Class:- T.Y.B.C.A SEM-V

Course: 505: ASP .NET

Unit 1. Introduction to
ASPNET

1.1 What 1s ASPINE T

What is ?(ActiveX Server Pages)

Microsoft is a server side technology that enables programmers to
build dynamic Web sites, web applications, and XML Web services.

It 1s a part of the .NET based environment and is built on the Common
Language Runtime (CLR).

So programmers can write code using any .NET compatible
language.

http://asp.net/
http://asp.net/
http://asp.net/

How ASP.NET Works ? |

Request (http://www.website.com)

>
<& !

Response (website page)

&7

Complled

IIS Server

1. When a browser requests an asp.net file, IIS passes the
request to the ASP.NET Engine on the server.

2. Then asp.net engine read the file line by line and execute

the scripts in the file.

2. Finally the ASP.NET file is returned to the browser as a

plain HTML file.

Version of .NET Framework:

| Version Release Visual Studio
. Year

.Net Framework 1.0 2002 Visual Studio .Net

.Net Framework 1.1 2003 Visual Studio .Net 2003
.Net Framework 2.0 2005 Visual Studio 2005
.Net Framework 3.0 2006

.Net Framework 3.5 2007 Visual Studio 2008

.Net Framework 4.0 2010 Visual Studio 2010 I
.Net Framework 4.5 2012 Visual Studio 2012 *
.Net Framework 4.6 2015 Visual Studio 2015

.Net Framework 4.7 2017 Visual Studio 2017

.Net Framework 4.8 2019 Visual Studio 2019

m

Link for download SQL Express

https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads

1.2 .NET framework 2.0

VB C++ | C# ‘JScript 5 J#

F -

Common Language Specification

ASP.NET: Web Services Windows

and Web Forms . Forms

ADO.NET: Data and XML

Base Class Librany.

Common Language Runtime

NET Framework
mainly contains two components,

1. Common Language Runtime (CLR)
. 2. NET Framework Class Library.

1. Common Language Runtime (CLR)

¥YB.NET C #
VEBE.NET Compiler C# Compiler

I l

Microsoft Intermediate Language (M SIL)

l

Common Language Runtime

JIT (Justin time) Compilers

!

Native Code

2. NET Framework Class Library (FCL)

* The following are different types of applications that can make use of .net class
library.

1. Windows Application.
2. Console Application
3. Web Application.
4. XML Web Services.
5. Windows Services.
And many more classes also like ADO .NET Databases and etc.

The NET Framework includes a set of standard class libraries. A class library is a collection of methods and
functions that can be used for the core purpose.

For example, there is a class library with methods to handle all file-level operations. So there is a method which can be
used to read the text from a file. Similarly, there is a method to write text to a file.

Most of the methods are split into either the System.* or Microsoft.* namespaces. (The asterisk * just means a
reference to all of the methods that fall under the System or Microsoft namespace)

A namespace 1s a logical separation of methods. We will learn these namespaces more in detail in the subsequent
chapters.

3. Common Type System (CTS)

* It describes set of data types that can be used in different .Net languages in
. common. (i.e), CTS ensures that objects written in different .Net languages

can interact with each other.

For Communicating between programs written in any .NET compatible
language, the types have to be compatible on the basic level.

4. Common Language Specification (CLS)

It is a sub set of CTS and it specifies a set of rules that needs to satisfied by all language compilers targeting CLR. It helps in cross
language inheritance and cross language debugging.

Common language specification Rules:

It describes the minimal and complete set of features to produce code that can be hosted by CLR. It ensures that products of compilers
will work properly in NET environment.

Sample Rules:

1. Representation of text strings

2. Internal representation of enumerations

3. Definition of static members and this is a subset of the CTS which all NET languages are expected to support.

4. Microsoft has defined CLS which are nothing but guidelines that language to follow so that it can communicate with other

NET languages in a seamless mannet.

1 5 Compile Code

* Compiled code 1s a set of files that must be linked together and with one master
list of steps in order for it to run as a program.

1.3.1 Code Behind and Inline Coding

* Code Behind

* Code Behind refers to the code for an ASPNET Web page that is written in a
separate class file that can have the extension of .aspx.cs or .aspx.vb depending on
the language used. Here the code is compiled into a separate class from which the
.aspx file derives. You can write the code in a separate .cs or .vb code file for each

.aspX page.
* One major point of Code Behind is that the code for all the Web pages is compiled

into a DLL file that allows the web pages to be hosted free from any Inline Server
Code.

* Inline Code

. * Inline Code refers to the code that is written inside an ASPNET Web Page

that has an extension of .aspx. It allows the code to be written along with the
HTML source code using a <Script> tag. It's major point is that since it's
physically in the .aspx file it's deployed with the Web Form page whenever
the Web Page 1s deployed.

Code Behind

Add New Iterm - WebSitel(1) o
« Inztalled Sort by: Default - Seasrch nstaied Tempiates (Ctri-E) - -
Visual Basic e F Vieual Co - Type: Visual C=

Visuwal C= A form for Web Applications

Empty Page (Razor) Visual C=

Helper (Raror) Visual C=

[-

P Online I":’ Coment Page (Razoe) Visuai Ce
]
5]

= Layout Page (Razor) Visuesl C&
< -
'ﬂ ' Web API Controller Chaz= Visual C&
-
C-
[= Web Page (Raxor) Visual C&

Mazzer Page Vizual C&

!.: Web User Comtrod Visual Cw
“

ADO NET Entey Data Model Visual C=
Cc=
@ AlAX -enabled WCF Sernce Visual C=
@ SBrowser File Visusl C=
(- Chs Vi 1=
&'-j = —us LS
Narne: E(:p:le behind [WV Place code in separate file J

| Select master page

i_J

O ocalhost 36364 - Micoof Vil St
FE M VEW WEBSTE BULD DEBUG TEAM SO FORMAT

00 B-amd Y-

13a01dxg 13asg

xoq|oo]

code behind.aspx” # X

* b Google Chrome + Debug

Button

w localhost 36364 - Microsoft Visual Studio
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST

e - B - 9 - - P Google Chrome ~ Debug ~ & _.

(oTe [0 T G O RS Bl code behind.aspx™
code_behind -

Flusing System;
using System.Collections.Generic;
using System.Ling;
using System.Web;
using System.Web.UI;
| using System.Web.UI.WebControls;

x0q|oo] Jaio|dxg 1an3g

Elpublic partial class code_behind : System.Web.UI.Page

| {
Bl protected void Page_Load(cbject sender, Eventérgs e)
1
¥
& protected void Buttonl_Click(object sender, EventArgs e)
1
Labell.Text = TextBoxl.Text;
, ¥
L}

Inline Code

Add New [tem - WebSitel(3)
4 Installed

Visual Basic
Vicual C#

¢ Online

Name: In fne

Sont by: Default >
Web Form Visual C&
co
E Content Page (Razor) Visual C2
ce
EJ Empty Page (Razor) Visual C=
co
& Helper (Razor) Visual C=
] Leyout Page (Razor) Vesual C=
ce
] Web AP Controller Class Visusl C2
ce
B Web Page (Razor) Visual C=
Master Page Visual C2
!’j Web User Control Visual C2
@ ADO.NET Entity Data Model Visual C#
cr
@ AJAX-enabled WCF Service Visual Co
@ Browser File Visual Co
Co
Q Class Visual C#

Search Instalied Templates

Type: Visual C=
A farm for Web Applications

[7] Place code in separate file
L] Select master page

e [

M localhost_ 36364 - Microsoft Visual Studio
FLE DT VIEW WEBSTE BULD DEBUG TEAM SQL FORMAT

00 BN 9

In (ESascode behindaspxes — code behind aspr SUS

gLabel

=) Google Chrome + Debug

asaojdxg aasasg

xoqjoo

Button

w localhost_36364 - Microsoft Visual Studio
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM

‘0.0 B-@RN 9-C-

Inline.aspx* + codebehind.aspx.cs

SQL FORMAT TOOLS

P Google Chrome ~ Debug ~

code behind.aspx

A_ B

TEST
pells)

W0 Page Language="C#" %>

<!DOCTYPE html>

1310(dx3 1338

F<script runat="server">

X0q|o0 |

protected void Buttonl Click(cbject sender, EventArgs e)

{
}

 </script>

Labell.Text = TextBoxl.Text;

=I<html xmlns="http://www.w3.0rg/1999/xhtml">
Si<head runat="server">
<title></title>
</head>

1.4 The Common lLanguage Runtime

| WB.MET Source Code | | C#.MET Source Code | Other Language

- -

[WB.NET Compiler I I CH.NET Compiler I I Other Lang. Cormm piIE-rI

IL {Intermediate
— Language) Code -—

The Common Language Runtime (CLR)

Just-ln-Time [(JIT)
Coampiler

Mative Machine Code

CODE EXECUTION
[-EXE/S DLL]

The CLR has the following key teatures:

1)Exception Handling

2) Garbage Collection

3) Type Safety

4) Thread Management

5) Working with Various programming languages
-Language
-Compiler

-Common Language Interpreter

1.5 Object Oriented Concepts

v OOPS Concepts, Features & Fundamentals

v/ Class:- A class is a collection of objects and represents description of objects that
share same attributes and actions.

v Method:- Method is an object's behavior. ...

v Object:-Any entity that has state and behavior is known as an object. For example,
a chair, pen, table, keyboard, bike, etc. It can be physical or logical.

e
—

/,T"w(
) Objects /

v Encapsulation: -Binding (or wrapping) code and data together into a single unit are

known as encapsulation. i
For example, a capsule, it is wrapped with different medicines. e
apsule
v’ Abstraction:-Hiding int tails and showi tionality 1s known

abstraction. For example phone call, we don't know the internal processing.

v/ Inheritance:-When one object acquires all the properties and bebaviors of a parent
object, 1t 1s known as inheritance. It provides code reusability. It 1s used to
achieve runtime polymorphism.

v Polymorphism:-If one task is performed in different ways, it is known as
polymorphism. For example: to convince the customer differently, to draw
something, for example, shape, triangle, rectangle, etc. L3

1.6 Event Driven Programming

Loops over

e
| Trigger |

1

|Event handlerl

1

Event loop |

User
= iNnteraction

EEr:
E Button trigger

I Logine

Egs:
Private Sub btnlLogin_ Click

Relevant login code goes here
And the Event handler executes it

End Sub

s P i

Event loop & —— Irigger

Event handler

What is ASP.Net Page Lifecycle?

v When an ASPNet page is called, it goes through a particular lifecycle. This is done
betore the response is sent to the user. There are series of steps which are followed
for the processing of an ASP.Net page.

v’ Let's look at the various stages of the lifecycle of an ASP.Net web page.

f Postoack event NS Page
. L Fage request J naundiing Rendering .
[| = .
|| |
= |

- " Poage Lood

https://cdn.guru99.com/images/asp-net/061516_0807_ASPNetIntro3.png

Following are the different stages of an ASP.NET page:

*Page request - When ASPNET gets a page request, it decides whether to parse and compile the page, or there
would be a cached version of the page; accordingly the response is sent.

*Starting of page life cycle - At this stage, the Request and Response objects are set. If the request is an old
request or post back, the IsPostBack property of the page is set to true. The UICulture property of the page is also
set.

*Page initialization - At this stage, the controls on the page are assigned unique ID by setting the UniquelD
property and the themes are applied. For a new request, postback data is loaded and the control properties are
restored to the view-state values.

*Page load - At this stage, control properties are set using the view state and control state values.

*Validation - Validate method of the validation control is called and on its successful execution, the IsValid
property of the page is set to true.

*Postback event handling - If the request is a postback (old request), the related event handler is invoked.

*Page rendering - At this stage, view state for the page and all controls are saved. The page calls the Render
method for each control and the output of rendering is written to the OutputStream class of the Response
property of page.

*Unload - The rendered page 1s sent to the client and page properties, such as Response and Request, are unloaded
and all cleanup done.

3 A ROFEL, SHRI G.M BILAKHIA COLLEGE OF APPLIED SCIENCES, VAPI (BCA)

ASP.NET Page Life Cycle Events ;

* At each stage of the page life cycle, the page raises some events, which could

be coded. An event handler is basically a function or subroutine, bound to
the event, using declarative attributes such as Onclick or handle.

1. Prelnit:-

* 1.Check the IsPostBack property to determine whether this is the first time the page is being
processed.

* 2.Create or re-create dynamic controls.
* 3.Set a master page dynamically.

* 4.Set the Theme property dynamically.

TR — e P " . T — ——

2. Init

18 This event fires after each control has been initialized.
S Each control's UniquelD is set and any skin settings have been applied.
3. Use this event to read or initialize control properties.

3. Load

it The Page object calls the OnlLoad method on the Page object, and then recursively does the same for

each child control until the page and all controls are loaded. The Load event of individual controls occurs after the
Load event of the page.

2 Most code checks the value of IsPostBack to avoid unnecessarily resetting state.
9 You can also create dynamic controls in this method.
4. Use the Onl.oad event method to set properties in controls and establish database connections.

4.Control PostBack Event(s)

ik ASPNET now calls any events on the page or its controls that caused the PostBack to occur.
28 Use these events to handle specific control events, such as a Button control's Click event or a
TextBox control's TextChanged event.

3 This is just an example of a control event. Here it is the button click event that caused the

postback.

5. Render Method

1. The Render method generates the client-side HIML, Dynamic Hypertext Markup Language (DHTML), and
script that are necessary to propetrly display a control at the browset.

6.Unl.oad

1. This event is used for cleanup code.
2. At this point, all processing has occurred and it 1s safe to dispose of any remaining objects, including
the Page object.
3. Cleanup can be performed on:

> Instances of classes, in other words objects

» Closing opened files

» Closing database connections.
4. This event occurs for each control and then for the page.
5. During the unload stage, the page and its controls have been rendered, so you cannot make further
changes to the response stream.
6. If you attempt to call a method such as the Response.Write method then the page will throw an
exception.

Components of .Net Framework
Components of .Net Framework

VB . C++

C# ‘JScript) J#

-

Common Language Specification

ASP.NET: Web Services Windows

and Web Forms . Forms

ADO.NET: Data and XML

Base Class Library

Common Language Runtime

Net Framework is a platform that provides tools and technologies to develop Windows,
Web and Enterprise applications. It mainly contains two components,

1. Common Language Runtime (CLR)
2. .Net Framework Class Library.

1. Common Language Runtime (CLR)
.Net Framework provides runtime environment called Common Language
Runtime (CLR).It provides an environment to run all the .Net Programs. The code
which runs under the CLR is called as Managed Code. Programmers need not to
worry on managing the memory if the programs are running under the CLR as it
provides memory management and thread management.

Programmatically, when our program needs memory, CLR allocates the memory for
scope and de-allocates the memory if the scope is completed.

The Compilation Divided in to Two Step.

In First step 1) Language Compilers (e.g. C#, VB.Net, J#) will convert the Code/Program to
Microsoft Intermediate Language (MSIL) intern

In Second Step 2) this will be converted to Native Code by CLR JIT Compiler. See the below
Fig.

¥YB.MET C#

YE.MNET Compiler C# Compiler

l l

Microsoft Intermediate Language (M 5IL)

Common Language Runtime

JIT [Justin time J Compilers

l

MNative Code

There are currently over 15 language compilers being built by Microsoft and other
companies also producing the code that will execute under CLR.

2. .Net Framework Class Library (FCL)
This is also called as Base Class Library and it is common for all types of applications i.e. the
way you access the Library Classes and Methods in VB.NET will be the same in VB.Net, and it

is common for all other languages in .NET.

The following are different types of applications that can make use of .net class library.

1. Windows Application.
2. Console Application
3. Web Application.

4, XML Web Services.

5. Windows Services.

In short, developers just need to import the BCL in their language code and use its
predefined methods and properties to implement common and complex functions like
reading and writing to file, graphic rendering, database interaction, and XML document
manipulation.

Below are the few more concepts that we need to know and understand as part of this .Net
framework.

3. Common Type System (CTS)

It describes set of data types that can be used in different .Net languages in common. (i.e),

CTS ensures that objects written in different .Net languages can interact with each other.

For Communicating between programs written in any .NET complaint language, the types
have to be compatible on the basic level.

The common type system supports two general categories of types:
Value types:
Value types directly contain their data, and instances of value types are either allocated on
the stack or allocated inline in a structure. Value types can be built-in (implemented by the
runtime), user-defined, or enumerations.
Reference types:
Reference types store a reference to the value's memory address, and are allocated on the
heap. Reference types can be self-describing types, pointer types, or interface types. The
type of a reference type can be determined from values of self-describing types. Self-
describing types are further split into arrays and class types. The class types are user-defined
classes, boxed value types, and delegates.
4. Common Language Specification (CLS)
Itis a sub set of CTS and it specifies a set of rules that needs to be adhered or satisfied by all
language compilers targeting CLR. It helps in cross language inheritance and cross language
debugging.
Common language specification Rules:
It describes the minimal and complete set of features to produce code that can be hosted by
CLR. It ensures that products of compilers will work properly in .NET environment.

Sample Rules:

1. Representation of text strings

2. Internal representation of enumerations

3. Definition of static members and this is a subset of the CTS which all
.NET languages are expected to support.

4. Microsoft has defined CLS which are nothing but guidelines that language
to follow so that it can communicate with other .NET languages in a

seamless manner.

Below mentioned the .Net Architecture stack for easy understanding.

Label control

Label control is used to place a static, non clickable (can't fire onclick event) piece of text on
the page. When it is rendered on the page, it is implemented through HTML
tag. Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height
etc. are implemented through style properites of . You can set its Text property
either by setting Text properties in the .aspx page or from server side page. (other
properties can also be set from both pages)

Following are few properties of the Label that are very useful.
EnableViewState true/false. If false ViewState will not be maintained.

Visible true/false. If false control will not be rendered to the page

DEMO : Label

Write something into the TextBox ‘

Ex. iExampIe of Label Controlé

// Label control code

<asp:Label ID="Label2" runat="server" BackColor="Coral"
ForeColor="blue" BorderColor="ActiveBorder"
BorderStyle="dashed" BorderWidth="1" Height="20"
Text="Example of Label Control" Width="200"
></asp:Label>

TextBox Control

TextBox control is used to enter data into the form that can be sent to the webserver by
posting the form.

DEMO : TextBox

TextMode is Singleline | Write some

TextMode is Multiline | TextBox with TextMode as Multiine :‘

=
| 2

PostBack the form ‘ It will Postback the page when cursor leaves this box.

Ex. ’TextBox value will be written here‘

// Singleline TextBox code
<asp:TextBox ID="TextBox1" runat="Server"
Width="300"></asp:TextBox>

Button control

Button control is generally used to post the form or fire an event either client side or server
side. When it is rendered on the page, it is generally implemented through <input
type=submit> HTML tag. However, if UserSubmitBehavior property is set to false then
control will render out as <input type=button>.

Following are some important properties that are very useful.

true/false. If true, the button will be used as client browser submit

UserSubmitBehavior . .
mechanism else asp.net postback mechanism.

Value can be set as true/false. This indicates whether validation will be

C Validati
ausesvafidation performed when a button is clicked.

PostBackUrl Indicates the URL on which the Form will be posted back.

Gets or Sets the name of the validation group that the button belongs

ValidationGrou . . .
P to. This is used to validate only a set of Form controls with a Button.

OnClick Attach a server side method that will fire when button will be clicked.

OnClientClick Attach a client side (javascript) event that will fire when button will be clicked.

LinkButton control

It implements an anchor <a/> tag that uses only ASP.NET postback mechanism to post the
data on the server. Despite being a hyperlink, you can't specify the target URL. There is no
UserSubmitBehavior property like Button control with LinkButton control.

Following are some important properties that are very useful.

Value can be set as true/false. This indicates whether validation will be

C Validati
AUSesVallaation | b erformed when a button is clicked.

PostBackUrl Indicates the URL on which the Form will be posted back.

Gets or Sets the name of the validation group that the button belongs to.

ValidationGrou . . .
P This is used to validate only a set of Form controls with a Button.

OnClick Attach a server side method that will fire when button will be clicked.

Attach a client side (javascript) method that will fire when button will be

OnClientClick clicked.

ImageButton control

ImageButton control is generally used to post the form or fire an event either client side or
server side. When it is rendered on the page, generally it is implemented through <input
type=image > HTML tag.

Following are some important properties that are very useful.

ImageUrl Gets or Sets the location of the image to display.

Value can be set as true/false. This indicates whether validation should be

CausesValidation performed when a button is clicked.

PostBackUrl Indicates the URL on which the Form will be posted back.

Gets or Sets the name of the validation group that the button belongs to.

ValidationGrou . . .
P This is used to validate only a set of Form controls with a Button.

Attach a client side (javascript) method that will fire when button will be

OnClientClick clicked.

OnClick Attach a server side method that will fire when button will be clicked.

Hyperlink control

Hyperlink control is used to jump to another location or to execute the script code. When
rendered on the page, it implements an anchor <a/> tag.

Following are some important properties that are useful.

NavigateUrl | Used to specify the location to jump to.

ImageUrl |Used to place an image instead of text as Hyperlink.

DropDownlist control

DropDownlList control is used to give a single select option to the user from multiple listed
items.

You can specify its height and width in pixel by setting its height and width but you will not
be able give mutliple select option to the user. When it is rendered on the page, it is
implemented through <select/> HTML tag. It is also called as Combo box.

Following are some important properties that are very useful.

SelectedValue Get the value of the Selected item from the dropdown box.
SelectedIndex Gets or Sets the index of the selected item in the dropdown box.
Selectedltem Gets the selected item from the list.

ltems Gets the collection of items from the dropdown box.

Name of the data source field to supply the text of the items. (No

DataTextField . . .
Xt need to set when you are adding items directly into .aspx page.)

Name of the data source field to supply the value of the items.

DataValueField (No need to set when you are adding items directly into .aspx
page.)
ID of the datasource component to provide data. (Only used
DataSourcelD when you have any DataSource component on the page, like

SqlDataSource, AccessDataSource etc.)

The datasource that populates the items in the dropdown box.
DataSource (Generally used when you are dynamically generating the items
from Database.)

true or false. If true, the form is automatically posted back to the
AutoPostBack server when user changes the dropdown list selection. It will also
fire OnSelectedIndexChanged method.

true or false. If true, the statically added item (added from .aspx
AppendDataBoundltems |page) is maintained when adding items dynamically (from code
behind file) or items are cleared.

Method name that fires when user changes the selection of the

OnSelectedindexChanged dropdown box. (Fires only when AutoPostBack=true.)

<asp:DropDownlList ID="DropDownList1" runat="server">
<asp:Listltem Text="Red" Value="red"></asp:Listltem>
<asp:Listitem Text="Blue" Value="blue"></asp:Listltem>
<asp:Listltem Text="Green" Value="green"></asp:Listltem>
</asp:DropDownlList>

ListBox control

ListBox control is used to give a single or multiple select options to the user from multiple
listed items.

