

each side of a

column)

30px (15px on

each side of a

column)

Nestable Yes Yes Yes Yes Yes

Offsets Yes Yes Yes Yes Yes

Column

ordering

Yes Yes Yes Yes Yes

Bootstrap 4 Grid Example: Stacked-to-horizontal

We will create a basic grid system that starts out stacked on extra small devices, before
becoming horizontal on larger devices.

The following example shows a simple "stacked-to-horizontal" two-column layout, meaning

it will result in a 50%/50% split on all screens, except for extra small screens, which it will
automatically stack (100%):

Example: Stacked-to-horizontal

<div class="container">

 <div class="row">

 <div class="col-sm-6 bg-success">

 <p>Lorem ipsum...</p>

 </div>

 <div class="col-sm-6 bg-warning">

 <p>Sed ut perspiciatis...</p>

 </div>

 </div>

</div>

Tip: You can turn any fixed-width layout into a full-width layout by changing
the .container class to .container-fluid:

Example: Fluid container

<div class="container-fluid">

 <div class="row">

 <div class="col-sm-6">

 <p>Lorem ipsum...</p>

 </div>

 <div class="col-sm-6">

 <p>Sed ut perspiciatis...</p>

 </div>

 </div>

</div>

Auto Layout Columns

In Bootstrap 4, there is an easy way to create equal width columns for all devices: just
remove the number from .col-size-* and only use the .col-size class on a specified

number of col elements. Bootstrap will recognize how many columns there are, and each
column will get the same width. The size classes determines when the columns should be

responsive:

<!-- Two columns: 50% width on all screens, except for extra small (100% width) -->
<div class="row">
 <div class="col-sm">1 of 2</div>
 <div class="col-sm">2 of 2</div>
</div>

<!-- Four columns: 25% width on all screens, except for extra small (100% width)-->
<div class="row">
 <div class="col-sm">1 of 4</div>
 <div class="col-sm">2 of 4</div>
 <div class="col-sm">3 of 4</div>
 <div class="col-sm">4 of 4</div>
</div>

Extra Small Grid Example
 Extra small Small Medium Large Extra Large

Class prefix .col- .col-sm- .col-md- .col-lg- .col-xl-

Screen width <576px >=576px >=768px >=992px >=1200px

Assume we have a simple layout with two columns. We want the columns to split
25%/75% for ALL devices.

We will add the following classes to our two columns:

<div class="col-3">....</div>
<div class="col-9">....</div>

Example

<div class="container-fluid">

 <div class="row">

 <div class="col-3 bg-success">

 <p>Lorem ipsum...</p>

 </div>

 <div class="col-9 bg-warning">

 <p>Sed ut perspiciatis...</p>

 </div>

 </div>

</div>

<!-- 33.3%/66.6% split -->

<div class="container-fluid">

 <div class="row">

 <div class="col-4 bg-success">

 <p>Lorem ipsum...</p>

 </div>

 <div class="col-8 bg-warning">

 <p>Sed ut perspiciatis...</p>

 </div>

 </div>

</div>

<!-- 50%/50% split -->

<div class="container-fluid">

 <div class="row">

 <div class="col-6 bg-success">

 <p>Lorem ipsum...</p>

 </div>

 <div class="col-6 bg-warning">

 <p>Sed ut perspiciatis...</p>

 </div>

 </div>

</div>

Auto Layout Columns

In Bootstrap 4, there is an easy way to create equal width columns for all devices: just
remove the number from .col-* and only use the .col class on a specified number of col

elements. Bootstrap will recognize how many columns there are, and each column will get

the same width:

<!-- Two columns: 50% width-->
<div class="row">
 <div class="col">1 of 2</div>
 <div class="col">2 of 2</div>
</div>

<!-- Four columns: 25% width-->
<div class="row">
 <div class="col">1 of 4</div>
 <div class="col">2 of 4</div>
 <div class="col">3 of 4</div>
 <div class="col">4 of 4</div>
</div>

NOTE: you can check all this exampeles with all the other grid type options like

md,lg,xl

Bootstrap Templates

Bootstrap Theme "Simply Me"

Create a Theme: "Simply Me"

This page will show you how to build a Bootstrap theme from scratch.

We will start with a simple HTML page, and then add more and more components, until we
have a fully functional, personal and responsive website.

The result will look like this, and you are free to modify, save, share, use or do whatever
you want with it:

<!DOCTYPE html>

<html lang="en">

<head>

 <!-- Theme Made By www.w3schools.com - No Copyright -->

 <title>Bootstrap Theme Simply Me</title>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">

 <link href="https://fonts.googleapis.com/css?family=Montserrat" rel="stylesheet">

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js"></script>

 <style>

 body {

 font: 20px Montserrat, sans-serif;

 line-height: 1.8;

 color: #f5f6f7;

 }

 p {font-size: 16px;}

 .margin {margin-bottom: 45px;}

 .bg-1 {

 background-color: #1abc9c; /* Green */

 color: #ffffff;

 }

 .bg-2 {

 background-color: #474e5d; /* Dark Blue */

 color: #ffffff;

 }

 .bg-3 {

 background-color: #ffffff; /* White */

 color: #555555;

 }

 .bg-4 {

 background-color: #2f2f2f; /* Black Gray */

 color: #fff;

 }

 .container-fluid {

 padding-top: 70px;

 padding-bottom: 70px;

 }

 .navbar {

 padding-top: 15px;

 padding-bottom: 15px;

 border: 0;

 border-radius: 0;

 margin-bottom: 0;

 font-size: 12px;

 letter-spacing: 5px;

 }

 .navbar-nav li a:hover {

 color: #1abc9c !important;

 }

 </style>

</head>

<body>

<!-- Navbar -->

<nav class="navbar navbar-default">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-toggle="collapse" data-

target="#myNavbar">

 </button>

 Me

 </div>

 <div class="collapse navbar-collapse" id="myNavbar">

 <ul class="nav navbar-nav navbar-right">

 WHO

 WHAT

 WHERE

 </div>

 </div>

</nav>

<!-- First Container -->

<div class="container-fluid bg-1 text-center">

 <h3 class="margin">Who Am I?</h3>

 <img src="bird.jpg" class="img-responsive img-circle margin"

style="display:inline" alt="Bird" width="350" height="350">

 <h3>I'm an adventurer</h3>

</div>

<!-- Second Container -->

<div class="container-fluid bg-2 text-center">

 <h3 class="margin">What Am I?</h3>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. </p>

 Search

</div>

<!-- Third Container (Grid) -->

<div class="container-fluid bg-3 text-center">

 <h3 class="margin">Where To Find Me?</h3>

 <div class="row">

 <div class="col-sm-4">

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua.</p>

 <img src="birds1.jpg" class="img-responsive margin" style="width:100%"

alt="Image">

 </div>

 <div class="col-sm-4">

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua.</p>

 <img src="birds2.jpg" class="img-responsive margin" style="width:100%"

alt="Image">

 </div>

 <div class="col-sm-4">

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua.</p>

 <img src="birds3.jpg" class="img-responsive margin" style="width:100%"

alt="Image">

 </div>

 </div>

</div>

<!-- Footer -->

<footer class="container-fluid bg-4 text-center">

 <p>Bootstrap Theme Made By www.w3schools.com</p>

</footer>

</body>

</html>

What is JavaScript

JavaScript (js) is a light-weight object-oriented programming language which is used by several
websites for scripting the webpages. It is an interpreted, full-fledged programming language
that enables dynamic interactivity on websites when applied to an HTML document. It was
introduced in the year 1995 for adding programs to the webpages in the Netscape Navigator
browser. Since then, it has been adopted by all other graphical web browsers. With JavaScript,
users can build modern web applications to interact directly without reloading the page every
time. The traditional website uses js to provide several forms of interactivity and simplicity.

Although, JavaScript has no connectivity with Java programming language. The name was
suggested and provided in the times when Java was gaining popularity in the market. In
addition to web browsers, databases such as CouchDB and MongoDB uses JavaScript as their
scripting and query language.

Features of JavaScript

There are following features of JavaScript:

1. All popular web browsers support JavaScript as they provide built-in execution

environments.

2. JavaScript follows the syntax and structure of the C programming language. Thus, it is a

structured programming language.

3. JavaScript is a weakly typed language, where certain types are implicitly cast (depending

on the operation).

4. JavaScript is an object-oriented programming language that uses prototypes rather than

using classes for inheritance.

5. It is a light-weighted and interpreted language.

6. It is a case-sensitive language.

7. JavaScript is supportable in several operating systems including, Windows, macOS, etc.

8. It provides good control to the users over the web browsers.

History of JavaScript

In 1993, Mosaic, the first popular web browser, came into existence. In the year
1994, Netscape was founded by Marc Andreessen. He realized that the web needed to
become more dynamic. Thus, a 'glue language' was believed to be provided to HTML to make
web designing easy for designers and part-time programmers. Consequently, in 1995, the
company recruited Brendan Eich intending to implement and embed Scheme programming
language to the browser. But, before Brendan could start, the company merged with Sun
Microsystems for adding Java into its Navigator so that it could compete with Microsoft over
the web technologies and platforms. Now, two languages were there: Java and the scripting
language. Further, Netscape decided to give a similar name to the scripting language as Java's.
It led to 'Javascript'. Finally, in May 1995, Marc Andreessen coined the first code of Javascript
named 'Mocha'. Later, the marketing team replaced the name with 'LiveScript'. But, due to

trademark reasons and certain other reasons, in December 1995, the language was finally
renamed to 'JavaScript'. From then, JavaScript came into existence.

Application of JavaScript

JavaScript is used to create interactive websites. It is mainly used for:

o Client-side validation,

o Dynamic drop-down menus,

o Displaying date and time,

o Displaying pop-up windows and dialog boxes (like an alert dialog box, confirm dialog box

and prompt dialog box),

o Displaying clocks etc.

JavaScript Example

<script>

document.write("Hello JavaScript by JavaScript");

</script>

External JavaScript file

We can create external JavaScript file and embed it in many html page.

It provides code re usability because single JavaScript file can be used in several html pages.

An external JavaScript file must be saved by .js extension. It is recommended to embed all
JavaScript files into a single file. It increases the speed of the webpage.

Let's create an external JavaScript file that prints Hello Javatpoint in a alert dialog box.

message.js

function msg(){

 alert("Hello Javatpoint");

}

Let's include the JavaScript file into html page. It calls the JavaScript function on button click.

index.html

<html>

<head>

<script type="text/javascript" src="message.js"></script>

</head>

<body>

<p>Welcome to JavaScript</p>

https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/html-tutorial
https://www.javatpoint.com/javascript-function

<form>

<input type="button" value="click" onclick="msg()"/>

</form>

</body>

</html>

Advantages of External JavaScript

There will be following benefits if a user creates an external javascript:

1. It helps in the reusability of code in more than one HTML file.

2. It allows easy code readability.

3. It is time-efficient as web browsers cache the external js files, which further reduces the

page loading time.

4. It enables both web designers and coders to work with html and js files parallelly and

separately, i.e., without facing any code conflictions.

5. The length of the code reduces as only we need to specify the location of the js file.

Disadvantages of External JavaScript

There are the following disadvantages of external files:

1. The stealer may download the coder's code using the url of the js file.

2. If two js files are dependent on one another, then a failure in one file may affect the

execution of the other dependent file.

3. The web browser needs to make an additional http request to get the js code.

4. A tiny to a large change in the js code may cause unexpected results in all its dependent

files.

5. We need to check each file that depends on the commonly created external javascript

file.

6. If it is a few lines of code, then better to implement the internal javascript code.

JavaScript Comment

The JavaScript comments are meaningful way to deliver message. It is used to add information
about the code, warnings or suggestions so that end user can easily interpret the code.

The JavaScript comment is ignored by the JavaScript engine i.e. embedded in the browser.

Advantages of JavaScript comments

There are mainly two advantages of JavaScript comments.

1. To make code easy to understand It can be used to elaborate the code so that end user

can easily understand the code.

2. To avoid the unnecessary code It can also be used to avoid the code being executed.

Sometimes, we add the code to perform some action. But after sometime, there may

be need to disable the code. In such case, it is better to use comments.

Types of JavaScript Comments

There are two types of comments in JavaScript.

1. Single-line Comment

2. Multi-line Comment

JavaScript Single line Comment

It is represented by double forward slashes (//). It can be used before and after the statement.

Let’s see the example of single-line comment i.e. added before the statement.

<script>

// It is single line comment

document.write("hello javascript");

</script>

Let’s see the example of single-line comment i.e. added after the statement.

<script>

var a=10;

var b=20;

var c=a+b;//It adds values of a and b variable

document.write(c);//prints sum of 10 and 20

</script>

JavaScript Multi line Comment

It can be used to add single as well as multi line comments. So, it is more convenient.

It is represented by forward slash with asterisk then asterisk with forward slash. For example:

/* your code here */

It can be used before, after and middle of the statement.

<script>

/* It is multi line comment.

It will not be displayed */

document.write("example of javascript multiline comment");

</script>

JavaScript Variable

 JavaScript variable is simply a name of storage location. There are two types of variables in
JavaScript : local variable and global variable.

There are some rules while declaring a JavaScript variable (also known as identifiers).

1. Name must start with a letter (a to z or A to Z), underscore(_), or dollar($) sign.

2. After first letter we can use digits (0 to 9), for example value1.

3. JavaScript variables are case sensitive, for example x and X are different variables.

Correct JavaScript variables

var x = 10;

var _value="sonoo";

Incorrect JavaScript variables

var 123=30;

var *aa=320;

Example of JavaScript variable

Let’s see a simple example of JavaScript variable.

<script>

var x = 10;

var y = 20;

var z=x+y;

document.write(z);

</script>

Output of the above example

30

JavaScript local variable

A JavaScript local variable is declared inside block or function. It is accessible within the
function or block only. For example:

<script>

function abc(){

var x=10;//local variable

}

</script>

Or,

<script>

If(10<13){

var y=20;//JavaScript local variable

}

</script>

JavaScript global variable

A JavaScript global variable is accessible from any function. A variable i.e. declared outside
the function or declared with window object is known as global variable. For example:

<script>

var data=200;//gloabal variable

function a(){

document.writeln(data);

}

function b(){

document.writeln(data);

}

a();//calling JavaScript function

b();

</script>

JavaScript Global Variable

A JavaScript global variable is declared outside the function or declared with window object.
It can be accessed from any function.

Let’s see the simple example of global variable in JavaScript.

<script>

var value=50;//global variable

function a(){

alert(value);

}

function b(){

alert(value);

}

</script>

Declaring JavaScript global variable within function

To declare JavaScript global variables inside function, you need to use window object. For
example:

window.value=90;

Now it can be declared inside any function and can be accessed from any function. For
example:

function m(){

window.value=100;//declaring global variable by window object

}

function n(){

alert(window.value);//accessing global variable from other function

}

Internals of global variable in JavaScript

When you declare a variable outside the function, it is added in the window object internally.
You can access it through window object also. For example:

var value=50;

function a(){

alert(window.value);//accessing global variable

}

Javascript Data Types

JavaScript provides different data types to hold different types of values. There are two types
of data types in JavaScript.

1. Primitive data type

2. Non-primitive (reference) data type

JavaScript is a dynamic type language, means you don't need to specify type of the variable
because it is dynamically used by JavaScript engine. You need to use var here to specify the
data type. It can hold any type of values such as numbers, strings etc. For example:

1. var a=40;//holding number

2. var b="Rahul";//holding string

JavaScript primitive data types

There are five types of primitive data types in JavaScript. They are as follows:

Data Type Description

String represents sequence of characters e.g. "hello"

Number represents numeric values e.g. 100

Boolean represents boolean value either false or true

Undefined represents undefined value

Null represents null i.e. no value at all

JavaScript non-primitive data types

The non-primitive data types are as follows:41.3KiPhone 12: Everng we know about Apple’s
2020 iPhones

Data Type Description

Object represents instance through which we can access members

Array represents group of similar values

RegExp represents regular expression

We will have great discussion on each data type later.

JavaScript Operators

JavaScript operators are symbols that are used to perform operations on operands. For
example:

var sum=10+20;

Here, + is the arithmetic operator and = is the assignment operator.

There are following types of operators in JavaScript.

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Logical Operators

4. Assignment Operators

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on the operands. The
following operators are known as JavaScript arithmetic operators.SQL CREATE TABLE

Operator Description Example

+ Addition 10+20 = 30

- Subtraction 20-10 = 10

* Multiplication 10*20 = 200

/ Division 20/10 = 2

% Modulus (Remainder) 20%10 = 0

++ Increment var a=10; a++; Now a = 11

-- Decrement var a=10; a--; Now a = 9

JavaScript Comparison Operators

The JavaScript comparison operator compares the two operands. The comparison operators
are as follows:

Operator Description Example

== Is equal to 10==20 = false

=== Identical (equal and of same type) 10==20 = false

!= Not equal to 10!=20 = true

!== Not Identical 20!==20 = false

> Greater than 20>10 = true

>= Greater than or equal to 20>=10 = true

< Less than 20<10 = false

<= Less than or equal to 20<=10 = false

Comparison Operators

Comparison operators are used in logical statements to determine equality or difference
between variables or values.

Given that x = 5, the table below explains the comparison operators:

Operator Description Comparing Returns

== equal to x == 8 false

x == 5 true

x == "5" true

=== equal value and equal type x === 5 true

x === "5" false

!= not equal x != 8 true

!== not equal value or not equal type x !== 5 false

x !== "5" true

x !== 8 True

> greater than x > 8 False

< less than x < 8 True

>= greater than or equal to x >= 8 False

<= less than or equal to x <= 8 True

NOTE:The main difference between the == and === operator in javascript is that the ==
operator does the type conversion of the operands before comparison, whereas the ===
operator compares the values as well as the data types of the operands.

JavaScript Logical Operators

The following operators are known as JavaScript logical operators.

Operator Description Example

&& Logical AND (10==20 && 20==33) = false

|| Logical OR (10==20 || 20==33) = false

! Logical Not !(10==20) = true

OR Example let x = 6;
let y = 3;
(x == 5 || y == 5)
(x == 6 || y == 0)
(x == 0 || y == 3)
(x == 6 || y == 3)

false
true
true
true

And Example let x = 6;
let y = 3;
(x < 10 && y > 1)
(x < 10 && y < 1)

true
false

Not Example let x = 6;
let y = 3;

!(x === y)
!(x > y)

true
false

JavaScript Assignment Operators

The following operators are known as JavaScript assignment operators.

Operator Description Example

= Assign 10+10 = 20

+= Add and assign var a=10; a+=20; Now a = 30
a=a+val
a=a-val
a=a*val
a=a\val

-= Subtract and assign var a=20; a-=10; Now a = 10

= Multiply and assign var a=10; a=20; Now a = 200

/= Divide and assign var a=10; a/=2; Now a = 5

%= Modulus and assign var a=10; a%=2; Now a = 0

JavaScript New Operators

new creates an instance (object)

JavaScript If-else

The JavaScript if-else statement is used to execute the code whether condition is true or false.
There are three forms of if statement in JavaScript.

1. If Statement

2. If else statement

3. if else if statement

JavaScript If statement

It evaluates the content only if expression is true. The signature of JavaScript if statement is
given below.

if(expression){

//content to be evaluated

}

Example:

<script>

var a=20;

if(a>10){

document.write("value of a is greater than 10");

}

</script>

Output of the above example

value of a is greater than 10

JavaScript If...else Statement

It evaluates the content whether condition is true of false. The syntax of JavaScript if-else
statement is given below.

if(expression){

//content to be evaluated if condition is true

}

else{

//content to be evaluated if condition is false

}

Let’s see the example of if-else statement in JavaScript to find out the even or odd number.