All properties and its working resembles DropDownlList box. However, ListBox has two extra
properties called Rows and SelectionMode. ListBox control is used to give a single or
multiple select option to the user (based on the property set) from multiple listed items.
You can specify its height and width in pixel by setting its height and width but you will not
be able give mutliple select option to the user. When it is rendered on the page, it is
implemented through <select/> HTML tag. It is also called as Combo box.

You can add its option items by directly writing into .aspx page directly or dynamically add
at run time or bind through database.

Following are some important properties that are very useful.

Rows No. of rows (items) can be set to display in the List.

Single or Multiple. If multiple, it allows user to select multiple

SelectionMode items from the list by holding Ctrl or Shift key.

SelectedValue
SelectedIndex
Selectedltem

Items

DataTextField

DataValueField

DataSourcelD

DataSource

AutoPostBack

AppendDataBoundltems

Get the value of the Selected item from the dropdown box.
Gets or Sets the index of the selected item in the dropdown box.
Gets the selected item from the list.

Gets the collection of items from the dropdown box.

Name of the data source field to supply the text of the items. (No
need to set when you are adding items directly into .aspx page.)

Name of the data source field to supply the value of the items.
(No need to set when you are adding items directly into .aspx

page.)
ID of the datasource component to provide data. (Only used

when you have any DataSource component on the page, like
SqlDataSource, AccessDataSource etc.)

The datasource that populates the items in the listbox box.
(Generally used when you are dynamically generating the items
from Database.)

true or false. If true, the form is automatically posted back to the
server when user changes the dropdown list selection. It will also
fire OnSelectedIndexChanged method.

true or false. If true, the statically added item (added from .aspx
page) is maintained when adding items dynamically (from code
behind file) or items are cleared.

Method name that fires when user changes the selection of the

OnSelectedindexChanged dropdown box. (Fires only when AutoPostBack=true.)

<asp:ListBox ID="ListBox1" runat="server">
<asp:Listltem Text="Red" Value="red"></asp:Listltem>
<asp:Listltem Text="Blue" Value="blue"></asp:Listltem>
<asp:Listltem Text="Green" Value="green"></asp:Listltem>
</asp:ListBox>

CheckBox control

CheckBox control is used to give option to the user.

Following are some important properties that are very useful.

AutoPostBack

Form is automatically posted back when CheckBox is checked or

Unchecked.

CausesValidation

true/false. If true, Form is validated if Validation control has been used

in the form.

Checked true/false. If true, Check box is checked by default.

OnCheckedChanged

Fires when CheckBox is checked or Unchecked. This works only if
AutoPostBack property is set to true.

ValidationGroup Used to put a checkbox under a particular validation group. It is used
when you have many set of form controls and by clicking a paricular
button you want to validate a particular set of controls only.

<asp:CheckBox ID="checkbox2" runat="Server" Text="Click, if Office address is same as
Home address" AutoPostBack="True"
OnCheckedChanged="PutHomeAddressAsOfficeAddress" BorderColor="brown"
BorderWidth="1" CausesValidation="True" />

CheckBoxList control

CheckBoxList control is a single control that groups a collection of checkable list items, all

are rendered through an individual <input type=checkbox></input>.

Following are some important properties that are very useful.

SelectedValue
SelectedIndex
Selectedltem

TextAlign

DataTextField

DataValueField

DataSourcelD

DataSource

AutoPostBack

AppendDataBoundltems

OnSelectedindexChanged

Gets the value of first selected item.

Gets or Sets the index of the first selected item.
Gets the first selected item

Gets or Sets the alignment of the checkbox text.

Name of the data source field to supply the text of the items. (No
need to set when you are adding items directly into .aspx page.)

Name of the data source field to supply the value of the items.
(No need to set when you are adding items directly into .aspx

page.)
ID of the datasource component to provide data. (Only used

when you have any DataSource component on the page, like
SqlDataSource, AccessDataSource etc.)

The datasource that populates the items in the checkboxlist box.
(Generally used when you are dynamically generating the items
from Database.)

true/false. If true, the form is automatically posted back to the
server when user click any of the checkbox. It will also fire
OnSelectedindexChanged method.

true/false. If true, the statically added item (added from .aspx
page) is maintained when adding items dynamically (from code
behind file) or items are cleared.

Method name that fires when user click any of the checkbox in
the list. (Fires only when AutoPostBack=true.)

Items Gets the colleciton of the items from the list.

table/flow. Gets or Sets the layout of the chekboxes when

R tL t
epeatlayou rendered to the page.

Gets or Sets the no. of columns to display when the control is

RepeatColumns
P rendered.

. . Horizontal/Vertical. Gets or Sets the the value to indicate
RepeatDirection . . .
whether the control will be rendered horizontally or vertically.
<asp:CheckBoxList ID="CheckBoxList1" runat="Server">
<asp:Listltem Text="Red" Value="red"></asp:Listltem>
<asp:Listltem Text="Blue" Value="blue"></asp:Listltem>
<asp:Listltem Text="Green" Value="green"></asp:Listltem>

</asp:CheckBoxList>

RadioButton control

RadioButton control is used to give single select option to the user from multiple items.
Following are some important properties that are very useful.

Form is automatically posted back when Radio button selection is

AutoPostBack
utorostbac changed.

true/false. If true, Form is validated if Validation control has been used

CausesValidation .
in the form.

Checked true/false. If true, Radio button is selected by default.

Fires when Radio button selection changes. This works only if

OnCheckedCh d
ni-hecke anee AutoPostBack property is set to true.

ValidationGroup Used to put a radio button under a particular validation group. It is
used when you have many set of form controls and by clicking a
paricular button you want to validate a particular set of controls only.

GroupName It is used a group a set of radion buttons so only one of them can be
selected at a time.

<asp:RadioButton ID="RadioButton7" runat="Server" GroupName="1stGroup" Text="Red"
Checked="True" />

<asp:RadioButton ID="Radio8" runat="Server" GroupName="1stGroup" Text="Blue" />
RadioButtonList control

RadioButtonlList control is a single control that groups a collection of radiobuttons, all are
rendered through an individual <input type=radio></input>.

Following are some important properties that are very useful.
(RadioButtonList controls supports the same set of properties as the CheckBoxList control
does.

SelectedValue Get the value first selected item.

SelectedIndex Gets or Sets the index of the first selected item.
Selectedltem Gets the first selected item

TextAlign Gets or Sets the alignment of the radiobutton text.

Name of the data source field to supply the text of the items. (No

DataTextField o . .
need to set when you are adding items directly into .aspx page.)

Name of the data source field to supply the value of the items.

D .
ataValueField (No need to set when you are adding items directly into .aspx

page.)

ID of the datasource component to provide data. (Only used
DataSourcelD when you have any DataSource component on the page, like
SqlDataSource, AccessDataSource etc.)

The datasource that populates the items in the radiobuttonlist.
DataSource (Generally used when you are dynamically generating the items
from Database.)

true/false. If true, the form is automatically posted back to the
AutoPostBack server when user click any of the radiobutton. It will also fire
OnSelectedindexChanged method.

true/false. If true, the statically added item (added from .aspx
AppendDataBoundltems |page) is maintained when adding items dynamically (from code
behind file) or items are cleared.

Method name that fires when user click any of the radiobutton in

OnSelectedindexChanged the list. (Fires only when AutoPostBack=true.)

Items Gets the colleciton of the items from the list.

table/flow. Gets or Set the layout of the radiobuttons when

R L
epeatlLayout rendered to the page.

Get or Sets the no. of columns to display when the control is

RepeatColumns
P rendered.

Horizontal/Vertical. Gets or Sets the the value to indicate

RepeatDirection . . .
P whether the control will be rendered horizontally or vertically.

<asp:RadioButtonList ID="RadioButtonList1" runat="Server">
<asp:Listltem Text="Red" Value="red"></asp:Listltem>
<asp:Listltem Text="Blue" Value="blue"></asp:Listltem>
<asp:Listltem Text="Green" Value="green"></asp:Listltem>
</asp:RadioButtonList>

Image control
Image control is used to place an image on the page.

Following are some important properties that are very useful.

ImageUrl Url of image location.

AlternetText Appe'ars if image not loaded properly or if image is missing in the specified
location.

Tooltip Text message Appearing on mouse over the image

ImageAlign |Used to align the Text beside image.

<asp:Image ID="Image2" runat="Server" ImageUrl="~/images/Dot.gif" AlternateText="Dot
Logo"ImageAlign="textTop" ToolTip="Go to Dot Home page" />

ImageMap control

ImageMap control is used to create an image that contains clickable hotspot region.
Following are some important properties that are very useful.

ImageUrl Url of image location.
AlternetText |Appears if image not loaded properly

Tooltip Appears when on mouse over the image

ImageAlign Used to align the Text beside image.

PostBack/Navigate When Navigate, the user is navigated to a different

HotSpotMode URL. In case of PostBack, the page is posted back to the server.

Attach a server side event that fires after clicking on image when

OnClick HostSpotMode is PostBack.

You can access it in the server side click event through ImageMapEventArgs.
(eg. e.PostBackValue)

PostBackValue
<asp:ImageMap ID="ImageMap1" runat="Server" ImageUrl="controldata/gotocontrols.gif"
OnClick="FirelmageMapClick">
<asp:RectangleHotSpot AlternateText="Label" Left="10" Top="33" Right="75" Bottom="10"
NavigateUrl="~/tutorials/controls/label.aspx" />
<asp:RectangleHotSpot AlternateText="Button" Left="80" Top="33" Right="150"
Bottom="10" NavigateUrl="~/tutorials/controls/button.aspx" />
<asp:RectangleHotSpot AlternateText="ImageButton" Left="155" Top="33" Right="275"
Bottom="10" NavigateUrl="~/tutorials/controls/imagebutton.aspx" />

</asp:ImageMap>

Asp: Table control

Table control is used to structure a web pages. In other words to divide a page into several
rows and colums to arrange the information or images.

Table control is used to structure a web pages. In other words to divide a page into several
rows and colums to arrange the information or images. When it is rendered on the page, it
is implemented through <table> HTML tag.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height etc.
are implemented through style properites of <table> tag.

We can simply use HTML <table> control instead of using asp:Table control. However many
of one benefits of using asp:Table control is we can dynamically add rows or columns at the
runtime or change the appearance of the table.

You can skip ID property of the TableRow or TableCell, however it is advisable to write these
property otherwise you will not be able to play with these controls.

Following are some important properties that are very useful.

BacklmageUrl Used to Set background image of the table

Caption Used to write the caption of the table.
<asp:Table ID="Table2" runat="Server" CellPadding="2" CellSpacing="1"
BorderColor="CadetBlue" Caption="Demo of asp:Table control" BorderWidth="1"
BorderStyle="Dashed">

<asp:TableRow ID="TableRow?2" runat="Server" BorderWidth="1">
<asp:TableCell ID="TableCell4" runat="Server" BorderWidth="1">

Row 1 - Cell 1 </asp:TableCell>

<asp:TableCell ID="TableCell5" runat="Server">

Row 1 - Cell 2 </asp:TableCell> </asp:TableRow>

<asp:TableRow ID="TableRow3" runat="Server">

<asp:TableCell ID="TableCell6" runat="Server">

Row 2 - Cell 1 </asp:TableCell>

<asp:TableCell ID="TableCell7" runat="Server">
Row 2 - Cell 2 </asp:TableCell> </asp:TableRow> </asp:Table>

BulletedList control

BulletedList control is used to display the data in a list prefixed with bullet characters.
Following are some important properties that are very useful.

DisplayMode HyperLink/LinkButton/Text. Determines how to display the items.

Sets a starting number for Bulleted list when BulletStyle is set to

FirstBulletNumber .
Numbering.

Items Gets the colleciton of the items in the list control.

Circle/CustomlImage/Disc/LowerAlpha/LowerRoman/Numbered/Squar

BulletStyle e/UpperAlpha/UpperRoman. Determines the style of the bullet.

AppendDataBoundl | Determines whether statically defined items should remain and shown
tems when adding items dynamically.

Name of the field to set as items text. Used when DisplayMode is

DataTextFiel
ataTextField Hyperlink or LinkButton.

Name of the field to set as items value. Used when DisplayMode is

DataValueField Hyperlink or LinkButton.

BulletimageUrl Used to set the Bullet Image when BulletStyle is CustomImage.

<asp:BulletedList ID="BulletedList3" runat="Server" BorderColor="Blue" BorderWidth="1">
<asp:Listltem Text="Item 1"></asp:Listltem>
<asp:Listltem Text="Item 2"></asp:ListIltem>
<asp:Listltem Text="Item 3"></asp:Listltem

</asp:BulletedList>

Literal control

Literal control is the rarely used control which is used to put static text on the web page.
Ideally Literal control is the rarely used control which is used to put static text on the web
page.

When it is rendered on the page, it is implemented just as a simple text.

Unlike asp:Label control, there is no property like BackColor, ForeColor, BorderColor,
BorderStyle, BorderWidth, Height etc. of Literal control. That makes it more powerful, you
can even put a pure

HTML contents into it.

Select color to change the background color the cell Ex. Just a text inside Literal Control

// CODE BEHIND

// Fires when Button is clicked

protected void ChangeBackColor(object sender, EventArgs e)

{ Literall.Text =" bgcolor="" + dropStatic.SelectedValue + """;

litText.Text = "<div style='background-color:white;color:#000000'>Literl Control is
powerful</div>";}

Calendar control
Calendar control is used to display one month calendar and allows to navigate backword &
forward through dates, and months.

There are many properties of Calendar control to customize the functionality and
appearance. However, these are some important properties that are very useful.

‘ Properties H Description ‘
‘Caption HGets or sets the caption for the calendar control. ‘
‘CaptionAIign HGets or sets the alignment for the caption. ‘
. Gets or sets the number of spaces between the data and the cell
CellPadding border
‘CeIISpacing HGets or sets the space between cells. ‘
Gets the style properties for the section that displays the day of the
DayHeaderStyle week yle prop play ¥
‘DayNameFormat HGets or sets format of days of the week. ‘
‘DaySter HGets the style properties for the days in the displayed month. ‘
‘FirstDayOfWeek HGets or sets the day of week to display in the first column. ‘
Gets or sets the text for next month navigation control. The default
NextMonthText value is > X X vigat! !
Gets or sets the format of the next and previous month navigation
NextPrevFormat control
Gets the style properties for the days on the Calendar control that are
OtherMonthDayStyle . .
r vy not in the displayed month.
Gets or sets the text for previous month navigation control. The
PrevMonthText default value is <.

‘SelectedDate

HGets or sets the selected date. ‘

‘SelectedDates

HGets a collection of DateTime objects representing the selected dates.‘

‘SelectedDaySter

HGets the style properties for the selected dates. ‘

SelectionMode

Gets or sets the selection mode that specifies whether the user can
select a single day, a week or an entire month.

SelectMonthText

Gets or sets the text for the month selection element in the selector
column.

SelectorStyle

HGets the style properties for the week and month selector column.

SelectWeekText

Gets or sets the text displayed for the week selection element in the
selector column.

ShowDayHeader

Gets or sets the value indicating whether the heading for the days of
the week is displayed.

ShowGridLines

Gets or sets the value indicating whether the gridlines would be
shown.

ShowNextPrevMonth

Gets or sets a value indicating whether next and previous month
navigation elements are shown in the title section.

‘ShowTitIe HGets or sets a value indicating whether the title section is displayed. ‘
‘TitIeFormat HGets or sets the format for the title section. ‘
‘Titlestyle HGet the style properties of the title heading for the Calendar control. ‘
‘TodayDaySter HGets the style properties for today's date on the Calendar control. ‘
‘TodaysDate HGets or sets the value for today's date. ‘

UseAccessibleHeader

Gets or sets a value that indicates whether to render the table header
<th>HTML element for the day headers instead of the table data <td>
HTML element.

‘VisibIeDate

HGets or sets the date that specifies the month to display. ‘

‘WeekendDaySter

HGets the style properties for the weekend dates on the Calendar ‘

control.

The Calendar control has the following three most important events that allow the
developers to program the calendar control. They are:

‘ Events H Description
‘SelectionChanged Hlt is raised when a day, a week or an entire month is selected.
It is raised when each data cell of the calendar control is
DayRender
rendered.
‘VisibIeMonthChanged Hlt is raised when user changes a month.

Panel control

Panel control is generally used to keep a set of controls into it.
Following are some important properties that are very useful.

GroupingText |Its used to set the caption of the group of controls inside the panel.

Visible true/false. Used to hide or show the panel.

Login control

Login control provides a ready to use user interface that can be used as a Login interface in
the web site.

Following are some important properties that are very useful.

Properties of the Login Control
TitleText Indicates the text to be displayed in the heading of the control.
InstructionText Indicates the text that appears below the heading of the control.

UserNamelabelText Indicates the label text of the username text box.

PasswordLabelText Indicates the label text of the password text box.

FailureText Indicates the text that is displayed after failure of login attempt.
UserName Indicates the initial value in the username text box.
LoginButtonText Indicates the text of the Login button.

LoginButtonType Button/Link/Image. Indicates the type of login button.
DestinationPageUrl Indicates the URL to be sent after login attempt successful.

true/false. Indicates whether to show Remember Me checkbox or

DisplayRememberMe
not.

VisibleWhenLoggedin :Ltéeé?elrs(ies. ||£;ag|§ji:re control is not displayed on the page when
CreateUserUrl Indicates the url of the create user page.
CreateUserText Indicates the text of the create user link.
PasswordRecoveryUrl |Indicates the url of the password recovery page.
PasswordRecoveryText |Indicates the text of the password recovery link.

Style of the Login Control

CheckBoxStyle Indicates the style property of the Remember Me checkbox.
FailureStyle Indicates the style property of the failure text.
TitleTextStyle Indicates the style property of the title text.

LoginButtonStyle Indicates the style property of the Login button.

TextBoxStyle Indicates the style property of the TextBox.
LabelStyle Indicates the style property of the labels of text box.
HyperLinkStyle Indicates the style property of the hyperlink in the control.

Indicates the style property of the Instruction text that appears

InstructionTextStyle .
¥ below the heading of the control.

Events of the Login Control

Loggingln Fires before user is going to authenticate.
LoggedIn Fires after user is authenticated.
LoginError Fires after failure of login attempt.

Fires to authenticate the user. This is the function where you need

Authenticate) .
to write your own code to validate the user.

User Name:
Password:

Remember me next time.

Register User
Forget password?

// Login Control //////11111111111111111111]]
<asp:Login ID="Login1" runat="server" BackColor="#F7F6F3" BorderColor="#E6E2D8"

BorderPadding="4"

BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana" Font-Size="0.8em"
ForeColor="#333333" OnAuthenticate="Loginl_Authenticate"
OnlLoginError="Login1_LoginError">

<TitleTextStyle BackColor="#5D7B9D" Font-Bold="True" Font-Size="0.9em"
ForeColor="White" />

<LoginButtonStyle BackColor="#FFFBFF" BorderColor="#CCCCCC" BorderStyle="Solid"
BorderWidth="1px"

Font-Names="Verdana" Font-Size="0.8em" ForeColor="#284775" />
</asp:Login>

LoginView control

LoginView control is very simple yet very powerful and customizable. It allows user to
customize its view for both anonymous user and logged in user.

LoginView Control //////11111111111111111111]]
<asp:LoginView ID="LoginView1" runat="Server">
<AnonymousTemplate>
Welcome, Guest
<asp:LoginStatus ID="LoginStatus1" runat="Server" />

</AnonymousTemplate>

http://www.dotnetfunda.com/tutorials/controls/createuser.aspx
http://www.dotnetfunda.com/tutorials/controls/receoverypassword.aspx

<LoggedInTemplate>
Welcome,
<asp:LoginName ID="LoginName1l" runat="Server" />
<asp:LoginStatus ID="LoginStatus1" runat="Server" />
</LoggedInTemplate>

File Upload Control

ASP.NET has two controls that allow users to upload files to the web server. Once the server
receives the posted file data, the application can save it, check it, or ignore it. The following
controls allow the file uploading:

e HtmlinputFile - an HTML server control
¢ FileUpload - and ASP.NET web control

Both controls allow file uploading, but the FileUpload control automatically sets the
encoding of the form, whereas the HtmllnputFile does not do so.

In this tutorial, we use the FileUpload control. The FileUpload control allows the user to
browse for and select the file to be uploaded, providing a browse button and a text box for
entering the filename.

Once, the user has entered the filename in the text box by typing the name or browsing, the
SaveAs method of the FileUpload control can be called to save the file to the disk.
The basic syntax of FileUpload is:

<asp:FileUpload ID="Uploader" runat = "server" />

The FileUpload class is derived from the WebControl class, and inherits all its members.
Apart from those, the FileUpload class has the following read-only properties:

| Properties || Description

|FiIeBytes ||Returns an array of the bytes in a file to be uploaded.

|FiIeContent||Returns the stream object pointing to the file to be uploaded

|FiIeName ||Returns the name of the file to be uploaded.

|HasFiIe ||Specifies whether the control has a file to upload.

|PostedFiIe ||Returns a reference to the uploaded file.

The posted file is encapsulated in an object of type HttpPostedFile, which could be accessed
through the PostedFile property of the FileUpload class.
The HttpPostedFile class has the following frequently used properties:

‘ Properties H Description ‘
‘ContentLength HReturns the size of the uploaded file in bytes. ‘
‘ContentType HReturns the MIME type of the uploaded file. ‘
‘FiIeName HReturns the full filename. ‘
‘InputStream HReturns a stream object pointing to the uploaded fiIe.‘
For Example
Dim strname, strpath, strfullpath As String
strname =""

If FileUpload1.HasFile Then

strname = FileUpload1.FileName
strpath = Server.MapPath("~/image/")
strfullpath = strpath + strname
FileUpload1.SaveAs(strfullpath)

End If

Request:

Information or message send by client to server is known as request.
The request object is an instance of the System.Web.Httprequest class.

This object represents the values and properties of the http request that cause your page to
be loaded.

It contains all the URL parameters and all other information sent by a client.
Http request properties:

1. Application path and Physical path:-
Application path gets the ASP.Net applications virtual directory (URL). While physical
path gets the real directory.

2. Browser:-
This provides a link to an http browser capabilities object which contains properties
describing various browser features, such as supports for activates control, cookies,
VB script and frames.

3. Cookies:-
This gets the collection of cookies sent with this request.

4. Form:-
This represents the collection of form variable that were posted back to the page. In
almost all cases, you will retrieve this information from control properties instead of
using this collection.

5. IsLocal:-
This returns true, if the user is requesting the page from the current computer.

6. Querystring:-
This provides the parameters that were passed along with the Querystring.

7. URL and URL Reffer:-
This provides a URL object that represent the current address for the page and the
page were the user is coming from (the previous page that link to this page)

8. User Host address and User Host name:-
This get the IP address and the DNS name of the remote client.
You could also access this information the server variables collection. However, this
information may not always be available.