<script>

var a=20;

if(a%2==0){

document.write("a is even number");

}

else{

document.write("a is odd number");

}

</script>

Output of the above example

a is even number

JavaScript If...else if statement

It evaluates the content only if expression is true from several expressions. The signature of
JavaScript if else if statement is given below.

if(expression1){

//content to be evaluated if expression1 is true

}

else if(expression2){

//content to be evaluated if expression2 is true

}

else if(expression3){

//content to be evaluated if expression3 is true

}

else{

//content to be evaluated if no expression is true

}

Let’s see the simple example of if else if statement in javascript.

<script>

var a=20;

if(a==10){

document.write("a is equal to 10");

}

else if(a==15){

document.write("a is equal to 15");

}

else if(a==20){

document.write("a is equal to 20");

}

else{

document.write("a is not equal to 10, 15 or 20");

}

</script>

Output of the above example

a is equal to 20

JavaScript Switch

The JavaScript switch statement is used to execute one code from multiple expressions. It is
just like else if statement that we have learned in previous page. But it is convenient
than if..else..if because it can be used with numbers, characters etc.

The signature of JavaScript switch statement is given below.

switch(expression){

case value1:

 code to be executed;

 break;

case value2:

 code to be executed;

 break;

......

default:

 code to be executed if above values are not matched;

}

Let’s see the simple example of switch statement in javascript.

<script>

var grade='B';

var result;

switch(grade){

case 'A':

result="A Grade";

break;

case 'B':

result="B Grade";

break;

case 'C':

result="C Grade";

break;

default:

result="No Grade";

}

document.write(result);

</script>

Output of the above example

B Grade

The switch statement is fall-through i.e. all the cases will be evaluated if you don't use break

statement.

Let’s understand the behaviour of switch statement in JavaScript.

<script>

var grade='B';

var result;

switch(grade){

case 'A':

result+=" A Grade";

case 'B':

result+=" B Grade";

case 'C':

result+=" C Grade";

default:

result+=" No Grade";

}

document.write(result);

</script>

Output of the above example

undefined B Grade C Grade No Grade

JavaScript Loops

The JavaScript loops are used to iterate the piece of code using for, while, do while or for-in
loops. It makes the code compact. It is mostly used in array.

There are four types of loops in JavaScript.

1. for loop

2. while loop

3. do-while loop

1) JavaScript For loop

The JavaScript for loop iterates the elements for the fixed number of times. It should be used
if number of iteration is known. The syntax of for loop is given below.

for (initialization; condition; increment)

{

 code to be executed

}

Let’s see the simple example of for loop in javascript.

<script>

for (i=1; i<=5; i++)

{

document.write(i + "
")

}

</script>

Output:

1

2

3

4

5

2) JavaScript while loop

The JavaScript while loop iterates the elements for the infinite number of times. It should be
used if number of iteration is not known. The syntax of while loop is given below.

while (condition)

{

 code to be executed

}

Let’s see the simple example of while loop in javascript.

<script>

var i=11;

while (i<=15)

{

document.write(i + "
");

i++;

}

</script>

Output:

11

12

13

14

15

3) JavaScript do while loop

The JavaScript do while loop iterates the elements for the infinite number of times like while
loop. But, code is executed at least once whether condition is true or false. The syntax of do
while loop is given below.

do{

 code to be executed

}while (condition);

Let’s see the simple example of do while loop in javascript.

<script>

var i=21;

do{

document.write(i + "
");

i++;

}while (i<=25);

</script>

Output:

21
22
23
24
25

JavaScript Array

JavaScript array is an object that represents a collection of similar type of elements.

There are 3 ways to construct array in JavaScript

1. By array literal

2. By creating instance of Array directly (using new keyword)

3. By using an Array constructor (using new keyword)

1) JavaScript array literal

The syntax of creating array using array literal is given below:

var arrayname=[value1,value2.....valueN];

As you can see, values are contained inside [] and separated by , (comma).

Let's see the simple example of creating and using array in JavaScript.

<script>

var emp=["Sonoo","Vimal","Ratan"];

for (i=0;i<emp.length;i++){

document.write(emp[i] + "
");

}

</script>

The .length property returns the length of an array.

Output of the above example

Sonoo
Vimal
Ratan

2) JavaScript Array directly (new keyword)

The syntax of creating array directly is given below:

var arrayname=new Array();

Here, new keyword is used to create instance of array.

Let's see the example of creating array directly.

<script>

var i;

var emp = new Array();

emp[0] = "Arun";

emp[1] = "Varun";

emp[2] = "John";

for (i=0;i<emp.length;i++){

document.write(emp[i] + "
");

}

</script>

Output of the above example

Arun
Varun
John

3) JavaScript array constructor (new keyword)

Here, you need to create instance of array by passing arguments in constructor so that we
don't have to provide value explicitly.

The example of creating object by array constructor is given below.

<script>

var emp=new Array("Jai","Vijay","Smith");

for (i=0;i<emp.length;i++){

document.write(emp[i] + "
");

}

</script>

Output of the above example

Jai
Vijay
Smith

JavaScript String

The JavaScript string is an object that represents a sequence of characters.

There are 2 ways to create string in JavaScript

1. By string literal

2. By string object (using new keyword)

1) By string literal

The string literal is created using double quotes. The syntax of creating string using string literal
is given below:

var stringname="string value";

var name=”khyati”

Let's see the simple example of creating string literal.

<script>

var str="This is string literal";

document.write(str);

</script>

Output:

This is string literal

2) By string object (using new keyword)

The syntax of creating string object using new keyword is given below:

var stringname=new String("string literal");

var name=new String(“Khyati”);

Here, new keyword is used to create instance of string.

Let's see the example of creating string in JavaScript by new keyword.

<script>

var stringname=new String("hello javascript string");

document.write(stringname);

</script>

Output:

hello javascript string

JavaScript String Methods

Let's see the list of JavaScript string methods with examples.

Methods Description

charAt()

It provides the char value present at the specified index.

concat()

It provides a combination of two or more strings.

indexOf()

It provides the position of a char value present in the given string.

lastIndexOf()

It provides the position of a char value present in the given string by searching a character

from the last position.

replace()

It replaces a given string with the specified replacement.

search()

It searches a specified regular expression in a given string and returns its position if a match

occurs.

split() It splits a string into substring array, then returns that newly created array.

trim() It trims the white space from the left and right side of the string.

substr()

It is used to fetch the part of the given string on the basis of the specified starting position and

length.

substring()

It is used to fetch the part of the given string on the basis of the specified index.

slice()

It is used to fetch the part of the given string. It allows us to assign positive as well negative

index.

toLowerCase()

It converts the given string into lowercase letter.

toUpperCase()

It converts the given string into uppercase letter.

toString()

It provides a string representing the particular object.

https://www.javatpoint.com/javascript-string-charat-method
https://www.javatpoint.com/javascript-string-charat-method
https://www.javatpoint.com/javascript-string-concat-method
https://www.javatpoint.com/javascript-string-concat-method
https://www.javatpoint.com/javascript-string-indexof-method
https://www.javatpoint.com/javascript-string-indexof-method
https://www.javatpoint.com/javascript-string-lastindexof-method
https://www.javatpoint.com/javascript-string-lastindexof-method
https://www.javatpoint.com/javascript-string-replace-method
https://www.javatpoint.com/javascript-string-replace-method
https://www.javatpoint.com/javascript-string-search-method
https://www.javatpoint.com/javascript-string-search-method
https://www.javatpoint.com/javascript-string-substr-method
https://www.javatpoint.com/javascript-string-substr-method
https://www.javatpoint.com/javascript-string-substring-method
https://www.javatpoint.com/javascript-string-substring-method
https://www.javatpoint.com/javascript-string-slice-method
https://www.javatpoint.com/javascript-string-slice-method
https://www.javatpoint.com/javascript-string-tolowercase-method
https://www.javatpoint.com/javascript-string-tolowercase-method
https://www.javatpoint.com/javascript-string-touppercase-method
https://www.javatpoint.com/javascript-string-touppercase-method
https://www.javatpoint.com/javascript-string-tostring-method
https://www.javatpoint.com/javascript-string-tostring-method

valueOf()

It provides the primitive value of string object.

 JavaScript String charAt(index) Method

The JavaScript String charAt() method returns the character at the given index.

<script>

var str="javascript";

document.write(str.charAt(2));

</script>

Output:

v

2) JavaScript String concat(str) Method

The JavaScript String concat(str) method concatenates or joins two strings.

<script>

var s1="javascript ";

var s2="concat example";

var s3=s1.concat(s2);

document.write(s3);

</script>

Output:

javascript concat example

3) JavaScript String indexOf(str) Method

The JavaScript String indexOf(str) method returns the index position of the given string.

<script>

var s1="javascript from javatpoint indexof";

var n=s1.indexOf("from");

document.write(n);

</script>

Output:
11

4) JavaScript String lastIndexOf(str) Method

The JavaScript String lastIndexOf(str) method returns the last index position of the given string.

https://www.javatpoint.com/javascript-string-valueof-method
https://www.javatpoint.com/javascript-string-valueof-method

<script>

var s1="javascript from javatpoint indexof";

var n=s1.lastIndexOf("java");

document.write(n);

</script>

Output:

16

5) JavaScript String toLowerCase() Method

The JavaScript String toLowerCase() method returns the given string in lowercase letters.

<script>

var s1="JavaScript toLowerCase Example";

var s2=s1.toLowerCase();

document.write(s2);

</script>

Output:

javascript tolowercase example

6) JavaScript String toUpperCase() Method

The JavaScript String toUpperCase() method returns the given string in uppercase letters.