Response:

Information send by server to client is known as Response.

The response object is a instance of the system.web.httpresponse class and it represents
the web server response to a client request.

The http response does till provide important functions namely cookie features and the
redirect method. The redirect method allows you to send the user to another page.

Here is an example,

You can redirect to a file in the current directory Response.Redirect(“default2.aspx”)

You can redirect to other website Response.Redirect(“http://www.google.com”)

The Redirect() method requires a round-trip. Essentially, it sends a message to the browser

that instructs it to request a news page.

If you want to transfer the user to another page in the same web application, you can use a

faster approach with the Server.Transfer() method.

Http response members:

1. Cookies:-
This is the collection of cookies send with the response. You can use this property to
add additional cookies.

2. IsClientConnected:-
This is a Boolean value indicating whether the client is still connected to the server. If
it is not, you might want to stop a time consuming operation.

3. Write(), BinaryWrite() and WriteFile():-
This method allows you to write the text or binary content directory to the response
string. You can even write the content of a file.

4. Redirect:-
This method transfers the user to another page in your application or a different
website.

Server:

The server object is an instance of the System.Web.HttpServerUtility class.

Http server utility methods:

1.

MachineName:-

A property representing the computer name of the computer on which the page is
running. This is the name of webserver computer. Uses to identify itself to rest of the
network.

GetlLastError:-

Retrieves the exception object for the most recently encountered error, (all or a null
reference if there is not one). This error must have occurred while processing the
current request and it must not have been handled.

HTML Encode and HTML Decode:-

Changes an ordinary string with a legal HTML characters.

URL Encode and URL Decode:-

Changes an ordinary string into string with legal URL character.

MapPath():-

Returns the physical file path the co-responds to specified virtual file path on the
web server.

Transfer():-

The transfer execution to another webpage in the current application. This is similar
to Response.Redirect(). But, it is faster.

http://www.google.com/

It cannot be used to transfer the page to a site on another web server or to a non

ASP.Net page (such as an HTML page or an ASP page)

The transfer method is quickest to redirect user to another page in your

application.When you use this method a round-trip is not involved. Instead the

ASP.Net engine simply loads the new page and begins processing it.

As a result the URL i.e. displayed in the client browsers won’t change.

You can transfer to a file in the current web application.

i.e.Server.Transfer(“newpage.aspx”)

You can’t redirect to another website. This attempt will cause an error.

i.e.Server.Transfer(“http://www.google.com”)

The MapPath() is another useful method of the server object.

For e.g. Imagine you want to load a file name info.txt from the current virtual

directory.

Instead of hard coding path, you can use Request.ApplicationPath to get the
current relative virtual directory and Server.MapPath to convert this to an absolute

physical path.
Here, is an example
Dim physicalpath as string

Physicalpath=Server.MapPath(“~/data/info.txt”)

Difference between Server.Transfer and Response.Redirect:

Response.Redirect

Server.Transfer

Response.Redirect involves a round-trip to
the server.

Server.Transfer avoids the round-trip.

It just changes the focus of the web server to
different page and transforms the page
processing to a different page.

Response.Redirect can be used for both
.aspx and HTML pages.

Server.Transfer can be used only for .aspx
page.

Response.Redirect can be used to redirect a
user to an external website.

Server.Transfer can be used only on sites
running on the same server.

You can’t use Server.Transfer to redirect the
user to a page running on different server.

Response.Redirect changes the URL in the
browser. So they can be bookmark.

Serever.Transfer retains the original URL in
the browser.

It just replaces the content of the previous
page with new page.

HTML Server Control:

This are controls which are defined in the namespace System.Web.Ul.HtmIControls

There are 20 different HTML server control. They are divided into different catagories based

on whether they are input control or container control. Following diagram shows this

http://www.google.com/

hierarchy.

System Object
System. UL Web. Control
HTML Control
HTML Input Control HTML Container Control HIMLImage
| HTML Link
- HTML I'p Button - HTML Anchor
- HTML I'p Submit - HTML Bufton .
- HTML I'p Reset - HTML Form HTML Title
- HTML I'p Checkbox - HTML Select
- HTML LIp File - HTML Table
- HTML LI'p Hidden - HTML Table Cell
- HTML I'p Image - HTML Table Row
- HTML I'p Radio Button - HTML Textarea
- HTML I'p Text - HTML Generic Control
- HTML I'p Password
HTML Head

Fig: HTML Server Control

The HTML Control Class:

All the HTML server controls derives from the HTML base class HTML control. The following
are set of common properties of HTML control class.

i Attribute:-
Allow to access or add attribute in the control tag.
ii. Disabled:-
It sets or gets the control disabled state. If true then the control Is usually grayed
and not usable.
iii. Style:-
Returns a collection of CSS attributes that are applied to the control.
iv. Tagname:-
Returns the control tag name.

The HTML Container Control Class:

Any HTML tag that has both an opening and closing tag can contain other HTML content or
controls i.e. anchor tag <a> which usually wraps text or an image with the text.

There are other tag like <div>....</div> which is also use as a container tag.

In addition to this we have bold tag.

In addition to this we can use this tag to map the HTML server control class by using the
attribute runat="server”.

In this case we can interact with this tag using the HTML generic control.
The following are the 2 main properties of HTML container control:-

i InnerHTML:-
Returns or sets the HTML tags inside the opening and closing tags. When you use
the property, all characters are left as it is. This means you can embedded HTML
markup.

ii. InnerText:-
Returns or sets the text inside the opening and closing tags. When you use this
property, any characters that would be interacted as special HTML syntax are
automatically replaced with the HTML entity equivalents.

The HTML Input Control Class:

The HTML input control class allow for user interaction. It include checkboxes, textboxes,
button and list boxes. The type attribute indicate the type of input control as in

<input type="text”> (a textbox), <input type="file”> (control for uploading file).
The HTML Input Control properties:

i Name:-
Gets the unique identifier name for the HTML input control.
ii. Type:-
Gets or sets the type of an HTML input control. For e.g. If this property is set to
text, the HTML input control is textbox for data entry.
iii. Value:-
Gets or sets the value associated with input control.

The HTML Server Control Classes:

HTML server controls and the specific properties and events that each one adds to the base
class.

Runat="server” will allow to access particular HTML control at coding file.

HTML server control classes:-

Tag declaration .Net class Specific member

 HTML anchor HREF, target, title, name,
server click event.

<button runat="server”> HTML Button CausesValidation,
ValidationGroup, Server click
event.

<Form runat="server”> HTML Form Name, method, target,
DefaultButton, DefaultFocus

 HTML Image Align, alt, border, height, src,

width.

<input type="button” runat="server”>

HTML input button

Name, type, value,
CausesValidation,
ValidationGroup, server click
event.

<input type="reset” runat="server”>

HTML input reset

Name, type, value.

<input type="submit” runat="server”> | HTML input Name, type, value,
submit CausesValidation,
ValidationGroup, server click
event
<input type="checkbox” HTML input Check, type, name, value,
runat="server”> checkbox server click event

<input type="file” runat="server”>

HTML input file

Accept,maxlength, name,
posted file, size, type, value.

<input type="hidden” runat="server”> | HTML input Name, type, value, server
hidden change event.
<input type="image” runat="server”> HTML Align, alt, border, name, src,

inputimablege

type, value,
CausesValidation,
ValidationGroup, sercer click
event

<input type="radio” runat="server”>

HTML input radio
button

Check, type, name, value,
server change event

<input type="text” runat="server”>

HTML input text

Maxlength, name, type,
value, serverChange event

<input type="password” HTML input Maxlength, name, type,

runat="server”> password value, serverChange event

<select runat="server”> HTML select Multiple, selectedindex, size,
value, datasource,
datatextfield, datavaluefield,
items(collection), server
change event

<table runat="server”’> HTML table Align, bgcolor, border,

border-color, cellpadding,
cellspacing, height, nowrap,
width, rows(colloction).

<th runat="server”>

HTML table cell

Align, bgcolor, border,
colspan, rowspan, nowrap,
valign

<tr runat="server”>

HTML table row

Align, bgcolor, height, valign,
cells (collection)

<textarea runat="server”> HTML text area Cols, name, rows, value,
server change event.

Any other <html> with runat="server” | HTML generic None.

attribute control

ImageMap:

ImageMap control is used to create an image that contains clickable hotspot region.
When user click on the region, the user is either sent to a URL or a sub program is
called. When it is rendered on the page, it is implemented through HTML tag.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height
etc. are implemented through style properites of .

Following are some important properties that are very useful.

ImageUr! Url of image location.

AlternetText Appears if image not loaded properly

Tooltip Appears when on mouse over the image
ImageAlign Used to align the Text beside image.
PostBack/Navigate When Navigate, the user is navigated to a different URL. In case of
HotSpotMode PostBack, the page is posted back to the server.
. Attach a server side event that fires after clicking on image when HostSpotMode is
OnClick K g P
PostBack.
You can access it in the server side click event through ImageMapEventArgs. (eg.
PostBackValue g gefiap gs- (eg
e.PostBackValue)
Mavigate to following controls Fires Sarver svant

Label Button ImageButton ListBox

Clicking on

<asp:ImageMap ID="ImageMapl" runat="Server"
ImageUrl="controldata/gotocontrols.gif" OnClick="FireImageMapClick">

<asp:RectangleHotSpot AlternateText="Label" Left="10"
Top="33" Right="75" Bottom="10" NavigateUrl="~/tutorials/controls/label.aspx" />

<asp:RectangleHotSpot AlternateText="Button" Left="80"
Top="33" Right="150" Bottom="10" NavigateUrl="~/tutorials/controls/button.aspx" />

<asp:RectangleHotSpot AlternateText="ImageButton"
Left="155" Top="33" Right="275" Bottom="10"
NavigateUrl="~/tutorials/controls/imagebutton.aspx" />

<asp:RectangleHotSpot AlternateText="Fires server side
Click Event. Postback value is ListBox" Left="300" Top="40" Right="400" Bottom="0"
NavigateUrl="~/tutorials/controls/listbox.aspx" HotSpotMode="PostBack"
PostBackValue="ListBox" /></asp:ImageMap>

Asp Table:

Table control is used to structure a web pages. In other words to divide a page into
several rows and columns to arrange the information or images. When it is rendered on
the page, it is implemented through <table> HTML tag.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height
etc. are implemented through style properites of <table> tag.

We can simply use HTML <table> control instead of using asp:Table control. However
many of one benefits of using asp:Table control is we can dynamically add rows or
columns at the runtime or change the appearance of the table.
You can skip ID property of the TableRow or TableCell, however it is advisable to write
these property otherwise you will not be able to play with these controls.

Following are some important properties that are very useful.

BackImageUrl! Used to Set background image of the table

Caption Used to write the caption of the table.

Demo of asp:Table control

Row 1 - Cell 1{Row 1 - Cell 2 Add One Row and 2 Colurm

Change Table Back Color

Row 2 - Cell 1 Row 2 - Cell 2

<asp:Table ID="Table2" runat="Server" CellPadding="2" CellSpacing="1"
BorderColor="CadetBlue" Caption="Demo of asp:Table control" BorderWidth="1"
BorderStyle="Dashed">
<asp:TableRow ID="TableRow2" runat="Server" BorderWidth="1">
<asp:TableCell ID="TableCell4" runat="Server" BorderWidth="1">
Row 1 - Cell 1
</asp:TableCell>
<asp:TableCell ID="TableCell5" runat="Server">
Row 1 - Cell 2
</asp:TableCell>
</asp:TableRow>
<asp:TableRow ID="TableRow3" runat="Server">
<asp:TableCell ID="TableCell6" runat="Server">
Row 2 - Cell 1
</asp:TableCell>
<asp:TableCell ID="TableCell7" runat="Server">
Row 2 - Cell 2
</asp:TableCell>
</asp:TableRow>
</asp:Table>

BulletedList :
BulletedList control is used to display the data in a list prefixed with bullet characters.

The item can be statically written or can be bound with the datasource. When it is
rendered on the page, it is implemented through <table> HTML tag.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height
etc. are implemented generally through style properites of tag, However it depends
on BulletStyle property.

Following are some important properties that are very useful.

DisplayMode HyperLink/LinkButton/Text. Determines how to display the items.

FirstBulletNumber Sets a starting number for Bulleted list when BulletStyle is set to Numbering.

Items Gets the colleciton of the items in the list control.

Circle/CustomImage/Disc/LowerAlpha/LowerRoman/Numbered/Square/UpperAlpha/
UpperRoman. Determines the style of the bullet.

BulletStyle

javascript:__doPostBack('ctl00$PlaceHolderForContents$lnl1','')

AppendDataBoundIt Determines whether statically defined items should remain and shown when adding
ems items dynamically.
. Name of the field to set as items text. Used when DisplayMode is Hyperlink or

DataTextField) play P

LinkButton.

. Name of the field to set as items value. Used when DisplayMode is Hyperlink o

DataValueField) ! ! val W splay 's Hypertl r

LinkButton.
BulletImageUrl! Used to set the Bullet Image when BulletStyle is CustomImage.
Literal:

Ideally Literal control is the rarely used control which is used to put static text on the
web page. When it is rendered on the page, it is implemented just as a simple text.
Unlike asp:Label control, there is no property like BackColor, ForeColor, BorderColor,
BorderStyle, BorderWidth, Height etc. of Literal control. That makes it more
powerful, you can even put a pure HTML contents into it.

Red -
Select color to change the background color the cell EX JUSt_a 823s
inside Literal
Change Background Color Control

// Set the background color of the cell from server side
event
<td> <asp:Literal ID="Literal2" runat="Server" />
Ex. <asp:Literal ID="Literal3" runat="Server" Text="Just
a text inside Literal Control"></asp:Literal>
</td>
</tr>

// CODE BEHIND
// Fires when Button is clicked

Literall.Text = " bgcolor='" + dropStatic.Selectedvalue + "'";
litText.Text = "<div style='background-color:white;color:#000000'>Literl
Control is powerful</div>";

Page 1 of 7

Use of ADO.NET objects directly in Visual Basic code.
There are two ways to access & manipulate data of database. First method is visually (with

graphical tools) & second method is via coding (using ADO.NET objects directly in coding).

ADO .NET objects are Connection Object, Command object, DataAdapter object,
DataSet objects, DataReader Object, DataTable Object, DataRow Object, DataColumn Object,
etc.

(1) Connection Objects :

The Connection object provides connectivity (physical connection) to a data source
(database). Using its method, you can open & close the connection, change the database &
manage transactions.

Connection class exist for ODBC (OdbcConnection), OLE DB (OledbConnection), SQL
Server (SglConnection) &0racle (OracleConnection)

Property :
(1) ConnectionString : It is the string that is used to connect (open) a database when the open
method is executed.

ConnectionString property of OledbConnection object has arguments like Provider, Data
Source, Database, User ID, Password.

- Example ConnectionString property of OleDbConnection class to connect MS Access:
Imports System.Data.Oledb

Con = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
'D:\SAI_DB.mdb"") Con.Open()

—>Example ConnectionString property of OleDbConnection class To connect Oracle :
Imports System.Data.OleDb

Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User ID=SCOTT;
PASSWORD=TIGER"”
Con.Open

(2) ConnectionTimeout : The maximum time the Connection object attempts to make the
connection before throwing an exception. (before terminating the attempt and generating an
error). By default is 15 seconds.

(3) DataSource : It is used to specify the server name of the computer on which the database is
running. When connecting to an access database, this specifies the path & database name.

(4) State : Gets (returns) the current state of the connection. For example we get Closed, if the
connection is closed. & we get Open, if the connection is open.

Page 2 of 7

MsgBox(Con.State.ToString)
(5) ServerVersion :Gets the version of the server.
(6) Provider : This property represents the name of the provider.

Provider parameter specifies the driver that uses to communicate with the database.
The most common drivers are Microsoft.Jet.OLEDB.4.0 for Access, SQLOLEDB for SQL server
&MSDAORA for Oracle.
Method :
(1) Open : Opens a database connection with the property settings specified by the
ConnectionString.
(2) Close : Closes the connection to the data source. After the connection is close no
transaction can be perform on the database data.

Con.Close()

Con.Dispose() ‘Releases the resources used by the connection object.

Con = Nothing ‘Release your reference to the connection object
(3) BeginTransaction : Starts (begins) a database transaction.
(2) Command Obijects :

The Command object is used to execute SQL statements (Select, Insert, Update &

Delete) as well as stored procedure.In addition to the DML statements, you can also execute
DDL statements that change the structure of the database.
You can also use the Parameters collection in the Command class to pass parameters to
stored procedures or SQL statements.
Command object exist for ODBC (OdbcCommand), OLE DB (OledBCommand), SQL Server
(SglCommand) & Oracle (OracleCommand).
Property :
(1) CommandText : It is the string, contains either SQL statements or name of the stored
procedure to be executed.
(2) CommandType : It represents the type of the Command object. Depending upon the
command type Command object executes the command. The different command types
are as follows.

StoredProcedure :The name of a stored procedure.
TableDirect: The name of a table.
Text: SQL statements. (Default)

For example : Cmd.CommandType = CommandType.Text

(3) Connection : The name of the active Connection object, through which the command is
to be executed.
(4) Parameters : The parameters property contains a collection of parameters for the SQL
statements or stored procedure.
Methods :

Page 3 of 7

(1) ExecuteNonQuery : Executes commands that do not return data rows. But it returns
number of rowsaffected by the commands. (Such as SQL INSERT, DELETE, UPDATE, and
SET statements).

(2) ExecuteScalar : Calculates and returns a single value, such as a sum, min, max from a
database. Used for aggregate function.

(3) ExecuteReader : Executes SQL commands that return rows. ExecuteReader method is
used to create data reader.

(4) Cancel : Cancels the execution of the command.

Example 1 :

Imports System.Data.OleDb
Dim Con As New OleDbConnection
Dim Cmd As New OleDbCommand
Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User ID=SCOTT;
PASSWORD=TIGER"”
Con.Open

Dim SAI_STR As String = "Insert Into Employee Values(.........ccceuuune.
Cmd = New OleDbCommand(SAl_STR, Con)
Cmd.ExecuteNonQuery()
(3) Data Adapter Objects :
The DataAdapter object provides the bridge between the DataSet object and the data
source (database) for retrieving and saving data.

The DataAdapter’s sole purpose is to retrieves data from the database, then populates
(fill) the Datasets & also used to send (propagate) the Datasets changes to the database. (The
DataAdapter object has Fill method to load data from the data source into the dataset, and the
Update method to send changes you've made in the dataset back to the data source).

The DataAdapter contains four command objects: SelectCommand, InsertCommand,
UpdateCommand, and DeleteCommand. The DataAdapter uses the SelectCommand to fill a
DataSet & the remaining three commands to transmit changes back to the data source.

Data adapter object exist for ODBC (ODBCDataAdapter), OLE DB (OleDbDataAdapter),
SQL Server (SqglDataAdapter) & Oracle (OracleDataAdapter).

Property :
(1) SelectCommand : The name of the Command object used to retrieve rows from the
data source.
(2) InsertCommand : The name of the Command object used to insert rows in the data
source.

Page 4 of 7

(3) UpdateCommand : The name of the Command object used to update rows in the data
source.

(4) DeleteCommand : The name of the Command object used to delete rows in the data
source.

Methods :
(1) Fill : . The Fill method which loads data from the data source (database) into the Dataset. If
the Connection is closed before Fill is called, it is opened to retrieve data and then closed.
Syntax 1:
OleDbDataAdapter.Fill(DataSet)
Syntax 2:
OleDbDataAdapter.Fill(DataTable)
Syntax 3:
OleDbDataAdapter.Fill(DataSet, TableName)
(2) Update : Update method is used to send changes you've made in the dataset back to the
data source (database).
Syntax 1:
OleDbDataAdapte.Update(DataSet)
Syntax 2:
OleDbDataAdapter.Update(DataTable)
Example :

Imports System.Data.OleDb
Dim Con As New OleDbConnection
Dim DA As New OleDbDataAdapter
Dim DT As New DataTable
Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User ID=SCOTT;
PASSWORD=TIGER”
Con.Open
DA = New OleDbDataAdapter("SELECT * FROM STUD", CON)
DT = New DataTable
DA.Fill(DT)
DataGridView1.DataSource = DT

(4) DataSet Objects :

It is the major component of ADO.NET. DataSet is a memory-resident representation of data. A
dataset is a disconnected cache of data, and, that is stored in memory.DataSet is always
disconnected from the data source. It can contain data from multiple sources.

Page 5 of 7

As we have seen in ADO.NET object model, The DataSet composed of two primary
objects: the DataTableCollection, accessed through Tables property, and
DataRelationCollection accessed through the Relations property. The DataTableCollection
contains zero or more DataTable objects, which are in turn made up of three collections:
DataColumnColection, DataRowCollection, and ConstraintCollection. The
DataRelationCollection contains zero or more DataRelation objects.

The dataset is a disconnected, in-memory representation of data. An advantage of this
is that we do not need to have a continuous connection to the database.

Property :

(1) Relations: It is the collection of DataRelation objects, which defines the relationship of the
DataTables within the dataset.

(2) Tables : It is the collection of DataTables contained in the dataset.

Method :

(1) AcceptChanges : Accepts (Commits) all the pending changes made to the dataset.
(2)RejectChanges: Roll back all changes pending in the DateSet. Rolls back the changes made to
the dataset since it was created or since the AcceptChanges method was called.

(3) Copy : Copies the structure & contents of the DataSet.

(4) Clear : Empties all the tables in the DataSet.

(5) Reset: Returns the DataSet back to its original state.

(6) CreateDataReader : Returns a DataTableReader from the DataSet, allowing you to read-
only, forward-only access to the data. The DataTableReader is functionally identical
DataReader.

Example :

Imports System.Data.OleDb

Dim Con As New OleDbConnection
Dim DA As New OleDbDataAdapter
Dim DS as New DataSet
Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User
ID=SCOTT; PASSWORD=TIGER”
Con.Open
DA = New OleDbDataAdapter("SELECT * FROM STUD", CON)
DS = New DataSet()
DA.Fill(DS,”STUD”)
DataGridView1.DataSource = DS
DataGridViewl.DataMember="STUD”

Page 6 of 7

Client Application

DataSet] Data Adapter | Database

(5) DataReader Objects :

The DataReader in addition to datasets, there are also datareaders, which are
extremely fast, read-only, forward only low-overhead way of retrieving information from the
database. You can only move through records with in ascending ordermeans you cannot go
backward. ExecuteReader method of a command object is used to create data reader.

DataReader is appropriate when you are processing rows individually and then
discarding them. For example, Report generators, you get a performance benefit from
DataReader. DataReader is best suited for retrieving huge amounts of data, as the data is not
cached in the memory.

Property :

(1) FieldCount : Gets the number of columns in the current row.

(2) HasRows : Returns a Boolean value indicating whether the DataReader contains rows of
data.

(3) IsClosed : Indicates whether the DataReader is closed.

(4) Item : Gets the value of a column(field). For example If employee table has three fields,
EmpNo, EmpName & City, then EmpNo is Item(0), EmpName is Item(1) & City is Iltem(2).

Method :

(1) Close : Closes the data reader.
(2) GetName : Gets (returns)the name of the specified column.

(3)GetValue : Gets a field's value (column’s value) in its native format.

(4) GetValues : Gets all columns in the current row.

(5) IsDBNull : Indicates if a column contains nonexistent (or missing) values.

(6) Read : Read method returns true if there are more rows. It advances the DataReader to
the next record.

Example :Create Emp Table in Oracle. Emp(EmpNo, EmpName, City). We want to display only
the name of all employees into the ListBox1, so we have to write code as follows.
Imports System.Data.OleDb
Dim Con As New OleDbConnection
Dim Cmd As New OleDbCommand
Dim DR As OleDbDataReader
Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User |ID=
SCOTT; PASSWORD=TIGER”

Page 7 of 7

Con.Open()
Cmd = New OleDbCommand("SELECT EmpNo, EmpName, City FROM
EMP", Con)
DR = Cmd.ExecuteReader()
'Now we want to add all Emp. Name into the ListBox1
While DR.Read
ListBox1.ltems.Add(DR.Item(1))
End While
(6) DataTable Objects :

Datasets are made up of DataTable objects.Data in the DataSet is stored in memory in
the form of DataTable Objects.

The DataTableCollection contains zero or more DataTable objects, which are in turn
made up of three collections: DataColumnColection, DataRowCollection, and
ConstraintCollection (used to ensure integrity of data , ForeignKeyConstraint &
UnigueConstraint)

(7) DataRow Objects :
DataRow objects represent rows in a DataTable object. You use DataRow objects to get access
to, insert, delete, and update the records in a table.
(8) DataColumn Objects :
DataColumn objects represent the columns, that is, the fields, in a data table.
(9) DataRelation Objects :

The DataRelation class supports data relations between data tables.The
DataRelationCollection contains zero or more DataRelation objects. It is accessed through the
Relations property.

Visual Basic .NET has following features

e Rich set of Classes: Visual Basic comes with thousands of built-in classes.

e Provides fully Object Oriented Programming environment.

e Multi Language & multi device support.

e Powerful, Flexible, Simplified Data AccesswithADO .NET class.

e XML support: It supports for writing, manipulating & transforming XML documents.

e Simplified Deployment

e With an improved integrated development environment (IDE) you can build robust
applications quickly & easily.

Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) is a style sheet language used to describe the look
and formatting of a document written in a markup language

CSS information can be provided by various sources. CSS style information can be
either attached as a separate document or embedded in the HTML document.
Multiple style sheets can be imported. Different styles can be applied depending on
the output device being used.

Priority scheme for CSS sources (from highest to lowest priority):

e Author styles (provided by the web page author), in the form of:
o Inline styles, inside the HTML document, style information on a single
element, specified using the "style" attribute
Embedded style, blocks of CSS information inside the HTML itself
External style sheets, i.e., a separate CSS file referenced from the
document
e User style:
o Alocal CSS file the user specifies with a browser option, which acts as
an override applied to all document.

The style sheet with the highest priority controls the content display. Declarations not
set in the highest priority source are passed on by a source of lower priority such as
the user agent style. This process is called cascading.

One of the goals of CSSis also to allow users greater control over presentation.

e <LINK:The HTML's standard link tag.

o REL="stylesheet" : The link type

e TYPE="text/css" : Advisory content type

e HREF="../CSS/Format.CSS"> : This is our most important element, this is the
file name of our CSS file. The '../CSS' is not of particular meaning; it's just the
name of the folder inside which our CSS file is stored and which can be
anything or even nothing.

http://en.wikipedia.org/wiki/Style_sheet_language
http://en.wikipedia.org/wiki/Markup_language

What are the commonly used methods of Dataadapter
in ADO.NET?

Dataadapter has several methods associated with it.

Most commonly used methods among them are listed below:

e Fill: Fill method is used to fetch records from the database and update them
into the datatables of dataset. Uses SelectCommand for execution. Syntax for Fill
method is : sampleAdapter.Fill(employee,”"Employee”);

Here sampleAdapter is a SqlDataAdapter containing select query for Employee,
employee is the dataset and Employee is the database table.

¢ FillSchema: FillSchema method is used to create an empty table in dataset
containing the same schema as that of a specific table in the database.
Constraints of the corresponding database table is also copied and reflected in the
datatable of dataset. Uses SelectCommand for execution but copies only the
schema of the table and not the data. Syntax for this method is shown below:
sampleAdapter.FillSchema(empDataSet, SchemaType.Source, "Employee");

Here empDataSet is the dataset and Employee is the database table name.

e Update: Manipulated records of the dataset are updated back in the database
using this method. Records that are inserted, updated and deleted from the
dataset are pushed into the database using this method. Uses InsertCommand or
UpdateCommand or DeleteCommand for the above mentioned purpose. Syntax
for Update method is shown below:

sampleAdapter.Update(employeeTable);

Before this statement, sampleAdapter will include an UpdateCommand.
employeeTable is the datatable of the dataset.

e Dispose: This method is used to release all resources used by the dataadapter.
Here is the syntax:
sampleAdapter.Dispose();

Data Binding

ASP.NET adds a feature that allows you to pop data directly into HTML
elements and fully formatted controls. It’s called data binding.

Types of ASP.NET Data Binding

Two types of ASP.NET data binding exist: single-value binding and repeated-
value binding.

Single-value data binding is by far the simpler of the two, whereas repeated-
value binding provides the foundation for the most advanced ASP.NET data
controls.

Single-Value, or “Simple,” Data Binding

You can use single-value data binding to add information anywhere on an
ASP.NET page. You can even place information into a control property or as
plain text inside an HTML tag. Single-value data binding doesn’t necessarily
have anything to do with ADO.NET. Instead, single-value data binding allows
you to take a variable, a property, or an expression and insert it dynamically
into a page.

Single-value data binding is really just a different approach to dynamic text. To
use it, you add special data binding expressions into your .aspx files. These
expressions have the following

format:

<%?# expression_goes_here %>

This may look like a script block, but it isn’t. If you try to write any code inside
this tag, you will receive an error. The only thing you can add is a valid data
binding expression.

For example, if you have a public or protected variable named Country in your
page, you could write the following:

<%?# Country %>

When you call the DataBind() (me.databind()) method for the page, this text
will be replaced with the value for Country (for example, Spain).

Repeated-Value, or “List,” Binding

Repeated-value data binding allows you to display an entire table (or just a
single field from a table). Unlike single-value data binding, this type of data
binding requires a special control that supports it. Typically, this will be a list
control such as CheckBoxList or ListBox, but it can also be a much more
sophisticated control such as the GridView You’ll know that a control supports
repeated-value data binding if it provides a DataSource property. As with
single-value binding, repeated value binding doesn’t necessarily need to use
data from a database, and it doesn’t have to use the ADO.NET objects. For
example, you can use repeated-value binding to bind data from a collection or
an array.

Although using simple data binding is optional, repeated-value binding is so
useful that almost every ASP.NET application will want to use it somewhere.
Repeated-value data binding uses one of the special list controls included with
ASP.NET. You link one of these controls to a data list source (such as a field in

a data table), and the control automatically creates a full list using all the
corresponding values.

To create a data expression for list binding, you need to use a list control that
explicitly supports data binding. Luckily, ASP.NET provides a whole
collection, many of which you’ve probably already used in other applications
or examples:

ListBox,DropDownlList, CheckBoxList, and RadioButtonList. These web
controls provide a list for a single-column of information.
GridView,DetailsView, and FormView: These rich web controls allow you to
provide repeating lists or grids that can display more than one column (or field)
of information

at a time.

How Data Binding Works

Data binding works a little differently depending on whether you’re using
single-value or repeated-value binding. In single-value binding, a data binding
expression is inserted into the HTML markup in the .aspx file (not the code-

behind file).

Once you specify data binding, you need to activate it. You accomplish this
task by calling the DataBind() method. The DataBind() method is a basic piece
of functionality supplied in the Control class. It automatically binds a control
and any child controls that it contains. With repeated-value binding, you can use
the DataBind() method of the specific list control you’re using.

The Page Life Cycle with Data Binding

Data source controls can perform two key tasks:

* They can retrieve data from a data source and supply it to linked controls.

* They can update the data source when edits take place in linked controls.

To use the data source controls, you need to understand the page life cycle. The
following

steps explain the sequence of stages your page goes through in its lifetime. The
two steps in bold (4 and 6) are the steps where the data source controls will
spring into action:

1. The page object is created (based on the .aspx file).

2. The page life cycle begins, and the Page.Init and Page.Load events fire.

3. All other control events fire.

4. The data source controls performing updates. If a row is being updated,
the Updating and Updated events fire. If a row is being inserted, the
Inserting and Inserted events fire. If a row is being deleted, the Deleting
and Deleted events fire.

5. The Page.PreRender event fires.

6. The data source controls perform any queries and insert the retrieved
data in the linked controls. The Selecting and Selected events fire at this
point.

7. The page is rendered and disposed.

DatalList

DataList control displays data using user-defined layout. However there are many
added advantages in comparison with Repeater control in terms of graphical layout.

One of the main advantage of DataList control is it supports directional rendering
(Horizontal/Vertical) also. It has many properties and several events attached. We can
say DataList is the advanced version of Repeater control.

Following are some important properties that are very useful.

AlternatingltemTemplate | Template to define the rendering of every alternate item.

FooterTemplate Template to define how to render the footer.
HeaderTemplate Template to define how to render the header.
Items Gets the collection of DataList Items.
ItemTemplate Template to define how items are rendered.
Template to define how separator between items will be
SeparatorTemplate
rendered.

DEMO : DataList

Name : jjh Name : MallaReddy

Address : jhjh I Address : Hyd I

Phone : jhhyjj Phone : 12345

City : jjkjk City : Hyd

Name : mkmk Name : mndsam

Address : ji I Address : dmsna I

Phone : eee Phone : mndsa

City : eee City : msna

Name : name Name : qqqq

Address : home I Address : 1223 I

Phone : 7006 Phone : 115

City : City : 14545

// Datalist Contxol ////////////////////////////
<asp:Datalist ID="DatalListl" runat="Server"
DataSourceID="SglDataSourcel" DataKeyField="AutoID" Width="100%"
RepeatColumns="2" RepeatDirection="horizontal"
RepeatLayout="table" CellPadding="2" CellSpacing="1"
BorderwWidth="1">
<ItemTemplate>
<table width="100%" style="background-color:#efefef;">
<tr>
<td>
Name : <%# Eval ("Name") %>

Address : <%# Eval ("Address") %>

Phone : <%# Eval ("Phone") $%>

City : <%# Eval("City") %>

</ta>
</tr>
</table>
</ItemTemplate>

<AlternatingItemTemplate>
<table width="100%">

<tr>
<td>
Name : <%# Eval ("Name") %>

Address : <%# Eval ("Address") %>

Phone : <%# Eval ("Phone") %>

City : <%# Eval("City")% >

</td>
</tr>
</table>

</AlternatingltemTemplate>
<SeparatorTemplate>
1]
</SeparatorTemplate>
</asp:DataList>

// SdlbataSource Control ////////////////////////////
<asp:SglDataSource ID="SglDataSourcel" runat="server"

ConnectionString='<%$ ConnectionStrings:ConnStr %>'
SelectCommand="Select * FROM emp ORDER BY [Name]">
</asp:SglDataSource>

The DataSet Class

The dataset represents a subset of the database. It does not have a continuous connection to the
database. To update the database a reconnection is required. The DataSet contains DataTable
objects and DataRelation objects. The DataRelation objects represent the relationship between

two tables.

Following table shows some important properties of the DataSet class:

| Properties || Description |
.\ Indicates whether string comparisons within the data tables are case-
CaseSensitive "
sensitive.
|IsInitialized ||Indicates whether the DataSet is initialized. |
|Relations ||Returns the collection of DataRelation objects. |

|Tables

||Returns the collection of DataTable objects.

The following table shows some important methods of the DataSet class:

Methods H Description ‘
Accepts all changes made since the DataSet
AcceptChanges was loaded or this method was called.
. Begins the initialization of the DataSet. The
Beginlnit S .
initialization occurs at run time.
Clear HClears data. ‘
Copies the structure of the DataSet,
Clone including all DataTable schemas, relations,
and constraints. Does not copy any data.
‘Copy HCopies both structure and data. ‘
‘EndInit HEnds the initialization of the data set. ‘
. Determines whether the specified Object is
Equals(Object) equal to the current Object.
‘Finalize HFree resources and perform other cleanups. ‘
Returns a copy of the DataSet with all
GetChanges changes made since it was loaded or the

AcceptChanges method was called.

GetChanges(DataRowState)

Gets a copy of DataSet with all changes
made since it was loaded or the
AcceptChanges method was called, filtered
by DataRowState.

Gets a copy of XmISchemaSet for the

GetDataSetSchema DataSet.
Populates a serialization information object
GetObjectData with the data needed to serialize the

DataSet.

‘GetType

HGets the type of the current instance.

GetXML

HReturns the XML representation of the data.‘

GetXMLSchema

Returns the XSD schema for the XML
representation of the data.

HasChanges()

Gets a value indicating whether the DataSet
has changes, including new, deleted, or
modified rows.

Merge()

Merges the data with data from another
DataSet. This method has different
overloaded forms.

ReadXML()

Reads an XML schema and data into the
DataSet. This method has different
overloaded forms.

ReadXMLSchema(0)

Reads an XML schema into the DataSet.
This method has different overloaded
forms.

RejectChanges

Rolls back all changes made since the last
call to AcceptChanges.

WriteXML()

Writes an XML schema and data from the
DataSet. This method has different
overloaded forms.

WriteXMLSchema()

Writes the structure of the DataSet as an
XML schema. This method has different

overloaded forms.

DataSet Vs DataReader
or
Connectionless object and Connection Oriented Object

Asp.net developer uses DataSet and DataReader to fetch data from the data source while
developing asp.net application. But most of them don’t know exactly what are the main
difference between DataSet andDataReader and what to use and when to use out of these two.

Both DataSet and DataReader are widely used in asp.net applications for the same purpose i.e.
to get/fetch the data from the database. But one has to know the best practices in developing fast,
reliable and scalable application. The DataSet and DataReader which are as follows:

DataSet Vs DataReader
DataReader Dataset
DataReader is Connection Oriented object. Data SET is connectionless object
DataReader is used to retrieve read-only Dataset is used to manipulate data

(cannot update/manipulate data back to
datasource) and forward-only (cannot read
backward/random) data from a database.

DtaReader is like a forward only recordset.) DataSet which fetches all the rows at a time
It fetches one row at a time so very less 1.e. it fetches all data from the datasource at a
network cost compare to DataSet time to its memory area.

As one row at a time is stored in memory DataSet as it fetches all the data from the
in DataReader it increases application datasource at a time in memory so it has more
performance and reduces system overheads system overhead.
while there is more system overheads
in DataSet .

As DataReader is forward only, we can’t In DataSet we can move back and forward
fetch random records as we can’t move back and fetch records randomly as per requirement.
and forward
DataReader fetches data from a single table) DataSet can fetch more the one table in it.
As DataReader can have data from a single While relationship between multiple tables
table so no relationship can be maintained. can be maintained in DataSet.

DataReader is read only so no transaction like | While inert, update, delete transactions are
insert, update and delete is possible possible in DataSet.

DataReader is require small memory compare | DataSet is a bulky object that requires lot of

dataset object memory space as compared to DataReader

DataReader is a connected architecture: The
data is available as long as the connection with
database exists

while DataSet is a disconnected architecture
that automatically opens the connection,
fetches the data into memory and closes the
connection when done.

DataReader requires connection to be open
and close manually in code

While DataSet automatically handles it.

DataReader can't be serialized so we can not
store in Session.

DataSet can be serialized and represented in
XML so it can easily store in session.

DataReader will be the best choice where we
need to show the data to the user which
requires no manipulation.

While DataSet is best suited where there is
possibility of manipulation on the data.

DataReader can only be read once so it can be
bound to a single control and requires data to
be retrieved for each control.

When you need to navigate through the data
multiple times then DataSet is better choice
e.g. we can fill data in multiple controls

DataTable
Introduction
DataTable is a central object in the ADO.NET library. If you are working with
ADO.NET - accessing data from database, you can not escape from DataTable. Other
objects that use DataTable are DataSet and DataView. In this tutorials, I will explain
how to work with DataTable. I have tried to cover most of the frequently used activity
in the DataTable, I hope you will like it.

Creating a DataTable

To create a DataTable, you need to use System.Data namespace, generally when you
create a new class or page, it is included by default by the Visual Studio. Lets write
following code to create a DataTable object. Here, I have pased a string as the

DataTable name while creating DataTable object.
// instantiate DataTable

Dim dTable As New DataTable ("Emp")

Creating Columns in the DataTable

To create column in the DataTable, you need to use DataColumn object. Instantiate
the DataColumn object and pass column name and its data type as parameter. Then
call add method of DataTable column and pass the DataColumn object as parameter.

' create columns for the DataTable

Dim auto As New DataColumn ("AutoID", GetType (System.Int32))
dTable.Columns.Add (auto)

' create another column

Dim name As New DataColumn ("Name", GetType (String))
dTable.Columns.Add (name)

' create one more column

Dim address As New DataColumn ("Address", GetType(String))

dTable.Columns.Add (address)

Using DataRow object
Look at the code below, I have created a DataRow object above the loop and I am
assiging its value to the dTable.NewRow() inside the loop. After specifying columns
value, I am adding that row to the DataTable using dTable.Rows.Add method.
' populate the DataTable using DataRow object
Dim row As DataRow = Nothing
For 1 As Integer = 0 To 4
row = dTable.NewRow ()

row ("AutoID") =i + 1
row ("Name") = 1 & " - Ram"
row ("Address") = "Ram Nagar, India - " & 1

dTable.Rows.Add (row)
Next

Properties

javascript:void(0)

Name Description
CaseSensitive Indicates whether string comparisons within the table are case-

sensitive.
ChildRelations Gets the collection of child relations for this DataTable.
Columns Gets the collection of columns that belong to this table.
Constraints Gets the collection of constraints maintained by this table.
DataSet Gets the DataSet to which this table belongs.

DefaultView Gets a customized view of the table that may include a filtered view,
Or a cursor position.

IsInitialized Gets a value that indicates whether the DataTable is initialized.
ParentRelations Gets the collection of parent relations for this DataTable.

PrimaryKey Gets or sets an array of columns that function as primary keys for
the data table.

Rows Gets the collection of rows that belong to this table.
TableName Gets or sets the name of the DataTable.

Methods

Name Description

AcceptChanges Commits all the changes made to this table since the last time
AcceptChanges was called.

Beginlnit Begins the initialization of a DataTable that is used on a form or
used by another component. The initialization occurs at runtime.

BeginlLoadData Turns off notifications, index maintenance, and constraints while
loading data.

Clear Clears the DataTable of all data.

Clone Clones the structure of the DataTable, including all DataTable
schemas and constraints.

Copy Copies both the structure and data for this DataTable.

Dispose Overloaded. Releases the resources used

EndInit Ends the initialization of a DataTable that is used on a form or used

by another component. The initialization occurs at runtime.
Equals Overloaded. Determines whether two Object instances are equal.

GetChanges Overloaded. Gets a copy of the DataTable containing all changes
made to it since it was last loaded, or since AcceptChanges was

called.
GetType Gets the Type of the current instance.
Merge Overloaded. Merge the specified DataTable with the current
DataTable.
NewRow Creates a new DataRow with the same schema as the table.
ReadXml Overloaded. Reads XML schema and data into the DataTable.

RejectChanges Rolls back all changes that have been made to the table since it was
loaded, or the last time AcceptChanges was called.

Reset Resets the DataTable to its original state.
Select Overloaded. Gets an array of DataRow objects.
WriteXml Overloaded. Writes the current contents of the DataTable as XML.

http://msdn.microsoft.com/en-us/library/system.data.datatable.casesensitive%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.childrelations%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.columns%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.constraints%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.dataset%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.defaultview%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.isinitialized%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.parentrelations%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.primarykey%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.rows%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.tablename%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.acceptchanges%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.acceptchanges%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.begininit%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.beginloaddata%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.clear%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.clone%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.copy%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.marshalbyvaluecomponent.dispose%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.endinit%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.object.equals%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.object%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.getchanges%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.object.gettype%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.type%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.merge%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.newrow%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.readxml%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.rejectchanges%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.reset%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.select%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.writexml%28v=VS.80%29.aspx

FormView

FormView is a new data-bound control that is nothing but a templated version of
DetailsView control. The major difference between DetailsView and FormView is,
here user need to define the rendering template for each item.

Following are some important properties that are very useful.

Templates of the FormView Control

EditltemTemplate The template that is used when a record is being edited.
InsertltemTemplate The template that is used when a record is being created.
ItemTemplate The template that is used to render the record to display only.
Methods of the FormView Control

ReadOnly/Insert/Edit. Change the working mode of the control

ChangeMode from the current to the defined FormViewMode type.
Insertltem Used to insert the record into database. This method must be
called when the DetailsView control is in insert mode.
Undateltem Used to update the current record into database. This method
p must be called when DetailsView control is in edit mode.
Deleteltem Used to delete the current record from database.

Try Inserting Records into Database

AutolD

Name ’7
Address ’7
Phone ’7
ciy |

// FormView contxol ////////////////////////////////
<asp:FormView ID="FormViewl" runat="server" CellPadding="4"
ForeColor="#333333"
DataKeyNames="AutoID" DataSourcelID="SglDataSourcel"
AllowPaging="true">
<FooterStyle BackColor="#507CD1" Font-Bold="True"
ForeColor="White" />
<RowStyle BackColor="#EFF3FB" />
<PagerStyle BackColor="#2461BF" ForeColor="White"
HorizontalAlign="Center" />
<HeaderStyle BackColor="#507CD1" Font-Bold="True"
ForeColor="White" />
<ItemTemplate>
<table border="1">
<tr>
<td>AutoID</td>
<td><%# Eval ("AutoID") $%$></td>
</tr>
<tr>
<td>Name</td>
<td><%# Eval ("Name") $></td>
</tr>
<tr>
<td> </td>
<td>
<asp:Button ID="btnEdit" runat="Server"
CommandName="Edit" Text="Edit" />
<asp:Button ID="btnInsert" runat="Server"
CommandName="New" Text="New" />

<asp:Button ID="btnDelete" runat="Server"
CommandName="Delete" Text="Delete" OnClientClick="return confirm('Are
you sure to Delete?');" />
</td>
</tr>
</table>
</ItemTemplate>
</asp:SglDataSource>

Asp:GridView control

It provides more flexibility in displaying and working with data from your database in
comparison with any other controls. The GridView control enables you to connect to a
datasource and display data is tabular format, however you have bunch of options to customize
the look and feel. When it is rendered on the page, generally it is implemented through <table>
HTML tag.