<script>

var s1="JavaScript toUpperCase Example";

var s2=s1.toUpperCase();

document.write(s2);

</script>

Output:

JAVASCRIPT TOUPPERCASE EXAMPLE

7) JavaScript String slice(beginIndex, endIndex) Method

The JavaScript String slice(beginIndex, endIndex) method returns the parts of string from given
beginIndex to endIndex. In slice() method, beginIndex is inclusive and endIndex is exclusive.

<script>

var s1="abcdefgh";

var s2=s1.slice(2,5);

document.write(s2);

</script>

Output:

cde

8) JavaScript String trim() Method

The JavaScript String trim() method removes leading and trailing whitespaces from the string.

<script>

var s1=" javascript trim ";

var s2=s1.trim();

document.write(s2);

</script>

Output:

javascript trim

9) JavaScript String split() Method

<script>

var str="This is JavaTpoint website";

document.write(str.split(" ")); //splits the given string.

</script>

10) JavaScript String substring() Method

var text = "Hello world!";

var result = text.substring(1, 4);

document.write(result);

output: ell

11) JavaScript String substr() Method

var text = "Hello world!";

var result = text.substr(1, 4);

document.write(result);

output: ello

12) JavaScript String replace() Method
var text = "Visit Microsoft!";

var result = text.replace("Microsoft", "W3Schools");

document.write(result);

output: Visit W3Schools

13) JavaScript String search() Method

var text = "Mr. Blue has a blue house";

var position = text.search("Blue");

document.write(position);

output: 4

JavaScript code to show the working of string.length property:

<script>

 // Taking some strings
 var x = 'geeksforgeeks';
 var y = 'gfg';
 var z = '';

 // Returning the length of the string.
 document.write(x.length + "
");
 document.write(y.length + "
");
 document.write(z.length);

</script>

Output:
13

3

0

substr() Vs. substring()

The JavaScript string is an object that represents a sequence of characters.
The substr() method extracts parts of a string, beginning at the character at the specified
position, and returns the specified number of characters. The substring() method returns the
part of the string between the start and end indexes, or to the end of the string.

string.substr(start, length)

 start: The position where to start the extraction, index starting from 0.

 length: The number of characters to extract (optional).

var s = "JavaScript";

var st = s.substr(4, 6);

alert(st)

The above code would return "Sc".

string.substring(start, end)

start: The position where to start the extraction, index starting from 0. end: The position (up

to, but not including) where to end the extraction (optional).

var s = "JavaScript";

var st = s.substr(4, 6);

alert(st);

The above code would return "Scr"

substr() Vs. substring()

The difference is in the second argument. The second argument to substring is the index to
stop at (but not include), but the second argument to substr is the maximum length to return.
Moreover, substr() accepts a negative starting position as an offset from the end of the string.
substring() does not.

JavaScript's string substring() and slice()

JavaScript's string substring() and slice() functions both let you extract substrings from a

string. But they have a couple of key differences that you need to be aware of.

Negative Values

With slice(), when you enter a negative number as an argument, the slice() interprets it as

counting from the end of the string. With substring(), it will treat a negative value as zero.

const sentence = 'Mastering JS is a very helpful website';
sentence.slice(-7); // 'website'
sentence.substring(-5, 12); // 'Mastering JS'

sentence.slice(0, -26); // 'Mastering JS'

Parameter Consistency

A big difference with substring() is that if the 1st argument is greater than the 2nd

argument, substring() will swap them. slice() returns an empty string if the 1st argument is

greater than the 2nd argument.

const sentence = 'Mastering JS is a very helpful website';
sentence.substring(12, 0); // 'Mastering JS'
sentence.slice(12, 0); // ''
sentence.slice(0, 12); // 'Mastering JS'

JavaScript Events

The change in the state of an object is known as an Event. In html, there are various events
which represents that some activity is performed by the user or by the browser.
When javascript code is included in HTML , js react over these events and allow the execution.
This process of reacting over the events is called Event Handling. Thus, js handles the HTML
events via Event Handlers.

For example, when a user clicks over the browser, add js code, which will execute the task to
be performed on the event.

Some of the HTML events and their event handlers are:

Mouse events:

Event

Performed

Event Handler Description

click onclick When mouse click on an element

mouseover onmouseover When the cursor of the mouse comes over the element

mouseout onmouseout When the cursor of the mouse leaves an element

mousedown onmousedown When the mouse button is pressed over the element

mouseup onmouseup When the mouse button is released over the element

mousemove onmousemove When the mouse movement takes place.

Keyboard events:

https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/html-tutorial

Event Performed Event Handler Description

Keydown & Keyup onkeydown & onkeyup When the user press and then release the key

Form events:

Event

Performed

Event

Handler

Description

focus onfocus When the user focuses on an element

submit onsubmit When the user submits the form

blur onblur When the focus is away from a form element

change onchange When the user modifies or changes the value of a form

element

Window/Document events

Event

Performed

Event

Handler

Description

load onload When the browser finishes the loading of the page

unload onunload When the visitor leaves the current webpage, the browser

unloads it

resize onresize When the visitor resizes the window of the browser

Let's discuss some examples over events and their handlers.

Click Event

<html>

<head> Javascript Events </head>

<body>

<script language="Javascript" type="text/Javascript">

 <!--

 function clickevent()

 {

 document.write("This is JavaTpoint");

 }

 //-->

</script>

<form>

<input type="button" onclick="clickevent()" value="Who's this?"/>

</form>

</body>

</html>

MouseOver Event

<html>

<head>

<h1> Javascript Events </h1>

</head>

<body>

<script language="Javascript" type="text/Javascript">

 <!--

 function mouseoverevent()

 {

 alert("This is JavaTpoint");

 }

 //-->

</script>

<p onmouseover="mouseoverevent()"> Keep cursor over me</p>

</body>

</html>

Focus Event

html>

<head> Javascript Events</head>

<body>

<h2> Enter something here</h2>

<input type="text" id="input1" onfocus="focusevent()"/>

<script>

<!--

 function focusevent()

 {

 document.getElementById("input1").style.background=" aqua";

 }

//-->

</script>

</body>

</html>

Keydown Event

<html>

<head> Javascript Events</head>

<body>

<h2> Enter something here</h2>

<input type="text" id="input1" onkeydown="keydownevent()"/>

<script>

<!--

 function keydownevent()

 {

 document.getElementById("input1");

 alert("Pressed a key");

 }

//-->

</script>

</body>

</html>

Load event

<html>

<head>Javascript Events</head>

</br>

<body onload="window.alert('Page successfully loaded');">

<script>

<!--

document.write("The page is loaded successfully");

//-->

</script>

</body>

</html>

Difference between var, let and const keywords in
JavaScript

In JavaScript, users can declare a variable using 3 keywords that are var, let, and const.so, we
will see the differences between the var, let, and const keywords. We will discuss the scope and
other required concepts about each keyword.

var keyword in JavaScript: The var is the oldest keyword to declare a variable in JavaScript.
Scope: Global scoped or function scoped. The scope of the var keyword is the global or function
scope. It means variables defined outside the function can be accessed globally, and variables
defined inside a particular function can be accessed within the function.

Example 1: Variable ‘a’ is declared globally. So, the scope of the variable ‘a’ is global, and it can
be accessible everywhere in the program. The output shown is in the console.

• Javascript

<script>
 var a = 10
 function f(){
 console.log(a)
 }
 f();
 console.log(a);
</script>

Output:
10

10

Example 2: The variable ‘a’ is declared inside the function. If the user tries to access it outside
the function, it will display the error. Users can declare the 2 variables with the same name
using the var keyword. Also, the user can reassign the value into the var variable. The output
shown in the console.

• Javascript

<script>
 function f() {

 // It can be accessible any
 // where within this function
 var a = 10;
 console.log(a)
 }
 f();
 // A cannot be accessible
 // outside of function
 console.log(a);
</script>

https://www.geeksforgeeks.org/javascript-tutorial/
https://www.geeksforgeeks.org/how-to-declare-variables-in-different-ways-in-javascript/

Output:
10

ReferenceError: a is not defined

Example 3: User can re-declare variable using var and user can update var variable. The output
is shown in the console.

• Javascript

<script>
 var a = 10

 // User can re-declare
 // variable using var
 var a = 8

 // User can update var variable
 a = 7

document.write(a);
function abc()
{
 b=10;
b=15;

}
</script>

Output:
7

Example 4: If users use the var variable before the declaration, it initializes with
the undefined value. The output is shown in the console.

• Javascript

<script>
 console.log(a);
 var a = 10;
<script>

Output:
undefined

let keyword in JavaScript: The let keyword is an improved version of the var keyword.
Scope: block scoped: The scope of a let variable is only block scoped. It can’t be accessible
outside the particular block ({block}). Let’s see the below example.

Example 1: The output is shown in the console.

• Javascript

https://www.geeksforgeeks.org/javascript-let/
https://www.geeksforgeeks.org/javascript-es2015-block-scoping/

<script>
 let a = 10;
 function f() {
 let b = 9
 console.log(b);
 console.log(a);
 }
 f();
</script>

Output:
9

10

Example 2: The code returns an error because we are accessing the let variable outside the
function block. The output is shown in the console.

• Javascript

<script>
 let a = 10;
 function f() {
 if (true) {
 let b = 9

 // It prints 9
 console.log(b);
 }

 // It gives error as it
 // defined in if block

 } console.log(b);
 f()

 // It prints 10
 console.log(a)
</script>

Output:
9

ReferenceError: b is not defined

Example 3: Users cannot re-declare the variable defined with the let keyword but can update it.

• Javascript

<script>

 let a = 10

 // It is not allowed

 let a = 10

 // It is allowed
 a = 10
</script>

Output:
Uncaught SyntaxError: Identifier 'a' has already been declared

Example 4: Users can declare the variable with the same name in different blocks using
the let keyword.

• Javascript

<script>
 let a = 10
 if (true) {
 let a=9
 console.log(a) // It prints 9
 }
 console.log(a) // It prints 10
</script>

Output:
9

10

Example 5: If users use the let variable before the declaration, it does not initialize
with undefined just like a var variable and return an error.