Following are some important properties that are very useful.

Behavior Properties of the GridView Control

AllowPaging true/false. Indicate whether the control should support paging.
AllowSorting true/false. Indicate whether the control should support sorting.

Gets the current sort expression (field name) that determines

SortExpression
P the order of the row.

Gets the sorting direction of the column sorted currently

Sortbirection (Ascending/Descending).

Gets or sets the data source object that contains the data to

DataSource
populate the control.

Indicate the bound data source control to use (Generally used
DataSourcelD when we are using SqlDataSource or AccessDataSource to bind
the data, See 1st Grid example).

true/false. Indicates whether a separate column should be

AutoGenerateEditButton 2dded to edit the record.

true/false. Indicates whether a separate column should be

AutoGenerateDeleteButton
added to delete the record.

true/false. Indicate whether a separate column should be

AutoGenerateSelectButton .
added to selecat a particular record.

true/false. Indicate whether columns are automatically created

A [
utoGenerateColumns for each field of the data source. The default is true.

Style Properties of the GridView Control

Defines the style properties for every alternate row in the

AlternatingRowsStyle GridView.

Defines the style properties for the row in EditView (When you

Edi
ditRowstyle click Edit button for a row, the row will appear in this style).
RowsStyle Defines the style properties of the rows of the GridView.

Defines the style properties of Pager of the GridView. (If

P Styl
agerstyle AllowPaging=true, the page number row appears in this style)

EmptyDataRowsStyle Defines the style properties of the empty row, which appears if

HeaderStyle

FooterStyle

there is no records in the data source.

Defines the style properties of the header of the GridView. (The
column header appears in this style.)

Defines the style properties of the footer of GridView.

Appearance Properties of the GridView Control

CellPadding
CellSpacing
GridLines
HorizontalAlign
EmptyDataText
ShowFooter

ShowHeader

BackimageUrl
Caption

CaptionAlign

Indicates the space in pixel between the cells and the border of
the GridView.

Indicates the space in pixel between cells.

Both/Horizontal/Vertical/None. Indicates whether GrdiLines
should appear or not, if yes Horizontal, Vertical or Both.

Indicates the horizontal align of the GridView.

Indicates the text to appear when there is no record in the data
source.

Indicates whether the footer should appear or not.

Indicates whether the header should appear or not. (The
column name of the GridView)

Indicates the location of the image that should display as a
background of the GridView.

Gets or sets the caption of the GridView.

left/center/right. Gets or sets the horizontal position of the
GridView caption.

State Properties of GridView Control

Columns

EditIndex

FooterRow

HeaderRow

PageCount
Pagelndex

Pagelndex

Gets the collection of objects that represent the columns in the
GridView.

Gets or sets the 0-based index that identifies the row currently
to be edited.

Returns a GridViewRow object that represents the footer of the
GridView.

Returns a GridViewRow object that represents the header of
the GridView.

Gets the number of the pages required to display the reocrds of
the data source.

Gets or sets the 0-based page index.

Gets or sets the number of records to display in one page of
GridView.

Rows

DataKeyNames

DataKeys

Gets a collection of GridViewRow objects that represents the
currently displayed rows in the GridView.

Gets an array that contains the names of the primary key field
of the currently displayed rows in the GridView.

Gets a collection of DataKey objects that represent the value of
the primary key fields set in DataKeyNames property of the
GridView.

Events associated with GridView Control

PagelndexChanging,
PagelndexChanged

RowCommand

RowDeleting,RowDeleted

RowEditing

RowUpdating, RowUpdated

Sorting, Sorted

Both events occur when the page link is clicked. They fire
before and after GridView handles the paging operation
respectively.

Fires when a button is clicked on any row of GridView.

Both events fires when Delete button of a row is clicked. They
fire before and after GridView handles deleting operaton of the
row respectively.

Fires when a Edit button of a row is clicked but before the
GridView hanldes the Edit operation.

Both events fire when a update button of a row is clicked. They
fire before and after GridView control update operation
respectively.

Both events fire when column header link is clicked. They fire
before and after the GridView handler the Sort operation
respectively.

What is IIS - Internet Information Server

Internet Information Server

Internet Information Server (IIS) is one of the most popular web servers from Microsoft that
is used to host and provide Internet-based services to ASP.NET and ASP Web applications. A
web server is responsible for providing a response to requests that come from users. When
a request comes from client to server IIS takes that request from users and process it and
send response back to users.

Internet Information Server (l1S) has it's own ASP.NET Process Engine to handle the ASP.NET
request. The way you configure an ASP.NET application depends on what version of IIS the
application is running on.

Process the

User Request for e Server Received
Some information the Request = Eaet?#?;hir?edr send

Internet Information Server (lIS) includes a set of programs for building and administering
Web applications, search engines, and support for writing Web-based applications that
access databases such as SQL Server. With 1IS, you can make your computer to work as a
Web server and provides the functionality to develop and deploy ASP.NET Web applications
on the server. You can also set security for a particular Website for specific Users and
Computer in order to protect it from unauthorized access.

What is Virtual Directory

Virtual Directory

A virtual directory is a directory name that you specify in 1IS and map to physical directory
on a local server's hard drive or a directory on another server (remote server). You can use
Internet Information Services Manager to create a virtual directory for an ASP.NET Web
application that is hosted in IIS.

The virtual directory name becomes part of the application's URL. It is a friendly name, or
alias because an alias is usually shorter than the real path of the physical directory and it is
more convenient for users to type. A virtual directory receives queries and directs them to
the appropriate backend identity repositories. It integrates identity data from multiple
heterogeneous data stores and presents it as though it were coming from one source.

How to create a virtual directory by using IS Manager

[:l Console Rook Mame
E‘% Internet Information Services %Internet Information Services
=5 {local computer)
=1 Web Sites
B Yooro et cic
&[] FTP Sikes Explare
- Default 5 Open
Browse

Shark
Stop
Pausze

]

&l Tasks

Server Extensions \Web

ew Windaw From Here Server Extensions Administrator

Rename
Refresh

Properties

Zreate new Web Wirtual C Help |

1. In IS Manager, expand the local computer and the Web site to which you want to add a
virtual directory.

2. Right-click the site or folder in which you want to create the virtual directory, click New,
and then click Virtual Directory.

3. In the Add Virtual Directory dialog box, at a minimum enter information in the Alias and
Physical path and then click OK.

By default, Internet Information Server uses configuration from Web.config files in the
physical directory to which the virtual directory is mapped, as well as in any child directories
in that physical directory

The Login Controls:-

There are following Login controls developed by the Microsoft which are used in ASP.NET
Website as given below:-

NouhswNeE

Login

LoginView
LoginStatus
Loginname
PasswordRecovery
ChangePassword
CreateUserWizard

The Login Control:-

The Login control provides a user interface which contains username and password,
that authenticate the username and password and grant the access to the desired
services on the basis of the credentials.

There are used some methods ,properties and events in this Login control, You can
check manually after drag and drop this control on your web form as given below:-

Properties of the Login Control

TitleText
InstructionText
UserNamelabelText
PasswordLabelText
FailureText
UserName
LoginButtonText
LoginButtonType
DestinationPageUrl

DisplayRememberMe
VisibleWhenLoggedIn

CreateUserUrl
CreateUserText

PasswordRecoveryUrl

Indicates the text to be displayed in the heading of the control.
Indicates the text that appears below the heading of the control.
Indicates the label text of the username text box.

Indicates the label text of the password text box.

Indicates the text that is displayed after failure of login attempt.
Indicates the initial value in the username text box.

Indicates the text of the Login button.

Button/Link/Image. Indicates the type of login button.

Indicates the URL to be sent after login attempt successful.

true/false. Indicates whether to show Remember Me checkbox or not.

true/false. If false, the control is not displayed on the page when the
user is logged in.

Indicates the url of the create user page.
Indicates the text of the create user link.

Indicates the url of the password recovery page.

PasswordRecoveryText |Indicates the text of the password recovery link.

Events of the Login Control

Logginglin Fires before user is going to authenticate.
LoggedIn Fires after user is authenticated.
LoginError Fires after failure of login attempt.

Fires to authenticate the user. This is the function where you need to write your

Authenticate .
own code to validate the user.

User Name: I *

Password: I *

[T Remember me next time.

| Log In
‘Code in Authenticate Event
If Loginl.UserName = "rofel” And Loginl.Password = "bca" Then
Response.Redirect("default.aspx™)
Else
Loginl.FailureText = "Enter Correct User name and Password"
End If

2. The LoginView Control

The LoginView control is a web server control used for displaying the two different views of a
web page. It helps to alter the page view for different logged in users. The current user’s status
information is stored in the control. The control displays appropriate information depending on
the user.

The LoginView class provides the LoginView control. The methods, properties and events
provided by the login class are as listed below:

Methods of the LoginView class

1. DataBind: It helps user to bind the data source through the LoginView control.

2. OnViewChanged: It raises the ViewChanged event after the view for the control is
changed.

3. OnViewChanging: It raises the ViewChanging event before the LoginView control
changes the view.

Properties of the LoginView class

1. Controls: It accesses the ControlCollection object containing the child controls for the
LoginView control

2. EnableTheming: It access or specifies the value indicating the themes to be applied to
the control

3. RoleGroups: It access the collection of role groups associated with the content
templates

Events of the LoginView class

1. ViewChanged: It is initiated when the view is changed
2. ViewChanging: It is initiated when the view is in the process to be changed.

The LoginView control at the design time is as shown below:

LoginView1l<| LoginView Tasks
Edit ReleGroups...

Views: | AnonymousTemplate ||

Administer Website

3. The LoginStatus Control

It specifies that a particular user has logged into the web site. The login status is displayed as a
text. The login text is displayed as a hyperlink but provides the navigation to the login page. The
authentication section of the web.config file is useful for accessing the login page URL.

The LoggedIn and LoggedOut are the rwo status provided by the LoginStatus control.
TheloginStatus class provides the control. The methods, properties and events for the control
are as mentioned below:

Methods of the LoginStatus Control

1. OnLoggedOut: It raises the event when the logout link is clicked by the user.
2. OnloggingOut: It raises the event when the user clicks the logout link of the control.

Properties of the LoginStatus Control

1. LoginlmageUrl: It accesses or specifies the URL of the image used for the login link.

LoginText: It access the text added for the login link

3. LogoutAction: It retrieves the value for determining the action when the user logs out of
the web site.

4. LogoutText: It retrieves the text used for logout the link

N

Events of the LoginStatus Control

1. LogginOut: It is initiated when the user sends the logout request to the server.
2. LoggedOut: It is initiated by the LoginStatus class when the user logout process is
completed

The LoginStatus control at the design time is as shown below:

LoginStatus Tasks

Views:

=

4. LoginName Control

It is used for displaying the name of the authenticated users. The Page.User.ldentity.Name is
used for returning the user name. The control is not displayed if it does not contain any logged
in user. The LoginName class is used for the control.

The control does not contain any method, property or events associated with it. The
FormatString property is used for displaying the string in the control.

The LoginName control at the design time is as shown below:

asp:loginname#LoginNamel|

[UserName]

5. PasswordRecovery Control

It is used to recover or reset the password for the user. The password is sent through an email
as a message at the registration time. The Membership service is used for creating and
resetting the password.

The control contains the following three views.

1. Question: It refers the view where the user can enter the answer to the security
question.

2. UserName: It refers to the view where the user can enter the username for the
password to be recovered.

3. Success: It represents the view where the message is displayed to the user.

The control contains various properties, methods and events as mentioned below:
Methods of the PasswordRecovery Control

1. OnSendingMail: It raises the SendingMail event when the user is verified and the
password is sent to the user.

2. OnUserLookupErrror: It raises the UserLookupError when the username does not match
with the one stored in the database,

3. OnSendMailError: It raises an error when the mail message is not sent to the user.

4. OnVerifyingUser: It raises the event once the username is submitted, and the
membership provider verification is pending.

Properties of the control

1. Answer: The answer provided by the user to confirm the password recovery through the
valid user

2. FailureTextStyle: It accesses the reference to the collection of properties defining the
error text look

3. HelpPagelconUrl: It image to be displayed for the link to the password is retrieved

Events of the control

1. SendingMail: It is initiated when the server is sending an email message containing the
password once the answer is correct

2. AnswerlLookupError: It is initiated when the user answer to the question is incorrect

3. VerifyingAnswer: It is initiated when the user has submitted the answer to the password
recovery confirmation question

The PasswordRecovery control at the design time is as shown below:

PasswordRecovery Tasks

Forgot Your Password?

Enter your User Name to receive your password. | | Auto Format...

User Name:l x Views: | UserName v |

Submit Convert to Template

(w]

Administer Website

6. CreateUserWizard Control

The control uses the Membership service for creation of a new user. The control can be
extended to the existing Wizard control. The control can be customized through templates and
properties.

Some of the properties, methods and events related to the control are as mentioned below:

Properties of the Control

1. Answer: It retrieves or specifies the answer to the password recovery confirmation
question.

2. CompleteStep: It shows the final step of the process for creating the user account.

3. ContinueButtonText: It accesses or specifies the collection of properties defining the
look of the control

4. Email: It retrieves the email address of the user

5. LoginCreatedUser: It accesses or specifies the value indicating the new user login once
the account is created.

Events of the control

1. CreatedUser: It is initiated after the membership service provider has created a new
user account

2. CreatingUser: It is initiated before the membership service provider is called for creating
user account

3. SendingMail: It is initiated before sending the conformation email on the successful
creation of the account

4. SendMailError: It is initiated when the SMTP error occurs during the mail sent to the
user.

The CreateUserWizard control at the design time is as shown below:

Sign Up for Your New Account m CreateUserWizard Tasks

Auto Format...

User Name: I *

Step: | Sign Up for Your New
Password;l x A e e sl v
Add/Remove WizardSteps...

Confirm Password: l x n ;

Convert to StartNavigationTemplate

E-mail: I * Convert to StepNavigationTemplate

Security Question: I R Convert to FinishNavigationTemplate

Ceonvert to CustomNavigationTemplate

Security Answer: l x Customize Create User Step

The Password and Confirmation Customize Complete Step

Password must match. Administer Website

Edit Templates

Create User L

7. ChangePassword Control

The control helps user to change the password. The user adds the current password and adds
the new password. If the old password is incorrect, the new one cannot be added.

Properties of the control

1. CancelDestinationPageUrl: It accesses or retrieves the URL of the page that the user is
shown once it clicks the Cancel button.

CurrentPassword: It retrieves the current password of a user.

DisplayUserName: It retrieves the value indicating whether the ChangePassword control
should be display the control and label

4. NewPassword: It retrieves the new password entered by the user

5. UserName: It shows the username for which the password is to be modified.

w N

Events of the control

1. ChangedPassword: It is initiated when the password is changed for the user account.

2. ChangePasswordError: It is initiated when there is an error in changing the password for
the user account

3. SendMailError: It is initiated when the SMTP error occurs during sending an email
message

The ChangePassword control at the design time is as shown below:

Change Your Password E ChangePassword Tasks
Pass\vord:l x Auto Format...
New Password:l > Views: | Change Password E]
]l F—— R
Confirm New Password:| x Cunizert o Ktuipins

| Administer Website

The Confirm New Password must match the New Password entry.

Change Password | Cancell

P o

Implementing Authentication in ASP.NET login controls

Consider an example to demonstrate the login controls in an ASP.NET application. Perform the
following steps to demonstrate the implementation of the login controls in application.

1. Place the login control in the .aspx form and change the AutoFormat style property to
Classic.

User Narne:l B
Passvaord:l *

[T Remember me next time.

e

2. Click the Smart Tag and open the Login Tasks and select the Administer Website option.

3. Click the Security link in the window

Home Security ” Application ” Provider I

You can use the Web Site Administration Tool to manage all the security settings for your applicatior
users), and create permissions (rules for controlling access to parts of your application).

By default, user information is stored in a Microsoft SQL Server Express database in the Data folder
use the Provider tab to select a different provider.

Use the security Setup Wizard to configure security step by step.

Click the links in the table to manage the settings for your application.

e

The current authentication type is Windows. User Roles are not enabled
management from within this tool is therefore disabled. Enable roles
Select authentication type Create or Manage roles

4. Click the Use the security Setup Wizard to configure security step by step link to open
the setup wizard
5. Click Next button in the welcome the security setup wizard.

ecurity Setup Wizard

Step 1: Welcome Welcome to the Security Setup Wizard

Step 2: Select Access Method £ g :)
This wizard helps you set up security for your Web site.

Step 3: Data Store
Step 4: Define Roles You can set up individual users and optionally set up roles,
users. Creating users and roles allows you to secure all or

Step 5: Add New Users £ : :
personalize site content, and track usage of your site.

Step 6: Add New Access Rules

Step 7: Complete After establishing users and roles, you can then allow or de
folders in your application by user name or by role. You car
permissions for users who do not log in to your application

Once you have completed the Security Setup Wizard, you c
Management option in the Web Site Administration Tool to |
application’s settings.

6. Click the From the Internet radio button and click the Next button.

Select Access Method:

The first step in securing your site is to identify users (authentication).’
establishing a user's identity depends on how the user accesses your sit

Select one of the following methods to indicate how users will access yc
click Next.

@ From the internet
Your application is a public site available to anyone on the Intermnet.
to your application by entering their user name and password in a Ic
create.

From a local area network

Your application runs in a private local area network (intranet) only.
identified by their Windows domain and user name and do not have
application explicitly.

7. Click the Next button in the Advance provider settings page.

Your application is currently configured to use:
Advanced provider settings

To change the data store for your application, exit the Secunity Wizard,
Configuration tab to configure how web site management data is stored

8. Select the Enable roles for this web site check box and click the Next button
Define Roles

You can opticnally add roles, or groups, that enable you to allow or deny groups of
users access to specific folders in your Web site. For example, you might create roles
such as "managers,” "sales,” or "members,” each with different access to specific
folders. Later, you can add users to roles and users will have the access permissions
associated with those roles.

Type the name of the role that you want to create and click Add Role.

If you do not want to create roles, please ensure that the checkbox below is
unchecked and click Next to skip this step.

[C] Enable roles for this Web site.

9. Add the details in the text boxes and click the Create User button to create the user
account.

Sign Up for Your New Account
User Name: |

Password

E-mail

Security Question
Security Answer

. |
: | |
Confirm Password: | |
:| |
g |
4 | l

Active User

10. Select the All Users radio button in the Rule applies to section.
11. Click the Add this Rule button. Click Next button

Select a directory for this Rule applies to: Permission:
rule:
03 Website2 Role [[roles disabled] [-] = © Allow
O user | | @ Deny
© All Users

) Anonymous Users Add This Rule

Search for users

12. Click Finish button, click Close button

13. Add the LoginName and LoginStatus controls on the web page

14. Set the LogoutAction property to Redirect, click the smart tag of the LoginStatus control
and select the Logged In option from the Views drop down list.

15. Execute the application and enter the username and password in the text boxes. Click
Log In button.

16. The following output is displayed when the application is executed on the server.

[_logIn |
User Name: jabed
Password: s |
[ClRemember me next time.
abed
Logout

10

What are Master Pages ?

Master pages let you make a consistent layout for your application, you can make one master page that
holds the layout/look & feel and common functionality of your whole application and upon

this master page, you can build all the other pages, we call these pages Content Pages. So simply you
can build your master page and then build content pages, and while creating the content pages you bind
them to the master page you have created before, those two pages are merged at runtime to give you the
rendered page.

Master Pages and ContentPlaceHolders

The master page has the extension .master and it's actually an aspx page but with the
directive <$@Master Language="vb"%>, instead of the standard page directive, almost the

attributes of the Master directive are the same as that of the page, you can add any kind of controls the
same as you design .aspx pages,

Every MasterPage should include at least one ContentPlaceHolder, this control is a placeholder for

the content that will be merged at runtime, noting that the content page is just an aspx standard page but
you should supply the attribute MasterPageF'ile to the page directive to bind the content page to

the master page, for example:

<%@ Page Language="VB" MasterPageFile="~/MasterPages/SitelLayout.master"%>

Content Server Control

Inside the content pages you will find one Content server control added by default, actually when you add
controls you add them to the content server control. For example,

<asp:Content ID="Contentl" ContentPlaceHolderID="ContentPlaceHolderl"
Runat="Server">

The attribute ContentPlaceHolderID is very important as it decides what content will be bound to
which ContentPlaceHolder on the master page, this is a very nice way to decide the location of

where the contents will be displayed; so this way you can have multiple content on one content page and
also multiple ContentPlaceHolders on the master page.

Note: The content pages don't include the common tags as <Body>, <Head>,etc. Remember that, that
was the same with user controls, as after merging, there should be only one Body and Head tags.

Master Page Content Page

Output Page

Terminology

Let us look at the basic terminology that needs to be understood before jumping into master

pages:

Masterpage: Gives us a way to create common set of Ul elements that are required on
multiple pages of our website.

contentPage: The ASP.NET web page that will use master page to have the common UI
elements displayed on rendering itself.

ContentPlaceHolder: A control that should be added on the MasterpPage which will
reserve the area for the content pages to render their contents.

ContentControl: A control which will be added on content pages to tell these pages that
the contents inside this control will be rendered where the MasterpPage's
ContentPlaceHolder is located.

Creating a MasterPage

To create a master page, we need to:

1.

Go to "Add New Item".

2. Select the MasterPage.

[98)

b

Add New Itemn - C:\RahulSingh\TestProjects\masterPage Test\

Templates: A=
Visual Studio installed templates A
73] Web Form [[Vaster Page] 4| Web User Control
#] HTML Page i) Web Service &) Class
A]Style Sheet 19 Webd Configur ation Fie ()L File
4 ¥ML Schema =) Text Fie _aResowrce File

J 5QL Database A|Dataset =] Genenx Handler
2 Ste Map 2 |Crystal Report 7] Mobie Web Form
3 VBSaripk File 2 Report 3)25cript Fle
4-"'Mobils Web User Control =3 Mobile Web Corfiguration File ' K5LT Fle
2 Skin File b JErowser Fla /=) Class Diagram
My Templates

,Seatch Onire Templates.
A Master Page for Web Applications
Name: MasterPage. master

Language: Visual C# v Place code in separate file

[asd][coxe |

Let's say our master page is MasterPageOne.Master.

We will now add a menu bar on this master page on top of the page. This Menu bar will
be common to all the pages (since it is in Masterpage).

Once we have menubar added, we can have content pages use the master page.

Let's add few content pages like default.aspx, about.aspx, Contact.aspx. (We are simply
creating some dummy pages with no functionality as we want to see the masterpage
working, but these content pages can have any level of complex logic in them).

7. When we add these content pages, we need to remember to select the option of "Use

master Page".

Add New Item - C:\RahulSingh\TestProjects\masterPageTest\

Templates:
Yisual Studio installed templates Lol
=] Web Form | Master Page -/ Web User Control
] HTML Page) Web Service #]Cass
il g Style Sheat ‘__] Global Applcation Class _}Web Corfiguration Fle
-] XML File A ¥ML Schema 2] Text Fle
“AResource Fie | JJ S Database 44 DataSet
) Generic Handler ol Ste Mzp 2.]Crystal Repart
;]”Mobbe ‘Web Form 13) vBScript Fle 4 Report
3 oipt File 2 Mobie Web User Corxrol 13 Mobile Yeb Configuration File
A XKT File L3y Skin Fie ¥J Browser File
4 Class Diagram
My Templates
. v
PR VR TRV i
A Form for Web Applcaticns
Nama: Defauk.aspx
Language: visual C# v _elttace codsimsaparats file
_ [Viselect master page)
e Ay
Conce
and select the master page.
Select a Master Page ['Z|g
Project folders: Contents of folder:
IMasterPageOne. master
Cx) c=e

Now let's look at the stuff that is important. When we look at the Masterpage, we will see that
masterpage has a ContentPlaceHolder control. All the code that is common for the content
pages is outside the ContentPlaceHolder control (in our case, a simple menubar).

Adding the ContentPages

If we look at our content pages, we will find a simple content control added to each content
page. This is the area where we will be adding our controls to be rendered along with the master

page.

<asp:Content ID="Contentl" ContentPlaceHolderID="ContentPlaceHolderl"

Runat="Server">

<h2>This is a the CONTACT page.</h2>

</asp:Content>

Advantages of Master Page

1. You can make updates in one place as they allow you to centralize the common functionality of your
pages.

2. With the help of Master pages, it is easy to create one set of controls and code and apply the results
to a set of pages.

For example, you can use controls on the master page to create a menu that applies to all pages.

3. You can provide an object model which allows you to customize the master page from individual
content pages.

Nested Master Pages
You can use more then one master page on your website. When more than one
master page is used, you can make use of nested master pages.

For example, consider your company has a number of business partners or franchise companies. In such a
scenario, you can define the layout and design for the standard elements such as logos, menus, copyright
notices on the main master page of your company’s website. The franchise companies can then also define
their own master pages and then nest their master page with the master page of your company.

Understanding Nested Master Pages:

When a master page contains a reference of another master page, then it is called a "nested master
page". A single master page can have a reference of multiple master pages or a number of master pages
can be componentized into a single master page. There is no limit to the number of child master pages in a
project. The child masters can contain some unique properties of their own, besides using the layout and
other properties of their parent master.

Menu

The Menu control is used to create a menu of hierarchical data that can be used to
navigate through the pages. The Menu control conceptually contains two types of
items. First is StaticMenu that is always displayed on the page, Second is
DynamicMenu that appears when opens the parent item.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth,
Height etc. are implemented through style properites of <table, tr, td/> tag.

Following are some important properties that are very useful.
Properties of Menu Control

Indicates the data source to be used (You can use .sitemap

DataSourcelD file as datasource).

Text Indicates the text to display in the menu.

. Indicates the tooltip of the menu item when you mouse

Tooltip
over.

Indicates the node displayed value (usually unique id to use

Value . .
in server side events)

NavigateUrl Indicates the target location to send the user when menu
item is clicked. If not set you can handle MenultemClick
event to decide what to do.

If NavigationUrl property is set, it indicates where to open

Target
the target location (in new window or same window).
true/false. If false, this item can't be selected. Usually in

Selectable L .
case of this item has some child.

ImageUrl Indicates the image that appears next to the menu item.

fmageTool Tip 1nd1cates the tooltip text to display for image next to the
1tem.

PopOutimageUr] Inidcates the image that is displayed right to the menu item

when it has some subitems.
Styles of Menu Control

Sets the style of the parent box in which all menu items

StaticMenuStyle
appears.

Sets the style of the parent box in which dynamic menu
items appears.

DynamicMenuStyle
StaticMenultemStyle Sets the style of the individual static menu items.
DynamicMenultemStyle |Sets the style of the individual dynamic menu items.
StaticSelectedStyle Sets the style of the selected static items.
DynamicSelectedStyle | Sets the style of the selecdted dynamic items.
StaticHoverStyle Sets the mouse hovering style of the static items.

DynamicHoverStyle Sets the mouse hovering style of the dynamic items

(subitems).

// Menu Contxol ////////////////////////////
<asp:Menu ID="Menul" runat="Server" DataSourceID="SiteMapDataSourcel"
Orientation="Horizontal" BackColor="#B5C7DE"
DynamicHorizontalOffset="2" Font-Names="Verdana" Font-Size="0.8em"
ForeColor="#284E98" StaticDisplayLevels="2"
StaticSubMenuIndent="10px"
>
<StaticMenuItemStyle HorizontalPadding="5px"
VerticalPadding="2px" />
<DynamicHoverStyle BackColor="#284E98" ForeColor="White"
/>
<DynamicMenuStyle BackColor="#B5C7DE" />
<StaticSelectedStyle BackColor="#507CD1"™ />
<DynamicSelectedStyle BackColor="#507CD1" />
<DynamicMenulItemStyle HorizontalPadding="5px"
VerticalPadding="2px" />
<StaticHoverStyle BackColor="#284E98" ForeColor="White"
/>

</asp:Menu>

// SiteMapDataSource Control ////////////////////////////

<asp:SiteMapDataSource ID="SiteMapDataSourcel" runat="Server"

/>

ASP.NET Page Directory

The asp.net application folder is contains list of specified folder that you can use of specific type of files or
content in an each folder. The root folder structure is as following

e BIN
e App_Code
e App_GlobalResources
e App_LocalResources
e App_WebReferences
e App_Data
e App_Browsers
e App_Themes
Bin Directory
It is contains all the precompiled .Net assemblies like DLLs that the purpose of application uses.

App_Code Directory

It is contains source code files like .cs or .vb that are dynamically compiled for use in your application.
These source code files are usually separate components or a data access library

App_GlobalResources Directory
It is contains to stores global resources that are accessible to every page.
App_LocalResources Directory

It is serves the same purpose as app_globalresources, exept these resources are accessible for their
dedicated page only

App_WebReferences Directory

It is stores reference to web services that the web application uses.
App_Data Directory

It is reserved for data storage and also mdf files, xml file and so on.
App_Browsers Directory

It is contains browser definitions stored in xml files. These xml files define the capabilities of client side
browsers for different rendering actions.

App_Themes Directory

It is contains collection of files like .skin and .css files that used to application look and feel appearance.

ASP.NET Page Life Cycle

When a page is requested, it is loaded into the server memory, processed, and sent to the
browser. Then it is unloaded from the memory. At each of these steps, methods and events are
available, which could be overridden according to the need of the application. In other words,
you can write your own code to override the default code.

Following are the different stages of an ASP.NET page:

o Page request - When ASP.NET gets a page request, it decides whether to parse and
compile the page, or there would be a cached version of the page; accordingly the
response is sent.

o Starting of page life cycle - At this stage, the Request and Response objects are set. If
the request is an old request or post back, the IsPostBack property of the page is set to
true. The UICulture property of the page is also set.

o Page initialization - At this stage, the controls on the page are assigned unique ID by
setting the UniquelD property and the themes are applied. For a new request, postback
data is loaded and the control properties are restored to the view-state values.

o Page load - At this stage, control properties are set using the view state and control state
values.

e Validation - Validate method of the validation control is called and on its successful
execution, the IsValid property of the page is set to true.

o Postback event handling - If the request is a postback (old request), the related event
handler is invoked.

o Page rendering - At this stage, view state for the page and all controls are saved. The
page calls the Render method for each control and the output of rendering is written to
the OutputStream class of the Response property of page.

o Unload - The rendered page is sent to the client and page properties, such as Response
and Request, are unloaded and all cleanup done.

ASP.NET Page Life Cycle Events

At each stage of the page life cycle, the page raises some events, which could be coded. An event
handler is basically a function or subroutine, bound to the event, using declarative attributes such
as Onclick or handle.

Following are the page life cycle events:

o Prelnit - Prelnit is the first event in page life cycle. It checks the IsPostBack property
and determines whether the page is a postback. It sets the themes and master pages,
creates dynamic controls, and gets and sets profile property values. This event can be
handled by overloading the OnPrelnit method or creating a Page Prelnit handler.

o Init - Init event initializes the control property and the control tree is built. This event can
be handled by overloading the OnlInit method or creating a Page Init handler.

InitComplete - InitComplete event allows tracking of view state. All the controls turn on
view-state tracking.

LoadViewState - LoadViewState event allows loading view state information into the
controls.

LoadPostData - During this phase, the contents of all the input fields are defined with
the <form> tag are processed.

PreLoad - PreLoad occurs before the post back data is loaded in the controls. This event
can be handled by overloading the OnPreLoad method or creating a Page PreLoad
handler.

Load - The Load event is raised for the page first and then recursively for all child
controls. The controls in the control tree are created. This event can be handled by
overloading the OnLoad method or creating a Page Load handler.

LoadComplete - The loading process is completed, control event handlers are run, and
page validation takes place. This event can be handled by overloading the
OnLoadComplete method or creating a Page LoadComplete handler

PreRender - The PreRender event occurs just before the output is rendered. By handling
this event, pages and controls can perform any updates before the output is rendered.
PreRenderComplete - As the PreRender event is recursively fired for all child controls,
this event ensures the completion of the pre-rendering phase.

SaveStateComplete - State of control on the page is saved. Personalization, control state
and view state information is saved. The HTML markup is generated. This stage can be
handled by overriding the Render method or creating a Page Render handler.

UnLoad - The UnLoad phase is the last phase of the page life cycle. It raises the UnLoad
event for all controls recursively and lastly for the page itself. Final cleanup is done and
all resources and references, such as database connections, are freed. This event can be
handled by modifying the OnUnLoad method or creating a Page UnLoad handler.

What is Repeater Control?

Repeater Control is a control which is used to display the repeated list of items

Uses of Repeater Control

Repeater Control is used to display repeated list of items that are bound to the control and it’s
same as gridview and datagridview. Repeater control is lightweight and faster to display data
when compared with gridview and datagrid. By using this control we can display data in custom
format but it’s not possible in gridview or datagridview and it doesn’t support for paging and
sorting.

The Repeater control works by looping through the records in your data source and then
repeating the rendering of it’s templates called item template. Repeater control contains different
types of template fields those are

Repeater Control Templates

Repeater controls provides different kinds of templates which helps in determining the layout of
control's content. Templates generate markup which determine final layout of content.

Repeater control is an iterative control in the sense it loops each record in the DataSource and
renders the specified template (ItemTemplate) for each record in the DataSource collection. In
addition, before and after processing the data items, the Repeater emits some markup for the
header and the footer of the resulting structure

Repeater control supports five templates which are as follows:

1) itemTemplate 2) AlternatingitemTemplate 3) HeaderTemplate 4) FooterTemplate

5) SeperatorTemplate

ItemTemplate: ltemTemplate defines how the each item is displays from data source collection.

AlternatingltemTemplate: AlternatingltemTemplates is used to change the background color and
styles of Alternatingltems in DataSource collection

HeaderTemplate: HeaderTemplate is used to display Header text for DataSource collection and
apply different styles for header text.

FooterTemplate: FooterTemplate is used to display footer element for DataSource collection

SeparatorTemplate: SeparatorTemplate will determine separator element which separates each
Item in Item collection. Usually, SeparateTemplate will be
 html element or <hr> html element.

DEMO : Repeater

This is the Header of the Repeater Control
6477 Jih Jhjh jhhjj jikik

‘6480 ‘Mkmk ‘Ji eee

eee ‘

N T P [

// Repeater control /////////////1///////1///////
<asp:Repeater ID="Repeaterl" runat="server"
DataSourceID="SglDataSourcel">
<HeaderTemplate>
<h3>This is the Header of the Repeater Control</h3>
</HeaderTemplate>
<AlternatingItemTemplate>

<table border="1" style="background-color:#c0c0c0;" width="100%">
<tr>

<td style="width:10%;"><%# Eval ("AutoID") %></td>
<td style="width:25%;"><%# Eval ("Name") %$></td>
<td style="width:40%;"><%# Eval ("Address") %$></td></tr></table>
</AlternatingItemTemplate>
<ItemTemplate>
<table border="1" width="100%">
<tr><td style="width:10%;"><%# Eval ("AutoID") %$></td>
<td style="width:25%;"><%# Eval ("Name") %$></td>
<td style="width:40%;"><%#
Eval ("Address") $></td></tr></table></ItemTemplate></asp:Repeater>

// SqglbataSource contrxol //////////////11//1117/7/7/7/77/
<asp:SglDataSource ID="SglDataSourcel" runat="server"

ConnectionString='<%$ ConnectionStrings:ConnStr %>'
SelectCommand="Select * FROM emp ORDER BY [Name]">
</asp:SglDataSource>

Request/Response Programming

The server control architecture is built on top of a more fundamental processing
architecture, which may be called request/response. Understanding
request/response is important to solidify our overall grasp of ASP.NET. Also, in
certain programming situations request/response is the natural approach.

HttpRequest Class

The System.Web namespace contains a useful class HttpRequest that can be used to
read the various HTTP values sent by a client during a Web request. These HTTP
values would be used by a classical CGl program in acting upon a Web request, and
they are the foundation upon which higher level processing is built. Table 14-1
shows some of the public instance properties of HttpRequest. If you are familiar with
HTTP, the meaning of these various properties should be largely self-explanatory.
Refer to the .NET Framework documentation of the HttpRequest class for full details
about these and other properties.

TABLE 14-1 Public Instance Properties of HttpRequest

Property Meaning
AcceptTypes String array of client-supported MIME accept types
Browser Information about client's browser capabilities

ContentLength |Length in bytes of content sent by the client

Cookies Collection of cookies sent by the client

Form Collection of form variables

Headers Collection of HTTP headers

HttpMethod I;ggi)transfer method used by client (e.g., GET or

Params Combined collection of QueryString, Form,
ServerVariables, andCookies items

Path Virtual request of the current path

QueryString Collection of HTTP query string variables

ServerVariables |Collection of Web server variables

The Request property of the Page class returns a HttpRequest object. You may then
extract whatever information you need, using the properties of HttpRequest. For
example, the following code determines the length in bytes of content sent by the
client and writes that information to the Response object.

Dim length As Integer = Request.ContentLength

Response.Write("ContentLength =" & length & "
")
COLLECTIONS

A number of useful collections are exposed as properties of HttpRequest. The
collections are of type NamedValueCollection (in System.Collec-tions.Specialized namespace).
You can access a value from a string key. For example, the following code extracts
values for the QUERY_STRING and HTTP_USER_AGENT server variables using the
ServerVariables collection.

Dim strQuery As String = _
Request.ServerVariables("QUERY_STRING")

Dim strAgent as String = _
Request.ServerVariables("HTTP_USER_AGENT")

Server variables such as these are at the heart of classical Common Gateway
Interface (CGI) Web server programming. The Web server passes information to a
CGl script or program by using environment variables. ASP.NET makes this low-level
information available to you, in case you need it.

A common task is to extract information from controls on forms. In HTML, controls
are identified by a name attribute, which can be used by the server to determine the
corresponding value. The way in which form data is passed to the server depends on
whether the form uses the HTTP GET method or the POST method.

With GET, the form data is encoded as part of the query string. The QueryString
collection can then be used to retrieve the values. With POST, the form data is
passed as content after the HTTP header. The Forms collection can then be used to
extract the control values. You could use the value of the REQUEST_METHOD server
variable (GET or POST) to determine which collection to use (the Querystring collection
in the case of GET and the Forms collection in case of POST).

With ASP.NET you don't have to worry about which HTTP method was used in the
request. ASP.NET provides a Params collection, which is a combination (union in the
mathematical sense) of the Servervariables, Que-ryString, Forms, and Cookies collections.

EXAMPLE PROGRAM

We illustrate all these ideas with a simple page Squares.aspx that displays a column of
squares.

<l-- Squares.aspx -->
<%@ Page Language="VB" Trace="true"%>
<script runat="server">
Sub Page_Init(sender As Object, e As EventArgs)
Dim strQuery As String = _
Request.ServerVariables("QUERY_STRING")
Response.Write("QUERY_STRING =" & strQuery & "
")
Dim strAgent as String = _
Request.ServerVariables("HTTP_USER_AGENT")

Response.Write("HTTP_USER_AGENT =" & strAgent & "
")
Dim length As Integer = Request.ContentLength
Response.Write("ContentLength =" & length & "
")
Dim strCount As String = Request.Params("txtCount")
Dim count As Integer = Convert.Tolnt32(strCount)
Dimi As Integer
Fori=1To count
Response.Write(i*i)
Response.Write("
")
Next
End Sub
</script>

How many squares to display is determined by a number submitted on a form. The
page GetSquares.aspx submits the request using GET, and PostSquares.aspx submits the
request using POST. These two pages have the same user interface, illustrated in

Figure 14-11.

Figure 14-11 Form for requesting a column of squares.

Here is the HTML for GetSquares.aspx. Notice that we are using straight HTML. Except
for the Page directive, which turns tracing on, no features of ASP.NET are used.

<!l-- GetSquares.aspx -->

<%@ Page Trace = "true" %>

<html>

<head>

</head>

<body>

<P>This program will print a column of squares</P>
<form

method="get" action = Squares.aspx

>
How many:
<INPUT type=text size=2 value=5

name=txtCount

>
<P></P>
<INPUT type=submit value=Squares

name=cmdSquares

>
</form>
</body>
</html>

javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig11.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig11.gif')

The form tag has attributes specifying the method (GET or POST) and the action
(target page). The controls have a name attribute, which will be used by server code
to retrieve the value.

Run GetSquares.aspx and click Squares. You will see some HTTP information displayed,
followed by the column of squares. Tracing is turned on, so details about the request
are displayed by ASP.NET. Figure 14-12 illustrates the output from this GET request.

Figure 14-12 Output from a GET request.

You can see that form data is encoded in the query string, and the content length is 0.
If you scroll down on the trace output, you will see much information. For example,
the Querystring collection is shown.

Now run PostSquares.aspx and click Squares. Again you will then see some HTTP
|nformat|on displayed, followed by the column of squares. Tracing is turned on, so
s = details about the request are displayed by ASP.NET. Figure 14-13
illustrates the output from this POST request.

+ Figure 14-13 Output from a POST request.

You can see that now the query string is empty, and the content length is 29. The
form data is passed as part of the content, following the HTTP header information. If
you scroll down on the trace output, you will see that now there is a Form collection,
which is used by ASP.NET to provide access to the form data in the case of a POST
method.

By comparing the output of these two examples, you can clearly see the difference
between GET and POST, and you can also see the data structures used by ASP.NET to
make it easy for you to extract data from HTTP requests.

HttpResponse Class

The HttpResponse class encapsulates HTTP response information that is built as part of
an ASP.NET operation. The Framework uses this class when it is creating a response
that includes writing server controls back to the client. Your own server code may
also use the write method of the Response object to write data to the output stream
that will be sent to the client. We have already seen many illustrations of
Response.Write.

REDIRECT

The HttpResponse class has a useful method, Redirect, that enables server code to
redirect an HTTP request to a different URL. A simple redirection without passing any
data is trivial—you need only call the Redirect method and pass the URL. An example
of such usage would be a reorganization of a

javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig12.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig12.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig13.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig13.gif')

Web site, where a certain page is no longer valid and the content has been moved to
a new location. You can keep the old page live by simply redirecting traffic to the
new location.

It should be noted that redirection always involves an HTTP GET request, like
following a simple link to a URL. (POST arises as an option when submitting form
data, where the action can be specified as GET or POST.) A more interesting case
involves passing data to the new page. One way to pass data is to encode it in the
guery string. You must preserve standard HTTP conventions for the encoding of the
query string. The class HttpUtility provides a method UrlEncode, which will properly
encode an individual item of a query string. You must yourself provide code to
separate the URL from the query string with a "?" and to separate items of the query
string with "&".

The folder Hotel provides an example of a simple Web application that illustrates this
method of passing data in redirection. The file default.aspx provides a form for
collecting information to be used in making a hotel reservation. The reservation itself
is made on the page Reservationl.aspx. You may access the starting default.aspx page
through the URL

http://localhost/Chap14/Hotel/

As usual, we provide a link to this page in our home page of example programs.
Figure 14—14 illustrates the starting page of our simple hotel reservation example.

Figure 14-14 Starting page for making a hotel reservation.

Here is the script code that is executed when the Make Reservation button is clicked.

e As EventArgs)
Dim query As String = "City=" & _
HttpUtility.UrlEncode(txtCity.Text)
query += "&Hotel=" & _
HttpUtility.UrlEncode(txtHotel.Text)
query += "&Date=" & _
HttpUtility.UrlEncode(txtDate.Text)
query += "&NumberDays=" & _
HttpUtility.UrlEncode(txtNumberDays.Text)
Response.Redirect("Reservationl.aspx?" + query)
End Sub

We build a query string, which gets appended to the Reservationl.aspx URL, separated
by a "?". Note the ampersand that is used as a separator of items in the query string.
We use the HttpUtility.UrlEncode method to encode the individual items. Special
encoding is required for the slashes in the date and for the space in the name San
Jose. Clicking the button brings up the reservation page. You can see the query string
in the address window of the browser. Figure 14-15 illustrates the output shown by
the browser.

javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig14.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig14.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig15.gif')

Figure 14-15 Browser output from making a hotel reservation

Our program does not actually make the reservation; it simply prints out the
parameters passed to it.

<%@ Page language="VB" Debug="true" Trace="false" %>
<script runat="server">
Sub Page_Load(sender As Object, e As EventArgs)
Response.Write("Making reservation for ...")
Response.Write("
")
Dim city As String = Request.Params("City")
Response.Write("City = " & city)
Response.Write("
")
Dim hotel As String = Request.Params("Hotel")
Response.Write("Hotel =" & hotel)
Response.Write("
")
Dim strDate As String = Request.Params("Date")
Response.Write("Date =" & strDate)
Response.Write("
")
Dim strDays As String = Request.Params("NumberDays")
Response.Write("NumberDays =" & strDays)
Response.Write("
")
End Sub

</script>

<HTML>

<body>

</body>

</HTML>

javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig15.gif')

State Management Techniques in ASP.NET

This article discusses various options for state management for web applications
developed using ASP.NET. Generally, web applications are based on stateless
HTTP protocol which does not retain any information about user requests. In
typical client and server communication using HTTP protocol, page is created
each time the page is requested.