• Javascript

<script>
 console.log(a);
 let a = 10;
</script>

Output:
Uncaught ReferenceError: Cannot access 'a' before initialization

const keyword in JavaScript: The const keyword has all the properties that are the same as
the let keyword, except the user cannot update it.

Scope: block scoped: When users declare a const variable, they need to initialize it, otherwise, it
returns an error. The user cannot update the const variable once it is declared.

Example 1: We are changing the value of the const variable so that it returns an error. The
output is shown in the console.

• Javascript

<script>

https://www.geeksforgeeks.org/javascript-const/
https://www.geeksforgeeks.org/javascript-es2015-block-scoping/

 const a = 10;
 function f() {
 a = 9
 console.log(a)
 }
 f();
</script>

Output:
TypeError:Assignment to constant variable.

Differences between var, let, and const

Var let const

The scope of a var variable is
functional scope.

The scope of a let variable
is block scope.

The scope of a const variable is
block scope.

It can be updated and re-
declared into the scope.

It can be updated but
cannot be re-declared into
the scope.

It cannot be updated or re-
declared into the scope.

It can be declared without
initialization.

It can be declared without
initialization.

It cannot be declared without
initialization.

It can be accessed without
initialization as its default
value is “undefined”.

It cannot be accessed
without initialization, as it
returns an error.

It cannot be accessed without
initialization, as it cannot be
declared without initialization.

Note: Sometimes, users face the problem while working with the var variable as they change
the value of it in the particular block. So, users should use the let and const keyword to declare a
variable in JavaScript.

JavaScript Objects

Real Life Objects, Properties, and Methods

In real life, a car is an object.

A car has properties like weight and color, and methods like start and stop:

Object Properties Methods

car.name = Fiat

car.model = 500

car.weight = 850kg

car.color = white

car.start()

car.drive()

car.brake()

car.stop()

All cars have the same properties, but the property values differ from car to car.

All cars have the same methods, but the methods are performed at different times.

JavaScript Objects

You have already learned that JavaScript variables are containers for data values.

This code assigns a simple value (Fiat) to a variable named car:

let car = "Fiat";

Objects are variables too. But objects can contain many values.

This code assigns many values (Fiat, 500, white) to a variable named car:

const car = {type:"Fiat", model:"500", color:"white"};

The values are written as name:value pairs (name and value separated by a colon).

It is a common practice to declare objects with the const keyword.

Object Definition

You define (and create) a JavaScript object with an object literal:

Example

const person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

Spaces and line breaks are not important. An object definition can span multiple lines:

Example

const person = {

 firstName: "John",

 lastName: "Doe",

 age: 50,

 eyeColor: "blue"

};

Object Properties

The name:values pairs in JavaScript objects are called properties:

Property Property Value

firstName John

lastName Doe

Age 50

eyeColor Blue

Accessing Object Properties

You can access object properties in two ways:

objectName.propertyName

or

objectName["propertyName"]

Example1

person.lastName;

Example2

person["lastName"];

JavaScript objects are containers for named values called properties.

Object Methods

Objects can also have methods.

Methods are actions that can be performed on objects.

Methods are stored in properties as function definitions.

Property Property Value

firstName John

lastName Doe

age 50

eyeColor Blue

fullName function() {return this.firstName + " " + this.lastName;}

A method is a function stored as a property.

Example

const person = {

 firstName: "John",

 lastName : "Doe",

 id : 5566,

 fullName : function() {

 return this.firstName + " " + this.lastName;

 }

};

In the example above, this refers to the person object.

I.E. this.firstName means the firstName property of this.

I.E. this.firstName means the firstName property of person.

What is this?

In JavaScript, the this keyword refers to an object.

Which object depends on how this is being invoked (used or called).

The this keyword refers to different objects depending on how it is used:

In an object method, this refers to the object.

Alone, this refers to the global object.

In a function, this refers to the global object.

In a function, in strict mode, this is undefined.

In an event, this refers to the element that received the event.

Methods like call(), apply(), and bind() can refer this to any object.

Note

this is not a variable. It is a keyword. You cannot change the value of this.

See Also:

The this Keyword

In a function definition, this refers to the "owner" of the function.

In the example above, this is the person object that "owns" the fullName function.

In other words, this.firstName means the firstName property of this object.

Accessing Object Methods

You access an object method with the following syntax:

objectName.methodName()

Example

name = person.fullName();

If you access a method without the () parentheses, it will return the function definition:

Example

name = person.fullName;

Do Not Declare Strings, Numbers, and Booleans as Objects!

When a JavaScript variable is declared with the keyword "new", the variable is created as an

object:

x = new String(); // Declares x as a String object

y = new Number(); // Declares y as a Number object

z = new Boolean(); // Declares z as a Boolean object

Avoid String, Number, and Boolean objects. They complicate your code and slow down

execution speed.

JavaScript Objects

A javaScript object is an entity having state and behavior (properties and method). For example: car,

pen, bike, chair, glass, keyboard, monitor etc.

JavaScript is an object-based language. Everything is an object in JavaScript.

JavaScript is template based not class based. Here, we don't create class to get the object. But, we direct

create objects.

Creating Objects in JavaScript

There are 3 ways to create objects.

1. By object literal

2. By creating instance of Object directly (using new keyword)

3. By using an object constructor (using new keyword)

1) JavaScript Object by object literal

The syntax of creating object using object literal is given below:

object={property1:value1,property2:value2.....propertyN:valueN}

As you can see, property and value is separated by : (colon).

Let’s see the simple example of creating object in JavaScript.

<script>

emp={id:102,name:"Shyam Kumar",salary:40000}

document.write(emp.id+" "+emp.name+" "+emp.salary);

</script>

Output of the above example

102 Shyam Kumar 40000

2) By creating instance of Object

The syntax of creating object directly is given below:

var objectname=new Object();

Here, new keyword is used to create object.

Let’s see the example of creating object directly.

<script>

var emp=new Object();

emp.id=101;

emp.name="Ravi Malik";

emp.salary=50000;

document.write(emp.id+" "+emp.name+" "+emp.salary);

</script>

Output of the above example

101 Ravi 50000

3) By using an Object constructor

Here, you need to create function with arguments. Each argument value can be assigned in the current

object by using this keyword.

The this keyword refers to the current object.

The example of creating object by object constructor is given below.

<script>

function emp(id,name,salary)

{

this.id=id;

this.name=name;

this.salary=salary;

}

Emp();

e=new emp(103,"Vimal Jaiswal",30000);

document.write(e.id+" "+e.name+" "+e.salary);

</script>

Output of the above example

103 Vimal Jaiswal 30000

Defining method in JavaScript Object

We can define method in JavaScript object. But before defining method, we need to add property in

the function with same name as method.

The example of defining method in object is given below.

<script>

function emp(id,name,salary){

this.id=id;

this.name=name;

this.salary=salary;

this.changeSalary=changeSalary;

function changeSalary(otherSalary){

this.salary=otherSalary;

}

}

e=new emp(103,"Sonoo Jaiswal",30000);

document.write(e.id+" "+e.name+" "+e.salary);

e.changeSalary(45000);

document.write("
"+e.id+" "+e.name+" "+e.salary);

</script>

Output of the above example

103 Sonoo Jaiswal 30000

103 Sonoo Jaiswal 45000

JavaScript Date Object

The JavaScript date object can be used to get year, month and day. You can display a timer on

the webpage by the help of JavaScript date object.

You can use different Date constructors to create date object. It provides methods to get and set

day, month, year, hour, minute and seconds.

Constructor

You can use 4 variant of Date constructor to create date object.

1. Date()

2. Date(milliseconds)

3. Date(dateString)

4. Date(year, month, day, hours, minutes, seconds, milliseconds)

JavaScript Date Methods

Let's see the list of JavaScript date methods with their description.

Methods Description Example

getDate() It returns the integer value between

1 and 31 that represents the day for

the specified date on the basis of

local time.

<script type = "text/javascript">
 var dt = new Date("December 25,
1995 23:15:00");
 document.write("getDate() : " +
dt.getDate());
 </script>

getDate() : 25

https://www.javatpoint.com/javascript-date-getdate-method

getDay() It returns the integer value between

0 and 6 that represents the day of the

week on the basis of local time.

 <script type = "text/javascript">
 var dt = new Date("December 25,
1995 23:15:00");
 document.write("getDay() : " +
dt.getDay());
 </script>

getDay() : 1

getFullYears() It returns the integer value that

represents the year on the basis of

local time.

<script type = "text/javascript">
 var dt = new Date("December 25,
1995 23:15:00");
 document.write("getFullYear() : " +
dt.getFullYear());
 </script>
getFullYear() : 1995

getHours() It returns the integer value between

0 and 23 that represents the hours on

the basis of local time.

<script type = "text/javascript">
 var dt = new Date("December 25,
1995 23:15:00");
 document.write("getHours() : " +
dt.getHours());
 </script>

getHours() : 23

getMilliseconds() It returns the integer value between

0 and 999 that represents the

milliseconds on the basis of local

time.

<script type = "text/javascript">
 var dt = new Date();
 document.write("getMilliseconds() : "
+ dt.getMilliseconds());
 </script>

getMilliseconds() : 632

getMinutes() It returns the integer value between

0 and 59 that represents the minutes

on the basis of local time.

 <script type = "text/javascript">
 var dt = new Date("December 25,
1995 23:15:00");
 document.write("getMinutes() : " +
dt.getMinutes());
 </script>

getMinutes() : 15

getMonth() It returns the integer value between

0 and 11 that represents the month

on the basis of local time.

<script type = "text/javascript">
 var dt = new Date("December 25,
1995 23:15:00");
 document.write("getMonth() : " +
dt.getMonth());
 </script>

getMonth() : 11

getSeconds() It returns the integer value between

0 and 60 that represents the seconds

on the basis of local time.

<script type = "text/javascript">
 var dt = new Date("December 25,
1995 23:15:20");
 document.write("getSeconds() : " +
dt.getSeconds());
 </script>

getSeconds() : 20

https://www.javatpoint.com/javascript-date-getday-method
https://www.javatpoint.com/javascript-date-getutcfullyear-method
https://www.javatpoint.com/javascript-date-gethours-method
https://www.javatpoint.com/javascript-date-getmilliseconds-method
https://www.javatpoint.com/javascript-date-getminutes-method
https://www.javatpoint.com/javascript-date-getmonth-method
https://www.javatpoint.com/javascript-date-getseconds-method

setDate() It sets the day value for the specified

date on the basis of local time.

<script type = "text/javascript">
 var dt = new Date("Aug 28, 2008
23:30:00");
 dt.setDate(24);
 document.write(dt);

Sun Aug 24 2008 23:30:00 GMT+0530
(India Standard Time)

setDay() It sets the particular day of the week

on the basis of local time.

setFullYears() It sets the year value for the specified

date on the basis of local time.

<script type = "text/javascript">
 var dt = new Date("Aug 28, 2008
23:30:00");
 dt.setFullYear(2000);
 document.write(dt);
 </script>

Mon Aug 28 2000 23:30:00 GMT+0530
(India Standard Time)

setHours() It sets the hour value for the

specified date on the basis of local

time.

<script type = "text/javascript">
 var dt = new Date("Aug 28, 2008
23:30:00");
 dt.setHours(02);
 document.write(dt);
 </script>

Thu Aug 28 2008 02:30:00 GMT+0530
(India Standard Time)

setMilliseconds() It sets the millisecond value for the

specified date on the basis of local

time.

<script type = "text/javascript">
 var dt = new Date("Aug 28, 2008
23:30:00");
 dt.setMilliseconds(1010);
 document.write(dt);
 </script>

Thu Aug 28 2008 23:30:01 GMT+0530
(India Standard Time)

setMinutes() It sets the minute value for the

specified date on the basis of local

time.

<script type = "text/javascript">
 var dt = new Date("Aug 28, 2008
23:30:00");
 dt.setMinutes(45);
 document.write(dt);
 </script>
Thu Aug 28 2008 23:45:00 GMT+0530
(India Standard Time)

setMonth() It sets the month value for the

specified date on the basis of local

time.

 <script type = "text/javascript">
 var dt = new Date("Aug 28, 2008
23:30:00");
 dt.setMonth(2);
 document.write(dt);
 </script>

https://www.javatpoint.com/javascript-date-sethours-method
https://www.javatpoint.com/javascript-date-setmilliseconds-method
https://www.javatpoint.com/javascript-date-setminutes-method

JavaScript Date Output

By default, JavaScript will use the browser's time zone and display a date as a full text
string:

Mon Aug 01 2022 19:08:29 GMT+0530 (India Standard Time)

Creating Date Objects

Date objects are created with the new Date() constructor.

There are 4 ways to create a new date object:

Fri Mar 28 2008 23:30:00 GMT+0530
(India Standard Time)

setSeconds() It sets the second value for the

specified date on the basis of local

time.

<script type = "text/javascript">
 var dt = new Date("Aug 28, 2008
23:30:00");
 dt.setSeconds(80);
 document.write(dt);
 </script>

Thu Aug 28 2008 23:31:20 GMT+0530
(India Standard Time)

toString() It returns the date in the form of

string.

 <script type = "text/javascript">
 var dateobject = new Date(1993, 6,
28, 14, 39, 7);
 stringobj = dateobject.toString();
 document.write("String Object : " +
stringobj);
 </script>

String Object : Wed Jul 28 1993 14:39:07
GMT+0530 (India Standard Time)

Date()
Returns today's date and time

 <script type = "text/javascript">
 var dt = Date();
 document.write("Date and Time : " +
dt);
 </script>

Date and Time : Fri Aug 05 2022
21:16:18 GMT+0530 (India Standard
Time)

setTime()

Sets the Date object to the time
represented by a number of milliseconds
since January 1, 1970, 00:00:00 UTC.

<script type = "text/javascript">
 var dt = new Date("Aug 28, 2008
23:30:00");
 dt.setTime(5000000);
 document.write(dt);
 </script>

Thu Jan 01 1970 06:53:20 GMT+0530
(India Standard Time)

https://www.javatpoint.com/javascript-date-setseconds-method
https://www.javatpoint.com/javascript-date-tostring-method
https://www.tutorialspoint.com/javascript/date_date.htm
https://www.tutorialspoint.com/javascript/date_date.htm
https://www.tutorialspoint.com/javascript/date_settime.htm
https://www.tutorialspoint.com/javascript/date_settime.htm

new Date()

new Date(year, month, day, hours, minutes, seconds, milliseconds)

new Date(milliseconds)

new Date(date string)

new Date()

new Date() creates a new date object with the current date and time:

Example

const d = new Date();

Date objects are static. The computer time is ticking, but date objects are not.

new Date(year, month, ...)

new Date(year, month, ...) creates a new date object with a specified date and time.

7 numbers specify year, month, day, hour, minute, second, and millisecond (in that order):

Example

const d = new Date(2018, 11, 24, 10, 33, 30, 0);

Note: JavaScript counts months from 0 to 11:

January = 0.

December = 11.

Specifying a month higher than 11, will not result in an error but add the overflow to the

next year:

Specifying:

const d = new Date(2018, 15, 24, 10, 33, 30);

Is the same as:

const d = new Date(2019, 3, 24, 10, 33, 30);

Specifying a day higher than max, will not result in an error but add the overflow to the
next month:

Specifying:

const d = new Date(2018, 5, 35, 10, 33, 30);

Is the same as:

const d = new Date(2018, 6, 5, 10, 33, 30);

Using 6, 4, 3, or 2 Numbers

6 numbers specify year, month, day, hour, minute, second:

Example

const d = new Date(2018, 11, 24, 10, 33, 30);

5 numbers specify year, month, day, hour, and minute:

Example

const d = new Date(2018, 11, 24, 10, 33);

4 numbers specify year, month, day, and hour:

Example

const d = new Date(2018, 11, 24, 10);

3 numbers specify year, month, and day:

Example

const d = new Date(2018, 11, 24);

2 numbers specify year and month:

Example

const d = new Date(2018, 11);

You cannot omit month. If you supply only one parameter it will be treated as milliseconds.

Example

const d = new Date(2018);

new Date(dateString)

new Date(dateString) creates a new date object from a date string:

Example

const d = new Date("October 13, 2014 11:13:00");

JavaScript Stores Dates as Milliseconds

JavaScript stores dates as number of milliseconds since January 01, 1970, 00:00:00 UTC
(Universal Time Coordinated).

Zero time is January 01, 1970 00:00:00 UTC.

Now the time is: 1659361109593 milliseconds past January 01, 1970

new Date(milliseconds)

new Date(milliseconds) creates a new date object as zero time plus milliseconds:

Example

const d = new Date(0);

01 January 1970 plus 100 000 000 000 milliseconds is approximately 03 March 1973:

Example

const d = new Date(100000000000);

January 01 1970 minus 100 000 000 000 milliseconds is approximately October 31 1966:

Example

const d = new Date(-100000000000);

Example

const d = new Date(86400000);

One day (24 hours) is 86 400 000 milliseconds.

JavaScript setTimeout() and clearTimeout() method

The setTimeout() method in JavaScript is used to execute a function after waiting for the specified

time interval. This method returns a numeric value that represents the ID value of the timer.

Unlike the setInterval() method, the setTimeout() method executes the function only once. This

method can be written with or without the window prefix.

We can use the clearTimeout() method to stop the timeout or to prevent the execution of the function

specified in the setTimeout() method. The value returned by the setTimeout() method can be used

as the argument of the clearTimeout() method to cancel the timer.

The commonly used syntax of the setTimeout() method is given below.

Syntax

window.setTimeout(function, milliseconds);

Parameter values

This method takes two parameter values function and milliseconds that are defined as follows.

function: It is the function containing the block of code that will be executed.

milliseconds: This parameter represents the time-interval after which the execution of the function

takes place. The interval is in milliseconds. Its default value is 0. It defines how often the code will be

executed. If it is not specified, the value 0 is used.

Let's understand the use of setTimeout() method by using some illustrations.

Example1

This is a simple example of using the setTimeout() method. Here, an alert dialog box will display at an

interval of two seconds. We are not using any method to prevent the execution of the function specified

in setTimeout() method. So the setTimeout() method executes the specified function only once, after

the given time interval.

<html>

<head>

<title> setTimeout() method </title>

</head>

<body>

<h1> Hello World :) :) </h1>

<h3> This is an example of using the setTimeout() method </h3>

<p> Here, an alert dialog box will display after two seconds. </p>

<script>
 var a;

a = setTimeout(fun, 2000);

function fun() {
alert(" Welcome to the javaTpoint.com ");
}

</script>

</body>

</html>

Output

After an interval of two seconds, the output will be -

Example2

In the above examples, we have not used any method to prevent the execution of function specified

in setTimeout(). Here, we are using the clearTimeout() method to stop the function's execution.

We have to click the given stop button before two seconds to see the effect.

<html>

<head>

<title> setTimeout() method </title>

</head>

<body>

<h1> Hello World :) :) </h1>

<h3> This is an example of using the setTimeout() method </h3>

<p> Click the following button before 2 seconds to see the effect. </p>

<button onclick = "stop()"> Stop </button>

<script>

var a = setTimeout(fun1, 2000);
function fun1()
{

var win1 = window.open();

win1.document.write(" <h2> Welcome to the javaTpoint.com </h2>");
setTimeout(function(){win1.close()}, 2000);
}
function stop() {
 clearTimeout(a);
}

</script>

</body>

</html>

Output

The output will remain same if the user clicks the stop button before two seconds. Otherwise, a new

tab will open after two seconds and close after two seconds of opening.