Developer is forced to implement various state management techniques when
developing applications which provide customized content and which
"remembers" the user.

Here we are here with various options for ASP.NET developer to implement state
management techniques in their applications. Broadly, we can classify state
management techniques as client side state management or server side state
management. Each technique has its own pros and cons. Let's start with
exploring client side state management options.

Client side State management Options:
ASP.NET provides various client side state management options like Cookies,

QueryStrings (URL), Hidden fields, View State and Control state (ASP.NET 2.0).
Let's discuss each of client side state management options.

Bandwidth should be considered while implementing client side state
management options because they involve in each roundtrip to server. Example:
Cookies are exchanged between client and server for each page request.

Cookie:

A cookie is a small piece of text stored on user's computer. Usually, information is
stored as name-value pairs. Cookies are used by websites to keep track of
visitors. Every time a user visits a website, cookies are retrieved from user
machine and help identify the user.

Let's see an example which makes use of cookies to customize web page.

if (Request.Cookies["UserId"] !'= null)

IbMessage.text = "Dear" + Request.Cookies["UserId"].Value + ", Welcome to
our website!";
else

IbMessage.text = "Guest,welcome to our website!";

If you want to store client's information use the below code
Response.Cookies["UserId"].Value=username;
Advantages:

e Simplicity
Disadvantages:

e Cookies can be disabled on user browsers

e Cookies are transmitted for each HTTP request/response causing overhead
on bandwidth
o Inappropriate for sensitive data

Hidden fields:

Hidden fields are used to store data at the page level. As its name says, these
fields are not rendered by the browser. It's just like a standard control for which
you can set its properties. Whenever a page is submitted to server, hidden fields
values are also posted to server along with other controls on the page. Now that
all the asp.net web controls have built in state management in the form of view
state and new feature in asp.net 2.0 control state, hidden fields functionality
seems to be redundant. We can still use it to store insignificant data. We can use
hidden fields in ASP.NET pages using following syntax

protected System.Web.UI.HtmIControls.HtmIInputHidden Hidden1;

//to assign a value to Hidden field
Hidden1.Value="Create hidden fields";
//to retrieve a value

string str=Hidden1.Value;

Advantages:

e Simple to implement for a page specific data
e Can store small amount of data so they take less size.

Disadvantages:

e Inappropriate for sensitive data
Hidden field values can be intercepted(clearly visible) when passed over a
network

View State:

View State can be used to store state information for a single user. View State is
a built in feature in web controls to persist data between page post backs. You
can set View State on/off for each control using EnableViewState property. By
default, EnableViewState property will be set to true. View state mechanism
poses performance overhead. View state information of all the controls on the
page will be submitted to server on each post back. To reduce performance
penalty, disable View State for all the controls for which you don't need state.
(Data grid usually doesn't need to maintain state). You can also disable View
State for the entire page by adding EnableViewState=false to @page
directive. View state data is encoded as binary Base64 - encoded which add
approximately 30% overhead. Care must be taken to ensure view state for a
page is smaller in size. View State can be used using following syntax in an
ASP.NET web page.

// Add item to ViewState
ViewState["myviewstate"] = myValue;

//Reading items from ViewState
Response.Write(ViewState["myviewstate"]);

Advantages:

e Simple for page level data
e Encrypted
e Can be set at the control level

Disadvantages:

e Overhead in encoding View State values
e Makes a page heavy

Query strings:

Query strings are usually used to send information from one page to another
page. They are passed along with URL in clear text. Now that cross page posting
feature is back in asp.net 2.0, Query strings seem to be redundant. Most
browsers impose a limit of 255 characters on URL length. We can only pass
smaller amounts of data using query strings. Since Query strings are sent in clear
text, we can also encrypt query values. Also, keep in mind that characters that
are not valid in a URL must be encoded using Server.UrlEncode.

Let's assume that we have a Data Grid with a list of products, and a hyperlink in
the grid that goes to a product detail page, it would be an ideal use of the Query
String to include the product ID in the Query String of the link to the product
details page (for example, productdetails.aspx?productid=4).

When product details page is being requested, the product information can be
obtained by using the following codes:

string productid;
productid=Request.Params["productid"];

Advantages:
e Simple to Implement
Disadvantages:

Human Readable

Client browser limit on URL length

Cross paging functionality makes it redundant
Easily modified by end user

Server Side State management:

As name implies, state information will be maintained on the server. Application,
Session, Cache and Database are different mechanisms for storing state on the
server.

Care must be taken to conserve server resources. For a high traffic web site with
large number of concurrent users, usage of sessions object for state management
can create load on server causing performance degradation

Application object:

Application object is used to store data which is visible across entire application
and shared across multiple user sessions. Data which needs to be persisted for
entire life of application should be stored in application object.

In classic ASP, application object is used to store connection strings. It's a great
place to store data which changes infrequently. We should write to application
variable only in application_Onstart event (global.asax) or application.lock event
to avoid data conflicts. Below code sample gives idea

Application.Lock();
Application("mydata")="mydata",;
Application.UnLock();

Session object:

Session object is used to store state specific information per client basis. It is
specific to particular user. Session data persists for the duration of user session
you can store session's data on web server in different ways. Session state can be
configured using the <session State> section in the application's web.config file.

Configuration information:

<sessionState mode = <"inproc" | "sqlserver" | "stateserver">

cookieless = <"true" | "false">

timeout = <positive integer indicating the session timeout in minutes>
sqglconnectionstring = <SQL connection string that is only used in the SQLServer
mode>

server = <The server name that is only required when the mode is State
Server>

port = <The port number that is only required when the mode is State Server>

Mode:

This setting supports three options. They are InProc, SQLServer, and State
Server

Cookie less:

This setting takes a Boolean value of either true or false to indicate whether the
Session is a cookie less one.

Timeout:
This indicates the Session timeout vale in minutes. This is the duration for which
a user's session is active. Note that the session timeout is a sliding value;

Default session timeout value is 20 minutes

SqlConnectionString:

This identifies the database connection string that names the database used for
mode SQLServer.

Server:

In the out-of-process mode State Server, it names the server that is running the
required Windows NT service: aspnet_state.

Port:

This identifies the port number that corresponds to the server setting for mode
State Server. Note that a port is an unsigned integer that uniquely identifies a
process running over a network.

You can disable session for a page using EnableSessionState attribute. You can
set off session for entire application by setting mode=off in web.config file to
reduce overhead for the entire application.

Session state in ASP.NET can be configured in different ways based on various
parameters including scalability, maintainability and availability

e In process mode (in-memory)- State information is stored in memory of
web server

e Out-of-process mode- session state is held in a process called
aspnet_state.exe that runs as a windows service.

e Database mode 3€" session state is maintained on a SQL Server database.

In process mode:
This mode is useful for small applications which can be hosted on a single server.

This model is most common and default method to store session specific
information. Session data is stored in memory of local web server

Configuration information:

<sessionState mode="Inproc"
sqglConnectionString="data source=server;user
id=freelance;password=freelance"
cookieless="false" timeout="20" />

Advantages:

e Fastest mode
e Simple configuration

Disadvantages:
e Session data will be lost if the worker process or application domain
recycles

e Not ideal for web gardens and web farms

Out-of-process Session mode (state server mode):
This mode is ideal for scalable and highly available applications. Session state is
held in a process called aspnet_state.exe that runs as a windows service which

listens on TCP port 42424 by default. You can invoke state service using services
MMC snap-in or by running following net command from command line.

Net start aspnet_state

Configuration information:

<sessionState mode="StateServer"
StateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;user id=freelance;
password=freelance"

cookieless="false" timeout="20"/>

Advantages:

e Supports web farm and web garden configuration
e Session data is persisted across application domain recycles. This is
achieved by using separate worker process for maintaining state

Disadvantages:

e Out-of-process mode provides slower access compared to In process
e Requires serializing data

SQL-Backed Session state:

ASP.NET sessions can also be stored in a SQL Server database. Storing sessions
in SQL Server offers resilience that can serve sessions to a large web farm that
persists across IIS restarts.

SQL based Session state is configured with aspnet_regsql.exe. This utility is
located in .NET Framework's installed directory
C:\<windows>\microsoft.net\framework\<version>. Running this utility will
create a database which will manage the session state.

Configuration Information:

<sessionState mode="SQLServer"
sqlConnectionString="data source=server;user

id=freelance; password=freelance"
cookieless="false" timeout="20" />

Advantages:

e Supports web farm and web garden configuration
e Session state is persisted across application domain recycles and even IIS
restarts when session is maintained on different server.

Disadvantages:
e Requires serialization of objects

Choosing between client side and Server side management techniques is driven
by various factors including available server resources, scalability and
performance. We have to leverage both client side and server side state
management options to build scalable applications.

When leveraging client side state options, ensure that little amount of
insignificant information is exchanged between page requests.

Various parameters should be evaluated when leveraging server side state
options including size of application, reliability and robustness. Smaller the
application, In process is the better choice. We should account in the overheads

involved in serializing and deserializing objects when using State Server and
Database based session state. Application state should be used religiously.

The GridView

The GridView is an extremely flexible grid control that displays a multicolumn table.
Each record in your data source becomes a separate row. Each field in the record
becomes a separate column.

This functionality includes features for automatic paging, sorting, selecting, and
editing. The GridView is also the only data control that can show more than one
record at a time.

Defining Columns

By default, the GridView.AutoGenerateColumns property is True, and the GridView
creates a column for each field. This automatic column generation is good for
creating

quick test pages, but it doesn’t give you the flexibility you’ll usually want. For
example, what if you want to hide columns, change their order, or configure some
aspect of their display, such as the formatting or heading text? In all these cases, you
need to set AutoGenerateColumns to False and define the columns in the <Columns>
section of the GridView control tag.

Table 15-1. Column Types

Column Description

BoundField: This column displays text from a field in the data source.

ButtonField :This column displays a button for each item in the list.
CheckBoxField: This column displays a check box for each item in the list. It’s used
automatically for True/False fields (in SQL Server, these are fields that use the bit
data type).

CommandField: This column provides selection or editing buttons.
HyperlinkField: This column displays its contents (a field from the data source or
static text) as a hyperlink.

ImageField: This column displays image data from a binary field (providing it can be
successfully interpreted as a supported image format).

TemplateField: This column allows you to specify multiple fields, custom controls,
and arbitrary HTML using a custom template. It gives you the highest degree of
control but requires the most work.

Following are some important properties that are very useful.

Behavior Properties of the GridView Control
true/false. Indicate whether the control should
support paging.

true/false. Indicate whether the control should
support sorting.

AllowPaging

AllowSorting

Gets the current sort expression (field name) that

SortExpression .
P determines the order of the row.

Gets the sorting direction of the column sorted

SortDirecti
ortbirection currently (Ascending/Descending).

Gets or sets the data source object that contains the

DataSource
data to populate the control.

Indicate the bound data source control to use
(Generally used when we are using SqlDataSource or
AccessDataSource to bind the data, See 1st Grid
example).

DataSourcelD

true/false. Indicates whether a separate column

AutoGeneratetditButton should be added to edit the record.

AutoGenerateDeleteButton

AutoGenerateSelectButton

AutoGenerateColumns

true/false. Indicates whether a separate column
should be added to delete the record.

true/false. Indicate whether a separate column
should be added to selecat a particular record.

true/false. Indicate whether columns are
automatically created for each field of the data
source. The default is true.

Style Properties of the GridView Control

AlternatingRowsStyle

EditRowStyle

RowsStyle

PagerStyle

EmptyDataRowsStyle

HeaderStyle

FooterStyle

Defines the style properties for every alternate row in
the GridView.

Defines the style properties for the row in EditView
(When you click Edit button for a row, the row will
appear in this style).

Defines the style properties of the rows of the
GridView.

Defines the style properties of Pager of the GridView.
(If AllowPaging=true, the page number row appears in
this style)

Defines the style properties of the empty row, which
appears if there is no records in the data source.

Defines the style properties of the header of the
GridView. (The column header appears in this style.)

Defines the style properties of the footer of GridView.

Appearance Properties of the GridView Control

CellPadding

CellSpacing

GridLines

HorizontalAlign
EmptyDataText
ShowFooter

ShowHeader

BacklmageUrl
Caption

CaptionAlign

Indicates the space in pixel between the cells and the
border of the GridView.

Indicates the space in pixel between cells.

Both/Horizontal/Vertical/None. Indicates whether
GridLines should appear or not, if yes Horizontal,
Vertical or Both.

Indicates the horizontal align of the GridView.

Indicates the text to appear when there is no record
in the data source.

Indicates whether the footer should appear or not.

Indicates whether the header should appear or not.
(The column name of the GridView)

Indicates the location of the image that should display
as a background of the GridView.

Gets or sets the caption of the GridView.

left/center/right. Gets or sets the horizontal position
of the GridView caption.

State Properties of GridView Control

Columns

EditIndex

Gets the collection of objects that represent the
columns in the GridView.

Gets or sets the 0-based index that identifies the row

FooterRow

HeaderRow

PageCount
Pagelndex

Pagelndex

Rows

DataKeyNames

DataKeys

currently to be edited.

Returns a GridViewRow object that represents the
footer of the GridView.

Returns a GridViewRow object that represents the
header of the GridView.

Gets the number of the pages required to display the
reocrds of the data source.

Gets or sets the 0-based page index.

Gets or sets the number of records to display in one
page of GridView.

Gets a collection of GridViewRow objects that
represents the currently displayed rows in the
GridView.

Gets an array that contains the names of the primary
key field of the currently displayed rows in the
GridView.

Gets a collection of DataKey objects that represent
the value of the primary key fields set in
DataKeyNames property of the GridView.

Events associated with GridView Control

PagelndexChanging,
PagelndexChanged

RowCancelingEdit

RowCommand
RowCreated

RowDataBound

RowDeleting,RowDeleted

RowEditing

RowUpdating, RowUpdated

Sorting, Sorted

For Eample:

Both events occur when the page link is clicked. They
fire before and after GridView handles the paging
operation respectively.

Fires when Cancel button is clicked in Edit mode of
GridView.

Fires when a button is clicked on any row of GridView.
Fires when a new row is created in GridView.
Fires when row is bound to the data in GridView.

Both events fires when Delete button of a row is
clicked. They fire before and after GridView handles
deleting operaton of the row respectively.

Fires when a Edit button of a row is clicked but before
the GridView hanldes the Edit operation.

Both events fire when a update button of a row is
clicked. They fire before and after GridView control
update operation respectively.

Both events fire when column header link is clicked.
They fire before and after the GridView handler the
Sort operation respectively.

<asp:GridView ID="GridView1" runat="server" DataSourcelD="SqlDataSourcel"
AllowPaging="True" AllowSorting="True" AutoGenerateEditButton="true"

PageSize="8">
<Columns>

<asp:BoundField DataField="name" HeaderText="name" SortExpression="name" />

</Columns>

</asp:GridView>

Themes

One of the neat features of ASP.NET 2.0 is themes, which enable you to define the
appearance of a set of controls once and apply the appearance to your entire web
application. For example, you can utilize themes to define a common appearance for
all of the CheckBox controls in your application, such as the background and
foreground color, in one central location. By leveraging themes, you can easily create
and maintain a consistent look throughout your web site. Themes are extremely
flexible in that they can be applied to an entire web application, to a page, or to an
individual control. Theme files are stored with the extension .skin, and all the themes
for a web application are stored in the special folder named App_Themes.

The implementation of themes in ASP.NET 2.0 is built around two areas: skins and
themes. A skin is a set of properties and templates that can be applied to controls. A
theme is a set of skins and any other associated files (such as images or stylesheets).
Skins are control-specific, so for a given theme there could be a separate skin for
each control within that theme. Any controls without a skin inherit the default look.
There are two types of themes:

e Customization themes: These types of themes are applied after the
properties of the control are applied, meaning that the properties of the
themes override the properties of the control itself.

o Stylesheet themes: You can apply this type of theme to a page in exactly the
same manner as a customization theme. However, stylesheet themes don’t
override control properties, thus allowing the control to use the theme
properties or override them.

Characteristics of ASP.NET 2.0 Themes
Some of the important characteristics of ASP.NET 2.0 themes are:

¢ Themes make it simple to customize the appearance of a site or page using
the same design tools and methods used when developing the page itself,
thus obviating the need to learn any special tools or techniques to add and
apply themes to a site.

¢ As mentioned previously, you can apply themes to controls, pages, and even
entire sites. You can leverage this feature to customize parts of a web site
while retaining the identity of the other parts of the site.

¢ Themes allow all visual properties to be customized, thus ensuring that when
themed, pages and controls can achieve a consistent style.

e Customization themes override control definitions, thus changing the look
and feel of controls. Customization themes are applied with the Theme
attribute of the Page directive.

e Stylesheet themes don’t override control definitions, thus allowing the
control to use the theme properties or override them. Stylesheet themes are
applied with the StylesheetTheme attribute of the Page directive.

Now that you have an understanding of the concepts behind themes, the next
section provides you with a quick example of creating a theme and utilizing it from
an ASP.NET page.

Creating a Simple Theme
To create a theme and apply it to a specific page, go through the following steps:

1. Create afolder called ControlThemes under the App_Themes folder.

2. Create a file with the extension .skin and add all the controls (that you want
to use in a page) and their style properties. Or you can also create individual
skin files for each and every control. When you are defining skin files,
remember to remove the ID attribute from all of the controls’ declarations.
For example, you can use the following code to define the theme for a Button
control:
<asp:Button runat="server” BackColor="Black” ForeColor="White”
Font-Name="Arial” Font-Size="10px"” />

3. Name the skin file Button.skin and place it under the ControlThemes folder.
Once you have created the .skin file, you can then apply that theme to all the
pages in your application by using appropriate settings in the Web.config file.
To apply the theme to a specific page, all you need to do is to add the Theme
attribute to the Page directive as shown below:
<%@Page Theme="ControlThemes” %>

That’s all there is to creating a theme and utilizing it in an ASP.NET page. It is also
possible for you to programmatically access the theme associated with a specific
page using the Page.Theme property. Similarly, you can also set the SkinID property
of any of the controls to specify the skin. If the theme does not contain a SkinID
value for the control type, then no error is thrown and the control simply defaults to
its own properties. For dynamic controls, it is possible to set the SkinID property
after they are created.

Themes:

An ASP.NET Theme enables you to apply a consistent style to the pages in your
website. You can use a Theme to control the appearance of both the HTML elements
and ASP.NET controls that appear in a page.

You create a Theme by adding a new folder to a special folder in your application
named App_Themes. Each folder that you add to the App_Themes folder represents
a different Theme. If the App_Themes folder doesn't exist in your application, then
you can create it. It must be located in the root of your application.

A Theme folder can contain a variety of different types of files, including images and
text files. You also can organize the contents of a Theme folder by adding multiple
subfolders to a Theme folder. The most important types of files in a Theme folder
are:-

. Skin Files.
. Cascading Style Sheet Files

A Theme can contain one or more Skin files. A Skin enables you to modify any of the
proprieties of an ASP.NET control that have an effect on its appearance.

mailto:%25@Page

For Example, Imagine that you want to show every label in the application to appear
with a yellow background and red color in text. You can create a folder in the
App_Themes folder named Default. Under this folder create a new skin file named
Label.Skin

In the skin file enter the code as in Listing 1.1

Listing 1.1
App_Themes\Default\Label.Skin

<asp:Label BackColor="Yellow" Font-Bold="true" Font-Names="Verdana"
ForeColor="red" runat="server" />

To use that skin in the pages in a website just set the Theme Property in the Page
directive. For example

<%@ Page Language="vb" AutoEventWireup="true" CodeFile="UsingTheme.aspx.vb"
Inherits="UsingTheme" Theme="Default" %>

Rather than add the Themes attribute to each and every page to which you want to
apply Theme, you can register a Theme for all pages in your application in the web
configuration file. For Example

<?xml version="1.0"?>
<configuration>
<system.web>
<pages theme="default">
</pages>
</system.web>
</configuration>

++ Validation Control

ASP.NET validation controls validate the user input data to ensure that useless,
unauthenticated, or contradictory data don't get stored.

ASP.NET provides the following validation controls:

e RequiredFieldValidator

e RangeValidator

e CompareValidator

e CustomValidator

e RegularExpressionValidator
o ValidationSummary

BaseValidator Class
The validation control classes are inherited from the BaseValidator class hence they inherit its

properties and methods. Therefore, it would help to take a look at the properties and the
methods of this base class, which are common for all the validation controls:

Members Description

ControlToValidate Indicates the input control to validate.

Display Indicates how the error message is shown.

EnableClientScript Indicates whether client side validation will take.

Enabled Enables or disables the validator.

ErrorMessage Indicates error string.

Text Error text to be shown if validation fails.

IsValid Indicates whether the value of the control is valid.

SetFocusOnError It indicates whether in case of an invalid control, the focus
should switch to the related input control.

ValidationGroup The logical group of multiple validators, where this control
belongs.

Validate() This method revalidates the control and updates the IsValid
property.

RequiredFieldValidator

RequiredFieldValidator validator control is used to make a field as mandatory in the form.
Without filling the field user can't submit the form.

Following are some basic properties of all Validator controls

Gets or sets the input control to validate (eg. The ID value of asp:TextBox

ControlToValidate
control).

Dynamic/Static. Used to indicate how the area of error message will be
allocated.

Displa . . .
play Dynamic: Error message area will only be allocated when error will be
displayed. Static: Error messagea area will be allocated in either case.
Enabled true/false. Gets or sets whether to enable the validation control or not.

Gets or sets the text of the error message that will be displayed when
ErrorMessage validation fails (This is displayed when ValidationSummary validatoin
control is used.).

Text Gets or sets the description of the error message text.

Gets or sets the validation group it belongs to. This is used to group a set of

ValidationGroup
controls.

SetFocusOnError |true/false. Used to move focus on the control that fails the validation.

DEMO :
RequiredFieldValidator

Write into TextBox

<asp:RequiredFieldvValidator ID="reqgl" runat="Server"
ControlToValidate="TextBoxl1l" ErrorMessage="TextBox is Mandatory field"
Text="Please write something in the Box."></asp:RequiredFieldvValidator>

RangeValidator

RangeValidator is used to validate if the given data is in between the specified range or not.

Following are main properties of the validation control.
MinimumValue |Gets or sets the minimum value of the range.

MaximumValue |Gets or sets the maximum value of the range.

Integer/String/Date/Currency/Double. Used to specify the data type to

Type validate.

Gets or sets the input control to validate (eg. The ID value of asp:TextBox

ControlToValidate
control).

Dynamic/Static. Used to indicate how the area of error message will be
allocated.

Displa . . .
play Dynamic: Error message area will only be allocated when error will be
displayed. Static: Error messagea area will be allocated in either case.
Enabled true/false. Gets or sets whether to enable the validation control or not.