JavaScript setInterval() and clearInterval() method

The setInterval() method in JavaScript is used to repeat a specified function at every given time-

interval. It evaluates an expression or calls a function at given intervals. This method continues the

calling of function until the window is closed or the clearInterval() method is called. This method

returns a numeric value or a non-zero number that identifies the created timer.

Unlike the setTimeout() method, the setInterval() method invokes the function multiple times. This

method can be written with or without the window prefix.

The commonly used syntax of setInterval() method is given below:

Syntax

window.setInterval(function, milliseconds);

Parameter values

This method takes two parameter values function and milliseconds that are defined as follows.

function: It is the function containing the block of code that will be executed.

milliseconds: This parameter represents the length of the time interval between each execution. The

interval is in milliseconds. It defines how often the code will be executed. If its value is less than 10, the

value 10 is used.

How to stop the execution?

We can use the clearInterval() method to stop the execution of the function specified

in setInterval() method. The value returned by the setInterval() method can be used as the argument

of clearInterval() method to cancel the timeout.

Let's understand the use of setInterval() method by using some illustrations.

Example1

This is a simple example of using the setInterval() method. Here, an alert dialog box displays at an

interval of 3 seconds. We are not using any method to stop the execution of the function specified

in setInterval() method. So the method continues the execution of the function until the window is

closed.

<html>

<head>

<title> setInterval() method </title>

</head>

<body>

<h1> Hello World :) :) </h1>

<h3> This is an example of using the setInterval() method </h3>

<p> Here, an alert dialog box displays on every three seconds. </p>

<script>

var a;

a = setInterval(fun, 3000);

function fun() {
alert(" Welcome to the javaTpoint.com ");

}</script>

</body>

</html>

Output

After the time interval of three seconds, the output will be -

Now, there is another example of using the setInterval() method.

Example2

Here, the background color will change on every 200 milliseconds. We are not using any method to

stop the execution of the function specified in setInterval() method. So the method continues the

execution of the function until the window is closed.

<html>

<head>

<title> setInterval() method </title>

</head>

<body>

<h1> Hello World :) :) </h1>

<h3> This is an example of using the setInterval() method </h3>

<p> Here, the background color changes on every 200 milliseconds. </p>

<script>

var var1 = setInterval(color, 200);

function color() {

var var2 = document.body;

var2var2.style.backgroundColor = var2.style.backgroundColor == "lightblue" ? "lightgreen" : "lightblue";
}

</script>

</body>

</html>

Output

The background will keep changing from lightgreen to lightblue on an interval of 200 milliseconds.

After 200 milliseconds, the output will be -

Example3

In the above example, we have not used any method to stop the toggling between the colors. Here, we

are using the clearInterval() method to stop the toggling of colors in the previous example.

We have to click the specified stop button to see the effect.

<html>

<head>

<title> setInterval() method </title>

</head>

<body>

<h1> Hello World :) :) </h1>

<h3> This is an example of using the setInterval() method </h3>

<p> Here, the background color changes on every 200 milliseconds. </p>

<button onclick = "stop()"> Stop </button>

<script>

var var1 = setInterval(color, 200);

function color() {

var var2 = document.body;

var2var2.style.backgroundColor = var2.style.backgroundColor == "lightblue" ? "lightgreen" : "lightblue";
}
function stop() {
clearInterval(var1);
}

</script>

</body>

</html>

Output

The color of the background will start changing after 200 milliseconds. On clicking the

specified stop button, the toggling between the colors will be stopped on the corresponding

background color. The output after clicking the button will be -

Document Object Model (DOM model)

The document object represents the whole html document.

When html document is loaded in the browser, it becomes a document object. It is the root

element that represents the html document. It has properties and methods. By the help of document

object, we can add dynamic content to our web page.

As mentioned earlier, it is the object of window. So

window.document

Is same as

document

According to W3C - "The W3C Document Object Model (DOM) is a platform and language-neutral

interface that allows programs and scripts to dynamically access and update the content, structure, and

style of a document."

DOM (Document Object Model)

The Document Object Model (DOM) is a programming interface for HTML(HyperText Markup
Language) and XML(Extensible markup language) documents. It defines the logical structure of
documents and the way a document is accessed and manipulated.

Note: It is called a Logical structure because DOM doesn’t specify any relationship between
objects.

DOM is a way to represent the webpage in a structured hierarchical way so that it will become
easier for programmers and users to glide through the document. With DOM, we can easily access
and manipulate tags, IDs, classes, Attributes, or Elements of HTML using commands or methods
provided by the Document object. Using DOM, the JavaScript gets access to HTML as well as CSS of
the web page and can also add behavior to the HTML elements. so basically Document Object
Model is an API that represents and interacts with HTML or XML documents.

Why DOM is required?
HTML is used to structure the web pages and Javascript is used to add behavior to our web pages.
When an HTML file is loaded into the browser, the javascript can not understand the HTML
document directly. So, a corresponding document is created(DOM). DOM is basically the
representation of the same HTML document but in a different format with the use of objects.
Javascript interprets DOM easily i.e javascript can not understand the tags(<h1>H</h1>) in HTML
document but can understand object h1 in DOM. Now, Javascript can access each of the objects
(h1, p, etc) by using different functions.

Structure of DOM: DOM can be thought of as a Tree or Forest(more than one tree). The
term structure model is sometimes used to describe the tree-like representation of a
document. Each branch of the tree ends in a node, and each node contains objects Event listeners

can be added to nodes and triggered on an occurrence of a given event. One important property of
DOM structure models is structural isomorphism: if any two DOM implementations are used to
create a representation of the same document, they will create the same structure model, with
precisely the same objects and relationships.

Why called an Object Model?
Documents are modeled using objects, and the model includes not only the structure of a document but also the
behavior of a document and the objects of which it is composed like tag elements with attributes in HTML.

Properties of DOM: Let’s see the properties of the document object that can be accessed and
modified by the document object.

Representation of the DOM

• Window Object: Window Object is object of the browser which is always at top of the
hierarchy. It is like an API that is used to set and access all the properties and methods
of the browser. It is automatically created by the browser.

• Document object: When an HTML document is loaded into a window, it becomes a
document object. The ‘document’ object has various properties that refer to other
objects which allow access to and modification of the content of the web page. If there is
a need to access any element in an HTML page, we always start with accessing the
‘document’ object. Document object is property of window object.

• Form Object: It is represented by form tags.
• Link Object: It is represented by link tags.
• Anchor Object: It is represented by a href tags.
• Form Control Elements:: Form can have many control elements such as text fields,

buttons, radio buttons, checkboxes, etc.

Methods of document object

We can access and change the contents of document by its methods.

https://www.geeksforgeeks.org/properties-of-window-object/#:~:text=It%20represents%20an%20array%20that,frames%20of%20a%20given%20window.&text=It%20returns%20a%20reference%20to%20a%20DOMPoint%20object%2C%20which%20represents,point%20in%20a%20coordinate%20system.&text=It%20provides%20information%20of%20the%20URLs%20visited%20in%20the%20current%20window.&text=It%20represents%20the%20number%20of%20frames%20in%20the%20current%20window.
https://www.geeksforgeeks.org/html-dom-link-object/
https://www.geeksforgeeks.org/html-dom-anchor-object/

The important methods of document object are as follows:

Method Description

write("string") writes the given string on the doucment.

writeln("string") writes the given string on the doucment with newline character at the end.

getElementById() returns the element having the given id value.

getElementsByName() returns all the elements having the given name value.

getElementsByTagName() returns all the elements having the given tag name.

getElementsByClassName() returns all the elements having the given class name.

Accessing field value by document object

In this example, we are going to get the value of input text by user. Here, we are

using document.form1.name.value to get the value of name field.

Here, document is the root element that represents the html document.

form1 is the name of the form.

name is the attribute name of the input text.

value is the property, that returns the value of the input text.

Let's see the simple example of document object that prints name with welcome message.

<script type="text/javascript">
function printvalue(){

var name=document.form1.name.value;
alert("Welcome: "+name);
}

</script>

<form name="form1">

Enter Name:<input type="text" name="name"/>

<input type="button" onclick="printvalue()" value="print name"/>

</form>

Output of the above example

Example: In this example, We use HTML element id to find the DOM HTML element.

• HTML

<!DOCTYPE html>
<html>

<body>

 <h2>GeeksforGeeks</h2>

 <!-- Finding the HTML Elements by their Id in DOM -->
 <p id="intro">A Computer Science portal for geeks.</p>

<p>This example illustrates the getElementById method.</p>

 <p id="demo"></p>

 <script>

 const element = document.getElementById("intro");

 document.getElementById("demo").innerHTML = "GeeksforGeeks introduction is: " +
element.innerHTML;

 </script>

</body>
</html>

Output:

Getting the HTML element by getElementById() Method

Javascript - document.getElementById() method

The document.getElementById() method returns the element of specified id.

In the previous page, we have used document.form1.name.value to get the value of the input value.

Instead of this, we can use document.getElementById() method to get value of the input text. But we

need to define id for the input field.

Let's see the simple example of document.getElementById() method that prints cube of the given

number.

Skip Ad

<script type="text/javascript">
function getcube(){

var number=document.getElementById("number").value;
alert(number*number*number);
}

</script>

<form>

Enter No:<input type="text" id="number" name="number"/>

<input type="button" value="cube" onclick="getcube()"/>

</form>

Output of the above example

Javascript - document.getElementsByName() method

The document.getElementsByName() method returns all the element of specified name.

The syntax of the getElementsByName() method is given below:

document.getElementsByName("name")

Here, name is required.

Example of document.getElementsByName() method

In this example, we going to count total number of genders. Here, we are using getElementsByName()

method to get all the genders.

<script type="text/javascript">
function totalelements()
{

var allgenders=document.getElementsByName("gender");
alert("Total Genders:"+allgenders.length);
}

</script>

<form>

Male:<input type="radio" name="gender" value="male">

Female:<input type="radio" name="gender" value="female">

<input type="button" onclick="totalelements()" value="Total Genders">

</form>

Output of the above example

Javascript-document.getElementsByTagName()
method

The document.getElementsByTagName() method returns all the element of specified tag name.