Gets or sets the text of the error message that will be displayed when
ErrorMessage validation fails (This is displayed when ValidationSummary validatoin
control is used.).

Text Gets or sets the description of the error message text.

Gets or sets the validation group it belongs to. This is used to group a set of

ValidationGroup
controls.

SetFocusOnError |true/false. Used to move focus on the control that fails the validation.

DEMO : RangeValidator

Write into TextBox

<asp:RangeValidator ID="rangel" runat="Server"
ControlToValidate="TextBox1l" MinimumValue="5" MaximumValue="10"
Display="dynamic" Type="Integer" Text="Integer only" ErrorMessage="Value
must be between 5 to 10"></asp:RangeValidator>

RegularExpressionValidator

RegularExpressionValidator validation control is used to make sure that a textbox will accept a
predefined format of characters. This format can be of any type like you@domain.com (a valid
email address).

Following are main properties of the validation control.

Gets or sets the regular expression that will be used to validate input

ValidationExpression
control data.

Gets or sets the input control to validate (eg. The ID value of

ControlToValidate
asp:TextBox control).

Dynamic/Static. Used to indicate how the area of error message will be
allocated.

Displa . . .
play Dynamic: Error message area will only be allocated when error will be
displayed. Static: Error messagea area will be allocated in either case.
Enabled true/false. Gets or sets whether to enable the validation control or not.

Gets or sets the text of the error message that will be displayed when
ErrorMessage validation fails (This is displayed when ValidationSummary validatoin
control is used.).

Text Gets or sets the description of the error message text.

Gets or sets the validation group it belongs to. This is used to group a set

ValidationGroup
of controls.

SetFocusOnError true/false. Used to move focus on the control that fails the validation.

The following table summarizes the commonly used syntax constructs for regular expressions:

‘Character EscapesH Description ‘
‘\b HMatches a backspace. ‘
‘\t HMatches a tab. ‘
‘\r HMatches a carriage return. ‘
‘\v HMatches a vertical tab. ‘
‘\f HMatches a form feed. ‘
‘\n HMatches a new line. ‘
‘\ HEscape character. ‘

Apart from single character match, a class of characters could be specified that can be matched,
called the metacharacters.

‘ Metacharacters H Description ‘
‘. HMatches any character except \n. ‘
‘[abcd] HMatches any character in the set. ‘
‘["abcd] HEchudes any character in the set. ‘
‘[2-7a-mA-M] HMatches any character specified in the range. ‘
‘\w HMatches any alphanumeric character and underscore. ‘
‘\W HMatches any non-word character. ‘
‘\s HMatches whitespace characters like, space, tab, new line etc.‘
‘\S HMatches any non-whitespace character. ‘
‘\d HMatches any decimal character. ‘
‘\D HMatches any non-decimal character. ‘

Quantifiers could be added to specify number of times a character could appear.

‘ Quantifier H Description ‘
‘* HZero or more matches. ‘
‘+ HOne or more matches. ‘
‘? HZero or one matches. ‘
‘{N} HN matches. ‘
‘{N,} HN or more matches. ‘
‘{N,M} HBetween N and M matches.‘

The syntax of the control is as given:

<asp:RegularExpressionValidator ID="string" runat="server" ErrorMessage="string"
ValidationExpression="string" ValidationGroup="string"> </asp:RegularExpressionValidator>

CompareValidator

CompareValidator control is used to comapre two values. The value to compare can be either a
value of another control or a constant specified. There are predefined data types that can be
compared like string, integer etc.

Following are main properties of the validation control.

ControlToCompare

Operator

Display

Enabled
ErrorMessage

Text
ValidationGroup

SetFocusOnError

Gets or sets the ID of the control whose value will be compared with the currently
entered value.

DataTypeCheck/Equal/GreaterThan/GreaterThanEqual/LessThan/LessThanEqual/Not
Equal. Used to specify the comparison operation to peform. In case of
DataTypeCheck, ControlToCompare properties are ingnored.

Dynamic/Static. Used to indicate how the area of error message will be allocated.
Dynamic: Error message area will only be allocated when error will be displayed.
Static: Error messagea area will be allocated in either case.

true/false. Gets or sets whether to enable the validation control or not.

Gets or sets the text of the error message that will be displayed when validation fails
(This is displayed when ValidationSummary validatoin control is used.).

Gets or sets the description of the error message text.
Gets or sets the validation group it belongs to. This is used to group a set of controls.

true/false. Used to move focus on to the control that fails the validation.

DEMO : CompareValidator

Write into TextBox |

<asp:CompareValidator ID="CompareValidatorl" runat="Server"
ControlToValidate="TextBox2" ControlToCompare="TextBox1" Operator="Equal"
Type="string" Text="Both textbox value should be same." ErrorMessage="Both textbox
values are not equal." Display="Dynamic"></asp:CompareValidator>

CustomValidator

CustomValidator control is used to validate an input control with user-defined function either
from server side or client side. Generally, this control is used when you feel that no other
validation controls fit in your requirement.

Following are main properties of the validation control.

ClientValidationFunction
OnServerValidate

ControlToCompare

Operator

Display

Enabled

ErrorMessage

Text
ValidationGroup

SetFocusOnError

Gets or sets the validation function that will be used in client side
(JavaScript function).

Method that fires after post back.

Gets or sets the ID of the control whose value will be compared with
the currently entered value.

DataTypeCheck/Equal/GreaterThan/GreaterThanEqual/LessThan/LessT
hanEqual/NotEqual. Used to specify the comparison operation to
peform. In case of DataTypeCheck, ControlToCompare properties are
ingnored.

Dynamic/Static. Used to indicate how the area of error message will be
allocated.

Dynamic: Error message area will only be allocated when error will be
displayed. Static: Error message area will be allocated in either case.

true/false. Gets or sets whether to enable the validation control or not.

Gets or sets the text of the error message that will be displayed when
validation fails (This is displayed when ValidationSummary validatoin
control is used.).

Gets or sets the description of the error message text.

Gets or sets the validation group it belongs to. This is used to group a
set of controls.

true/false. Used to move focus on the control that fails the validation.

DEMO : CustomValidator Show Source Code

Write into TextBox ‘

<asp:CustomValidator ID="CustomValidator1" runat="Server"
ControlToValidate="TextBox1" ClientValidationFunction="CheckForHardCodedValue"
ErrorMessage="Value doens't match." Text="TextBox value must be [GOLD]"
OnServerValidate="ValidateServerSide"></asp:CustomValidator>

// JavaScript validation function /////////////11111111]]]]

function CheckForHardCodedValue(source, arguments)

{

var tID = '<%= TextBox1.ClientID %>';
if (document.getElementByld(tID).value == 'GOLD')

http://www.dotnetfunda.com/misc/codeviewer/default.aspx?pagename=~/tutorials/controls/customvalidator.aspx

arguments.IsValid = true;
else

arguments.IsValid = false;
}
// Server side function to validate //////////////]////]]]]]/

protected void ValidateServerSide(object source, ServerValidateEventArgs args)
{
if (args.Value.Equals("GOLD"))
{ args.IsValid = true;
IbIMessage.Text += "Page is valid.
"; }
else
{ args.IsValid = false;
IbIMessage.Text += "Page is NOT valid.
"; } o}

ValidationSummary
ValidationSummary control is used to summarize all validation errors on the page and display.

Following are main properties of the validation control.

ShowMessageBox |true/false. Popup alert box with all validation error, if true.
ShowSummary |true/false. Display summary of all errors on the page, if true.

BulletList/List/SingleParagraph. Used to display all validation errors in

DisplayMode specified format.

HeaderText Used to write the header of the error summary.

Used to specify the group name of input controls for which summary will

ValidationGroup be displayed

DEMO : ValidationSummary
Write into TextBox ‘

// Form & Validation Control //////////]//]]/]]]]]]]]]

<asp:ValidationSummary ID="ValidationSummary" runat="Server"

ShowMessageBox="true" ShowSummary="true" DisplayMode="List" HeaderText="Following
error occured." />

The web.config File
The web.config file uses a predefined XML format. The entire content of the file is
nested in a root <configuration> element. This element contains a <system.web>
element, which is used for ASP.NET settings. Inside the <system.web> element are
separate elements for each aspect of configuration.
Here's the basic skeletal structure of the web.config file:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<!-- Configuration sections go here. -->
</system.web>
</configuration>
This example adds a comment in the place where you’d normally find additional
settings. XML comments are bracketed with the <!-- and --> character sequences, as
shown here:
<l-- This is the format for an XML comment. -->
You can include as few or as many configuration sections as you want. For example,
if you need to specify special error settings, you could add just the <customErrors>
group.
Note that the web.config file is case-sensitive, like all XML documents, and starts
every setting with a lowercase letter. This means you cannot write <CustomErrors>
instead of <customErrors>.

If you want an at-a-glance look at all the available settings, head to
C:\WINDOWS\Microsoft. NET\Framework\[Version]\CONFIG directory, and look at
the web.config.comments file. This file consists of XML comments that show the
available options for every possible setting.

The entire contents of a configuration file, whether it is machine.config or

web.config,
is nested in a <configuration> element.

‘J Machine.con
CC.)NFIG \ fig 9 Web.conf
ig
|} ~
VirthalDir M

A Web.conf
A
% Web.conf

=4
g

SubDir

In the web.config, under the <configuration> element, there is another element
<system.web>, which is used for ASP.NET settings and contains separate elements
for each aspect of the configuration.

Important Configuration Tags
<authentication>

This element is used to verify the client's identity when the client requests a page
from the server. This is set at the application level. We have four types of
authentication modes: “None”, “Windows”, “Forms”, and “Passport”.

If we don't need any authentication, this is the setting we use:
<authentication mode="None"/>
<compilation>

In this section, we can configure the settings of the compiler. Here, we can have lots
of attributes, but the most common ones are debug and defaultLanguage. Setting
debug to true means we want the debugging information in the browser, but it has a
performance tradeoff, so normally, it is set as false. And, defaultLanguage tells
ASP.NET which language compiler to use: VB or CH.

<customErrors>

This tags includes the error settings for the application, and is used to give custom
error pages (user-friendly error pages) to end users. In the case that an error occurs,
the website is redirected to the default URL. For enabling and disabling custom
errors, we need to specify the mode attribute.

<customErrors defaultRedirect="url" mode="0ff">
<error statusCode="403" redirect="/accesdenied.html" />
<error statusCode="404" redirect="/pagenotfound.html" />
</customErrors>

¢ "On" means this settings is on, and if there is any error, the website is
redirected to the default URL.

o "Off" means the custom errors are disabled.

e "RemoteOnly" shows that custom errors will be shown to remote clients only.

<trace>

As the name suggest, it is used for tracing the execution of an application. We have
here two levels of tracing: page level and application level. Application level enables
the trace log of the execution of every page available in the application. If
pageOutput="true", trace information will be displayed at the bottom of each page.
Else, we can view the trace log in the application root folder, under the name
trace.axd.

<trace enabled="false" requestLimit="10" pageOutput="false"
traceMode="SortByTime" localOnly="true" />

<appSettings>

This section is used to store custom application configuration like database
connection strings, file paths etc. This also can be used for custom application-wide
constants to store information over multiple pages. It is based on the requirements
of the application.

<appSettings>
<add key="Emailto" value="me@microsoft.com" />
<add key="cssFile" value="CSS/text.css" />
</appSettings>

It can be accessed from code like:

ConfigurationSettings.AppSettings("Emailto")

Web Service

What is Web Service?

e Web Service is an application that is designed to interact directly with other applications
over the internet. In simple sense, Web Services are means for interacting with objects
over the Internet.

e Web Service is

Language Independent

Protocol Independent

Platform Independent

It assumes stateless service architecture.

o O

O

Example of Web Service

e Weather Reporting: You can use Weather Reporting web service to display weather
information in your personal website.

e Stock Quote: You can display latest update of Share market with Stock Quote on your
web site.

o News Headline: You can display latest news update by using News Headline Web
Service in your website.

e In summary you can any use any web service which is available to use. You can make
your own web service and let others use it. Example you can make Free SMS Sending
Service with footer with your companies advertisement, so whosoever use this service
indirectly advertise your company... You can apply your ideas in N no. of ways to take
advantage of it.

Web Service Communication
Web Services communicate by using standard web protocols and data formats, such as

e HTTP
« XML
o« SOAP

Advantages of Web Service Communication

Web Service messages are formatted as XML, a standard way for communication between two
incompatible system. And this message is sent via HTTP, so that they can reach to any machine
on the internet without being blocked by firewall.

Terms which are frequently used with web services

e Whatis SOAP?
o SOAP are remote function calls that invokes method and execute them on Remote
machine and translate the object communication into XML format. In short,
SOAP are way by which method calls are translate into XML format and sent via
HTTP.

e Whatis WSDL?
o WSDL stands for Web Service Description Language, a standard by which a web
service can tell clients what messages it accepts and which results it will return.

o WSDL contains every details regarding using web service
= Method and Properties provided by web service
= URLSs from which those method can be accessed.
= Data Types used.
= Communication Protocol used.

e Whatis UDDI?
o UDDI allows you to find web services by connecting to a directory.

e What is Discovery or .Disco Files?
o .Disco File (static)
= .Disco File contains
= URL for the WSDL
= URL for the documentation
= URL to which SOAP messages should be sent.
= A static discovery file is an XML document that contains links to other
resources that describe web services.
o .VsDisco File (dynamic)
» A dynamic discovery files are dynamic discovery document that are
automatically generated by VS.Net during the development phase of a
web service.

e What is difference between Disco and UDDI?
o Disco is Microsoft's Standard format for discovery documents which contains
information about Web Services, while UDDI is a multi-vendor standard for
discovery documents which contains information about Web Services.

Steps for Creation of webserive

Craete a web site with suitable name

Right click on solution explorer and selection add new item

From pop window select web service and give suitable name and click on add button
Web service created with default method called “hello world” you can also define your

YV V V

method here

http://dotnetguts.blogspot.in/2007/09/all-about-web-service-in-net.html

Consumption or Usage:

For adding web service in you application

Rig click on solution explorer select add web reference

Pop window open

Give URL of your web service location and click on go

The web service will available with available method and then click on add reference
button web service will create

YV VYV VY

For using in your web page

» Imports webserive.
» Create a object of web serive where you want to use.
» By using object pass parameter in web service methods

SiteMapPath

The SiteMapPath control is a site navigation control that reflects data provided
by the SiteMap object. It provides a space-saving way to easily navigate a site
and serves as a point of reference for where the currently displayed page is
within a site. It displays a hierarchical path of hyperlinked page names that provides
an escape up the hierarchy of pages from the current location. The SiteMapPath is
useful for sites that have deep hierarchical page structures, but where a TreeView or
Menu might require too much space on a page.

The SiteMapPath control works directly with your Web site's site map data. If you
use it on a page that is not represented in your site map, it will not be displayed.

The SiteMapPath is made up of nodes. Each element in the path is called a node and
is represented by a SiteMapNodeltem object. The node that anchors the path and
represents the base of the hierarchical tree is called the root node. The node that
represents the currently displayed page is the current node. Any other node between
the current node and root node is a parent node. The following table describes the
three different node types.

Node type		Description
root		A node that anchors a hierarchical set of nodes.
parent		A node that has one or more child nodes, but is not the current node.
current		A node that represents the currently displayed page.

Each node displayed by a SiteMapPath is a HyperLink or Literal control that you can
apply a template or style to. The templates and styles are applied to nodes according
to two rules of precedence:

o Ifatemplate is defined for a node, it overrides any style defined for the node.
o Templates and styles that are specific to types of nodes override general
templates and styles defined for all nodes.

Templates Provided by sitemap

CurrentNodeStyle:-The Style applied to current node.
NodeStyle:-Th Style Applied to navigation node.
RootNodeStyle:-The Style applied to root node.
CurrentNodeTemplate:- The template applied to current node.
NodeTemplate:- The template applied to navigation node.
RootNodeTemplate:- The template applied to root node.

The SiteMapPath control uses the site map provider identified by the
SiteMapProvider property as its data source for site navigation information. If no

provider is specified, it uses the default provider for the site, identified in the
SiteMap.Provider property. Typically, this is an instance of the default site map
provider for ASP.NET, the XmlSiteMapProvider. If the SiteMapPath control is used
within a site but no site map provider is configured, the control throws an

HttpException exception.

The SiteMapPath control also provides events that you can program against. This
allows you to run a custom routine whenever an event occurs. The following table
lists the events supported by the SiteMapPath control.

Event || Description
TtemCreated Occurs when the SiteMapPath control first creates a
- SiteMapNodeltem and associates it with a SiteMapNode.
Occurs when a SiteMapNodeltem is bound to site map data
liemDataBound contained by the SiteMapNode.

4.1 Principles of Mathematics by Aryabhata
Introduction: Aryabhata (476 CE) was one of ancient India’s greatest mathematicians and

astronomers. His seminal work, Aryabhatiya, contains sutras (verses) that describe foundational
concepts in mathematics, including arithmetic, geometry, and trigonometry.

4.1.1 Principles of Mathematics: Sutra (Verse 1.1)

Sanskrit Verse (Ganitapada 1.1)

"Caturadhikam Satamastagunam dvasastistatha sahasranam"

Translation & Interpretation:

This verse introduces a numerical system based on positional decimal values. Aryabhata used
Sanskrit syllables to denote numbers—a cryptic yet efficient system that encoded values and
operations in verse form.

Mathematical Principle:

Introduction to the place value system and the decimal system (based on powers of 10), which
predated similar Western systems by centuries.

4.1.2 Value of Pi: Sutra (Verse 3.1)
Sanskrit Verse (Aryabhatiya 2.10)

"Add four to 100, multiply by 8, and then add 62,000. This is the approximate circumference of a
circle with diameter 20,000."

Calculation:

(44 100) x 8 + 62000 62832

20000 20000 o-1416

Mathematical Principle:
This gives an approximation of accurate to four decimal places — remarkably close to modern
values.

4.1.3 Sine Function: Sutra (Verse 3.2)

Concept:
Aryabhata introduced the concept of ardha-jya (half-chord), which corresponds to the modern
sine function.

Explanation:
He created a table of sines for every 3.75° increment using geometry and interpolation, essential
for astronomical calculations.

Significance:
It marks the first recorded use of the sine function, centuries before its formal appearance in
Arabic and European mathematics.

4.1.4 Trigonometric Functions: Sutra (Verse 3.11)

Concept:
Aryabhata’s work includes the use of sine (jya) and cosine (kojya) to solve problems involving
spherical astronomy.

Mathematical Principle:
Understanding angular measurements, trigonometric ratios, and relationships among sides and
angles of triangles — foundational for astronomy and navigation.

4.2 Ancient Knowledge from the Shulba Sutras (Vedic
Texts)

Overview:
The Shulba Sutras (c. 800 BCE) are part of the Vedas, focusing on geometry for altar
construction. "Shulba" means rope, indicating geometry done via rope-measurement.

4.2.1 Construction of a Square

Method:
Using a rope and pegs, Vedic scholars constructed a square with right angles using basic
geometric techniques, including diagonals and perpendicular bisectors.

Mathematical Principle:
The square's symmetry and use of right angles are essential for altar accuracy and were among
the earliest uses of geometric constructions.

4.2.2 Pythagorean Theorem (Sulbha Sutra 1.2)
Sanskrit Verse:

"The diagonal of a rectangle produces both areas which its length and breadth produce
separately."

Modern Interpretation:

a4 bt = 2

Significance:
This is one of the earliest recorded instances of the Pythagorean theorem, predating Pythagoras
by several centuries.

4.2.3 Area of a Circle

Method (Sulba Sutras):

They used the formula:

13
Area =~
15

LS

) x d* (where d is the diameter)

Approximation of m:

13\
T = = 4 = 53.04
15

L3

Though less accurate than Aryabhata's, it was revolutionary for its time.

4.2.4 Area of a Triangle

Method:
Area — 2 x base x height

This was understood through constructions and rope measurements to ensure perpendicularity.

Cultural Relevance:
Used in altar construction for Vedic rituals with precise measurements and symbolic shapes.

4.3 Ancient Knowledge by Brahmagupta
Overview:

Brahmagupta (598-668 CE), a brilliant mathematician, wrote Brahmasphutasiddhanta, which
includes early algebra, number theory, and geometry.

4.3.1 Area of a Cyclic Quadrilateral (Verse 10)
Sanskrit Verse:

"The square root of the product of the semi-perimeter minus each side, multiplied together, gives
the area.”

Formula (Brahmagupta’s Formula):
For a cyclic quadrilateral with sides a,b,c,da, b, c, da,b,c,d,

a+b+c+d
2

Area — \/(.:- —a)(s —b)(s —c)(s —d)

g8 —

Significance:
This generalized Heron’s formula for all quadrilaterals inscribed in a circle.

	Slide 1: Class:- T.Y.B.C.A SEM-V
	Slide 2: Unit 1. Introduction to ASP.NET
	Slide 3: 1.1 What is ASP.NET
	Slide 4
	Slide 5
	Slide 6: Link for download SQL Express
	Slide 7: 1.2 .NET framework 2.0
	Slide 8: .NET Framework mainly contains two components,
	Slide 9: 1. Common Language Runtime (CLR)
	Slide 10: 2. .NET Framework Class Library (FCL)
	Slide 11
	Slide 12: 3. Common Type System (CTS)
	Slide 13: 4. Common Language Specification (CLS)
	Slide 14: 1.3 Compile Code
	Slide 15: 1.3.1 Code Behind and Inline Coding
	Slide 16
	Slide 17: Code Behind
	Slide 18
	Slide 19: Inline Code
	Slide 20
	Slide 21: 1.4 The Common Language Runtime
	Slide 22: The CLR has the following key features:
	Slide 23: 1.5 Object Oriented Concepts
	Slide 24
	Slide 25: 1.6 Event Driven Programming
	Slide 26: What is ASP.Net Page Lifecycle?
	Slide 27
	Slide 28: ASP.NET Page Life Cycle Events
	Slide 29
	Slide 30
	4.1 Principles of Mathematics by Aryabhata
	4.1.1 Principles of Mathematics: Sutra (Verse 1.1)
	4.1.2 Value of Pi: Sutra (Verse 3.1)
	4.1.3 Sine Function: Sutra (Verse 3.2)
	4.1.4 Trigonometric Functions: Sutra (Verse 3.11)

	4.2 Ancient Knowledge from the Shulba Sutras (Vedic Texts)
	4.2.1 Construction of a Square
	4.2.2 Pythagorean Theorem (Sulbha Sutra 1.2)
	4.2.3 Area of a Circle
	4.2.4 Area of a Triangle

	4.3 Ancient Knowledge by Brahmagupta
	4.3.1 Area of a Cyclic Quadrilateral (Verse 10)