The syntax of the getElementsByTagName() method is given below:

document.getElementsByTagName("name")

Here, name is required.

Example of document.getElementsByTagName() method

In this example, we going to count total number of paragraphs used in the document. To do this, we

have called the document.getElementsByTagName("p") method that returns the total paragraphs.

<script type="text/javascript">
function countpara(){

var totalpara=document.getElementsByTagName("p");
alert("total p tags are: "+totalpara.length);

}

</script>

<p>This is a pragraph</p>

<p>Here we are going to count total number of paragraphs by getElementByTagName() method.</p>

<p>Let's see the simple example</p>

<button onclick="countpara()">count paragraph</button>

Output of the above example

Another example of document.getElementsByTagName()
method

In this example, we going to count total number of h2 and h3 tags used in the document.

<script type="text/javascript">
function counth2(){

var totalh2=document.getElementsByTagName("h2");
alert("total h2 tags are: "+totalh2.length);
}
function counth3(){

var totalh3=document.getElementsByTagName("h3");

alert("total h3 tags are: "+totalh3.length);
}

</script>

<h2>This is h2 tag</h2>

<h2>This is h2 tag</h2>

<h3>This is h3 tag</h3>

<h3>This is h3 tag</h3>

<h3>This is h3 tag</h3>

<button onclick="counth2()">count h2</button>

<button onclick="counth3()">count h3</button>

Output of the above example

Note: Output of the given examples may differ on this page because it will count the total number

of para , total number of h2 and total number of h3 tags used in this document.

Javascript - innerHTML

The innerHTML property can be used to write the dynamic html on the html document.

It is used mostly in the web pages to generate the dynamic html such as registration form, comment

form, links etc.

Example of innerHTML property

In this example, we are going to create the html form when user clicks on the button.

In this example, we are dynamically writing the html form inside the div name having the id mylocation.

We are identifing this position by calling the document.getElementById() method.

<script type="text/javascript" >
function showcommentform() {

var data="Name:<input type='text' name='name'>
Comment:
<textarea rows='5' cols='80'></textare

a>

<input type='submit' value='Post Comment'>";

document.getElementById('mylocation').innerHTML=data;
}

</script>

<form name="myForm">

<input type="button" value="comment" onclick="showcommentform()">

<div id="mylocation"></div>

</form>

Javascript - innerText

The innerText property can be used to write the dynamic text on the html document. Here, text will

not be interpreted as html text but a normal text.

It is used mostly in the web pages to generate the dynamic content such as writing the validation

message, password strength etc.

Javascript innerText Example

In this example, we are going to display the password strength when releases the key after press.

<script type="text/javascript" >
function validate() {
var msg;

if(document.myForm.userPass.value.length>5){

msg="good";
}
else{

msg="poor";
}

document.getElementById('mylocation').innerText=msg;
 }

</script>

<form name="myForm">

<input type="password" value="" name="userPass" onkeyup="validate()">

Strength:no strength

</form>

Output of the above example

HTML DOM Document write()

Definition and Usage

The write() method writes directly to an open (HTML) document stream.

Warning

The write() method deletes all existing HTML when used on a loaded document.

The write() method cannot be used in XHTML or XML.

Note

The write() method is most often used to write to output streams opened by the

the open() method.

Examples

Write some text directly to the HTML output:

document.write("Hello World!");

Write some HTML elements directly to the HTML output:

document.write("<h2>Hello World!</h2><p>Have a nice day!</p>");

More Examples

Write a date object directly to the HTML ouput:

document.write(Date());

Open an output stream, add some HTML, then close the output stream:

document.open();

document.write("<h1>Hello World</h1>");

document.close();

Open a new window and write some HTML into it:

const myWindow = window.open();

myWindow.document.write("<h1>New Window</h1>");

myWindow.document.write("<p>Hello World!</p>");

HTML DOM Document writeln()

Definition and Usage

The writeln() method writes directly to an open (HTML) document stream.

The writeln() method is identical to the write() method, with the addition of writing a

newline character (U+000A) after each statement.

Warning

The writeln() method deletes all existing HTML when used on a loaded document.

The writeln() method cannot be used in XHTML or XML.

Example

document.writeln("Hello World!");

document.writeln("Have a nice day!");

Note

It makes no sense to use writeln() in HTML.

It is only useful when writing to text documents (type=".txt").

Newline characters are ignored in HTML.

If you want new lines in HTML, you must use paragraphs or
:

Examples

document.write("Hello World!");

document.write("
");

document.write("Have a nice day!");

The Difference Between write() and writeln()

The writeln() method is only useful when writing to text documents (type=".txt").

Example

<!DOCTYPE html>

<html>

<body>

<h1>The Document Object</h1>

<h2>The write() and writeln() Methods</h2>

<p>write() does NOT add a new line (CR) after each statement.</p>

<p>writeln() DOES add a new line (CR) after each statement.</p>

<pre>

<script>

document.write("Hello World!");

document.write("Have a nice day!");

document.write("
");

document.writeln("Hello World!");

document.writeln("Have a nice day!");

</script>

</pre>

<p>It makes no sense to user writeln() in HTML.</p>

<p>Carriage return (CR) is ignored in HTML.</p>

</body>

</html>

JavaScript Functions

JavaScript functions are used to perform operations. We can call JavaScript function many times to

reuse the code.

Advantage of JavaScript function

There are mainly two advantages of JavaScript functions.

1. Code reusability: We can call a function several times so it save coding.

2. Less coding: It makes our program compact. We don’t need to write many lines of code each time to

perform a common task.

JavaScript Function Syntax

The syntax of declaring function is given below.

function functionName([arg1, arg2, ...argN]){

 //code to be executed

}

JavaScript Functions can have 0 or more arguments.

JavaScript Function Example

Let’s see the simple example of function in JavaScript that does not has arguments.

<script>
function msg(){
alert("hello! this is message");
}

</script>

<input type="button" onclick="msg()" value="call function"/>

Output of the above example

JavaScript Function Arguments

We can call function by passing arguments. Let’s see the example of function that has one argument.

<script>
function getcube(number){
alert(number*number*number);
}

</script>

<form>

<input type="button" value="click" onclick="getcube(4)"/>

</form>

Output of the above example

Function with Return Value

We can call function that returns a value and use it in our program. Let’s see the example of function

that returns value.

<script>
function getInfo(){
return "hello javatpoint! How r u?";
}

</script>

<script>
document.write(getInfo());

</script>

Output of the above example

hello javatpoint! How r u?

Dialog boxes

There are three types of dialog boxes supported in JavaScript that are alert, confirm, and prompt.

These dialog boxes can be used to perform specific tasks such as raise an alert, to get confirmation of

an event or an input, and to get input from the user.

Let's discuss each dialog box.

Alert Dialog box

It is used to provide a warning message to users. It is one of the most widely used dialog box in

JavaScript. It has only one 'OK' button to continue and select the next task.

We can understand it by an example like suppose a textfield is mandatory to be filled out, but the user

has not given any input value to that text field, then we can display a warning message by using

the alert box.

5

Syntax

https://www.javatpoint.com/javascript-tutorial

alert(message);

Example

Let us see the demonstration of an alert dialog box by using the following example.

<html>

<head>
 <script type="text/javascript">
 function show() {
 alert("It is an Alert dialog box");
 }
 </script>
</head>

<body>
 <center>
 <h1>Hello World :) :)</h1>
 <h2>Welcome to javaTpoint</h2>
 <p>Click the following button </p>
 <input type="button" value="Click Me" onclick="show();" />
 </center>
</body>

</html>

Output

After the successful execution of the above code, you will get the following output.

After clicking on the Click Me button, you will get the following output:

Confirmation Dialog box

It is widely used for taking the opinion from the user on the specific option. It includes two buttons,

which are OK and Cancel. As an example, suppose a user is required to delete some data, then the

page can confirm it by using the confirmation box that whether he/she wants to delete it or not.

If a user clicks on the OK button, then the method confirm() returns true. But if the user clicks on

the cancel button, then the confirm() method returns false.

Syntax

confirm(message);

Example

Let us understand the demonstration of this dialog box by using the following example.

<html>

<head>
 <script type="text/javascript">
 function show() {
 var con = confirm ("It is a Confirm dialog box");
 if(con == true) {
 document.write ("User Want to continue");
 }
 else {
 document.write ("User does not want to continue");
 }
 }
 </script>
</head>

<body>
 <center>
 <h1>Hello World :) :)</h1>
 <h2>Welcome to javaTpoint</h2>
 <p>Click the following button </p>
 <input type="button" value="Click Me" onclick="show();" />
 </center>
</body>

</html>

Output

After the successful execution of the above code, you will get the following output.

When you click on the given button, then you will get the following output:

After clicking the OK button, you will get:

On clicking the Cancel button, you will get:

Prompt Dialog box

The prompt dialog box is used when it is required to pop-up a text box for getting the user input. Thus,

it enables interaction with the user.

The prompt dialog box also has two buttons, which are OK and Cancel. The user needs to provide input

in the textbox and then click OK. When a user clicks on the OK button, then the dialog box reads that

value and returns it to the user. But on clicking the Cancel button, prompt() method returns null.

Syntax

prompt(message, default_string);

Let us understand the prompt dialog box by using the following illustration.

Example

<html>

<head>
 <script type="text/javascript">
 function show() {
 var value = prompt("Enter your Name : ", "Enter your name");
 document.write("Your Name is : " + value);
 }
 </script>
</head>

<body>
 <center>
 <h1>Hello World :) :)</h1>
 <h2>Welcome to javaTpoint</h2>
 <p>Click the following button </p>
 <input type="button" value="Click Me" onclick="show();" />
 </center>
</body>

</html>

Output

After executing the above code successfully, you will get the following output.

When you click on the Click Me button, you will get the following output:

Enter your name and click OK button, you will get:

