
Class:- T.Y.B.C.A SEM-V

Course: 505: ASP .NET

Unit 1. Introduction to

ASP.NET

1.1 What is ASP.NET

• What is ASP.NET?(ActiveX Server Pages)

• Microsoft ASP.NET is a server side technology that enables programmers to

build dynamic Web sites, web applications, and XML Web services.

• It is a part of the .NET based environment and is built on the Common

Language Runtime (CLR).

• So programmers can write ASP.NET code using any .NET compatible

language.

http://asp.net/
http://asp.net/
http://asp.net/

Version Release

Year

Visual Studio

.Net Framework 1.0 2002 Visual Studio .Net

.Net Framework 1.1 2003 Visual Studio .Net 2003

.Net Framework 2.0 2005 Visual Studio 2005

.Net Framework 3.0 2006

.Net Framework 3.5 2007 Visual Studio 2008

.Net Framework 4.0 2010 Visual Studio 2010

.Net Framework 4.5 2012 Visual Studio 2012

.Net Framework 4.6 2015 Visual Studio 2015

.Net Framework 4.7 2017 Visual Studio 2017

.Net Framework 4.8 2019 Visual Studio 2019

Version of .NET Framework:

Link for download SQL Express

• https://www.microsoft.com/en-in/sql-server/sql-server-downloads

https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads
https://www.microsoft.com/en-in/sql-server/sql-server-downloads

1.2 .NET framework 2.0

.NET Framework

mainly contains two components,

1. Common Language Runtime (CLR)

2. .NET Framework Class Library.

1. Common Language Runtime (CLR)

2. .NET Framework Class Library (FCL)

• The following are different types of applications that can make use of .net class
library.

 1. Windows Application.

 2. Console Application

 3. Web Application.

 4. XML Web Services.

 5. Windows Services.

And many more classes also like ADO .NET Databases and etc.

The .NET Framework includes a set of standard class libraries. A class library is a collection of methods and

functions that can be used for the core purpose.

For example, there is a class library with methods to handle all file-level operations. So there is a method which can be

used to read the text from a file. Similarly, there is a method to write text to a file.

Most of the methods are split into either the System.* or Microsoft.* namespaces. (The asterisk * just means a

reference to all of the methods that fall under the System or Microsoft namespace)

A namespace is a logical separation of methods. We will learn these namespaces more in detail in the subsequent

chapters.

3. Common Type System (CTS)

• It describes set of data types that can be used in different .Net languages in

common. (i.e), CTS ensures that objects written in different .Net languages

can interact with each other.

For Communicating between programs written in any .NET compatible

language, the types have to be compatible on the basic level.

4. Common Language Specification (CLS)

• It is a sub set of CTS and it specifies a set of rules that needs to satisfied by all language compilers targeting CLR. It helps in cross
language inheritance and cross language debugging.

• Common language specification Rules:

It describes the minimal and complete set of features to produce code that can be hosted by CLR. It ensures that products of compilers
will work properly in .NET environment.

 Sample Rules:

 1. Representation of text strings

 2. Internal representation of enumerations

 3. Definition of static members and this is a subset of the CTS which all .NET languages are expected to support.

 4. Microsoft has defined CLS which are nothing but guidelines that language to follow so that it can communicate with other
.NET languages in a seamless manner.

1.3 Compile Code

• Compiled code is a set of files that must be linked together and with one master

list of steps in order for it to run as a program.

1.3.1 Code Behind and Inline Coding

• Code Behind

• Code Behind refers to the code for an ASP.NET Web page that is written in a
separate class file that can have the extension of .aspx.cs or .aspx.vb depending on
the language used. Here the code is compiled into a separate class from which the
.aspx file derives. You can write the code in a separate .cs or .vb code file for each
.aspx page.

• One major point of Code Behind is that the code for all the Web pages is compiled
into a DLL file that allows the web pages to be hosted free from any Inline Server
Code.

• Inline Code

• Inline Code refers to the code that is written inside an ASP.NET Web Page

that has an extension of .aspx. It allows the code to be written along with the

HTML source code using a <Script> tag. It's major point is that since it's

physically in the .aspx file it's deployed with the Web Form page whenever

the Web Page is deployed.

Code Behind

Inline Code

1.4 The Common Language Runtime

The CLR has the following key features:

1)Exception Handling

 2) Garbage Collection

 3) Type Safety

 4) Thread Management

 5) Working with Various programming languages

 -Language

 -Compiler

 -Common Language Interpreter

1.5 Object Oriented Concepts
✓OOPS Concepts, Features & Fundamentals

✓Class:- A class is a collection of objects and represents description of objects that

share same attributes and actions.

✓Method:- Method is an object's behavior. ...

✓Object:-Any entity that has state and behavior is known as an object. For example,

a chair, pen, table, keyboard, bike, etc. It can be physical or logical.

✓Encapsulation: -Binding (or wrapping) code and data together into a single unit are

known as encapsulation.

For example, a capsule, it is wrapped with different medicines.

✓Abstraction:-Hiding internal details and showing functionality is known as

abstraction. For example phone call, we don't know the internal processing.

✓Inheritance:-When one object acquires all the properties and behaviors of a parent

object, it is known as inheritance. It provides code reusability. It is used to

achieve runtime polymorphism.

✓Polymorphism:-If one task is performed in different ways, it is known as

polymorphism. For example: to convince the customer differently, to draw

something, for example, shape, triangle, rectangle, etc.

1.6 Event Driven Programming

What is ASP.Net Page Lifecycle?
✓When an ASP.Net page is called, it goes through a particular lifecycle. This is done

before the response is sent to the user. There are series of steps which are followed

for the processing of an ASP.Net page.

✓Let's look at the various stages of the lifecycle of an ASP.Net web page.
ASP.Net - Intro, Life Cycle Hello World Program

https://cdn.guru99.com/images/asp-net/061516_0807_ASPNetIntro3.png

Following are the different stages of an ASP.NET page:

•Page request - When ASP.NET gets a page request, it decides whether to parse and compile the page, or there

would be a cached version of the page; accordingly the response is sent.

•Starting of page life cycle - At this stage, the Request and Response objects are set. If the request is an old

request or post back, the IsPostBack property of the page is set to true. The UICulture property of the page is also

set.

•Page initialization - At this stage, the controls on the page are assigned unique ID by setting the UniqueID

property and the themes are applied. For a new request, postback data is loaded and the control properties are

restored to the view-state values.

•Page load - At this stage, control properties are set using the view state and control state values.

•Validation - Validate method of the validation control is called and on its successful execution, the IsValid

property of the page is set to true.

•Postback event handling - If the request is a postback (old request), the related event handler is invoked.

•Page rendering - At this stage, view state for the page and all controls are saved. The page calls the Render

method for each control and the output of rendering is written to the OutputStream class of the Response

property of page.

•Unload - The rendered page is sent to the client and page properties, such as Response and Request, are unloaded

and all cleanup done.

ASP.NET Page Life Cycle Events

• At each stage of the page life cycle, the page raises some events, which could

be coded. An event handler is basically a function or subroutine, bound to

the event, using declarative attributes such as Onclick or handle.

1. PreInit:-

• 1.Check the IsPostBack property to determine whether this is the first time the page is being

processed.

• 2. Create or re-create dynamic controls.

• 3. Set a master page dynamically.

• 4. Set the Theme property dynamically.

ROFEL, Shri G.M Bilakhia College Of Applied Sciences, VAPI (BCA)

2. Init

1. This event fires after each control has been initialized.

2. Each control's UniqueID is set and any skin settings have been applied.

3. Use this event to read or initialize control properties.

3. Load

1. The Page object calls the OnLoad method on the Page object, and then recursively does the same for

each child control until the page and all controls are loaded. The Load event of individual controls occurs after the

Load event of the page.

2. Most code checks the value of IsPostBack to avoid unnecessarily resetting state.

3. You can also create dynamic controls in this method.

4. Use the OnLoad event method to set properties in controls and establish database connections.

4.Control PostBack Event(s)

1. ASP.NET now calls any events on the page or its controls that caused the PostBack to occur.

2. Use these events to handle specific control events, such as a Button control's Click event or a

TextBox control's TextChanged event.

3. This is just an example of a control event. Here it is the button click event that caused the

postback.

5. Render Method

1. The Render method generates the client-side HTML, Dynamic Hypertext Markup Language (DHTML), and

script that are necessary to properly display a control at the browser.

6.UnLoad

1. This event is used for cleanup code.

2. At this point, all processing has occurred and it is safe to dispose of any remaining objects, including

the Page object.

3. Cleanup can be performed on:

➢ Instances of classes, in other words objects

➢ Closing opened files

➢ Closing database connections.

4. This event occurs for each control and then for the page.

5. During the unload stage, the page and its controls have been rendered, so you cannot make further

changes to the response stream.

6. If you attempt to call a method such as the Response.Write method then the page will throw an

exception.

Components of .Net Framework
Components of .Net Framework

Net Framework is a platform that provides tools and technologies to develop Windows,
Web and Enterprise applications. It mainly contains two components,

1. Common Language Runtime (CLR)
2. .Net Framework Class Library.

1. Common Language Runtime (CLR)
.Net Framework provides runtime environment called Common Language
Runtime (CLR).It provides an environment to run all the .Net Programs. The code
which runs under the CLR is called as Managed Code. Programmers need not to
worry on managing the memory if the programs are running under the CLR as it
provides memory management and thread management.

Programmatically, when our program needs memory, CLR allocates the memory for
scope and de-allocates the memory if the scope is completed.

The Compilation Divided in to Two Step.
In First step 1) Language Compilers (e.g. C#, VB.Net, J#) will convert the Code/Program to
Microsoft Intermediate Language (MSIL) intern
In Second Step 2) this will be converted to Native Code by CLR JIT Compiler. See the below
Fig.

There are currently over 15 language compilers being built by Microsoft and other
companies also producing the code that will execute under CLR.

2. .Net Framework Class Library (FCL)

This is also called as Base Class Library and it is common for all types of applications i.e. the
way you access the Library Classes and Methods in VB.NET will be the same in VB.Net, and it
is common for all other languages in .NET.

The following are different types of applications that can make use of .net class library.

1. Windows Application.
2. Console Application
3. Web Application.
4. XML Web Services.
5. Windows Services.

In short, developers just need to import the BCL in their language code and use its
predefined methods and properties to implement common and complex functions like
reading and writing to file, graphic rendering, database interaction, and XML document
manipulation.

Below are the few more concepts that we need to know and understand as part of this .Net
framework.

3. Common Type System (CTS)

It describes set of data types that can be used in different .Net languages in common. (i.e),

CTS ensures that objects written in different .Net languages can interact with each other.

For Communicating between programs written in any .NET complaint language, the types
have to be compatible on the basic level.

The common type system supports two general categories of types:

Value types:

Value types directly contain their data, and instances of value types are either allocated on
the stack or allocated inline in a structure. Value types can be built-in (implemented by the
runtime), user-defined, or enumerations.

Reference types:

Reference types store a reference to the value's memory address, and are allocated on the
heap. Reference types can be self-describing types, pointer types, or interface types. The
type of a reference type can be determined from values of self-describing types. Self-
describing types are further split into arrays and class types. The class types are user-defined
classes, boxed value types, and delegates.

4. Common Language Specification (CLS)

It is a sub set of CTS and it specifies a set of rules that needs to be adhered or satisfied by all
language compilers targeting CLR. It helps in cross language inheritance and cross language
debugging.

Common language specification Rules:

It describes the minimal and complete set of features to produce code that can be hosted by
CLR. It ensures that products of compilers will work properly in .NET environment.
 Sample Rules:

1. Representation of text strings

2. Internal representation of enumerations

3. Definition of static members and this is a subset of the CTS which all
.NET languages are expected to support.

4. Microsoft has defined CLS which are nothing but guidelines that language
to follow so that it can communicate with other .NET languages in a
seamless manner.

Below mentioned the .Net Architecture stack for easy understanding.

Label control

Label control is used to place a static, non clickable (can't fire onclick event) piece of text on
the page. When it is rendered on the page, it is implemented through HTML
tag. Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height
etc. are implemented through style properites of . You can set its Text property
either by setting Text properties in the .aspx page or from server side page. (other
properties can also be set from both pages)

Following are few properties of the Label that are very useful.

EnableViewState true/false. If false ViewState will not be maintained.

Visible true/false. If false control will not be rendered to the page

DEMO : Label

Write something into the TextBox

Ex. Example of Label Control

 // Label control code
<asp:Label ID="Label2" runat="server" BackColor="Coral"
ForeColor="blue" BorderColor="ActiveBorder"
BorderStyle="dashed" BorderWidth="1" Height="20"
Text="Example of Label Control" Width="200"
></asp:Label>

TextBox Control

TextBox control is used to enter data into the form that can be sent to the webserver by

posting the form.

DEMO : TextBox

TextMode is Singleline Write some

TextMode is Multiline TextBox w ith TextMode as Multiline

PostBack the form It will Postback the page when cursor leaves this box.

Ex. TextBox value will be written here

 // Singleline TextBox code
 <asp:TextBox ID="TextBox1" runat="Server"
 Width="300"></asp:TextBox>

Button control
Button control is generally used to post the form or fire an event either client side or server
side. When it is rendered on the page, it is generally implemented through <input
type=submit> HTML tag. However, if UserSubmitBehavior property is set to false then
control will render out as <input type=button>.

Following are some important properties that are very useful.

UserSubmitBehavior
true/false. If true, the button will be used as client browser submit
mechanism else asp.net postback mechanism.

CausesValidation
Value can be set as true/false. This indicates whether validation will be
performed when a button is clicked.

PostBackUrl Indicates the URL on which the Form will be posted back.

ValidationGroup
Gets or Sets the name of the validation group that the button belongs
to. This is used to validate only a set of Form controls with a Button.

OnClick Attach a server side method that will fire when button will be clicked.

OnClientClick Attach a client side (javascript) event that will fire when button will be clicked.

LinkButton control
It implements an anchor <a/> tag that uses only ASP.NET postback mechanism to post the
data on the server. Despite being a hyperlink, you can't specify the target URL. There is no
UserSubmitBehavior property like Button control with LinkButton control.

Following are some important properties that are very useful.

CausesValidation
Value can be set as true/false. This indicates whether validation will be
performed when a button is clicked.

PostBackUrl Indicates the URL on which the Form will be posted back.

ValidationGroup
Gets or Sets the name of the validation group that the button belongs to.
This is used to validate only a set of Form controls with a Button.

OnClick Attach a server side method that will fire when button will be clicked.

OnClientClick
Attach a client side (javascript) method that will fire when button will be
clicked.

ImageButton control
ImageButton control is generally used to post the form or fire an event either client side or
server side. When it is rendered on the page, generally it is implemented through <input
type=image > HTML tag.
Following are some important properties that are very useful.

ImageUrl Gets or Sets the location of the image to display.

CausesValidation
Value can be set as true/false. This indicates whether validation should be
performed when a button is clicked.

PostBackUrl Indicates the URL on which the Form will be posted back.

ValidationGroup
Gets or Sets the name of the validation group that the button belongs to.
This is used to validate only a set of Form controls with a Button.

OnClientClick
Attach a client side (javascript) method that will fire when button will be
clicked.

OnClick Attach a server side method that will fire when button will be clicked.

Hyperlink control
Hyperlink control is used to jump to another location or to execute the script code. When
rendered on the page, it implements an anchor <a/> tag.
Following are some important properties that are useful.

NavigateUrl Used to specify the location to jump to.

ImageUrl Used to place an image instead of text as Hyperlink.

DropDownList control

DropDownList control is used to give a single select option to the user from multiple listed
items.

You can specify its height and width in pixel by setting its height and width but you will not
be able give mutliple select option to the user. When it is rendered on the page, it is
implemented through <select/> HTML tag. It is also called as Combo box.
Following are some important properties that are very useful.

SelectedValue Get the value of the Selected item from the dropdown box.

SelectedIndex Gets or Sets the index of the selected item in the dropdown box.

SelectedItem Gets the selected item from the list.

Items Gets the collection of items from the dropdown box.

DataTextField
Name of the data source field to supply the text of the items. (No
need to set when you are adding items directly into .aspx page.)

DataValueField
Name of the data source field to supply the value of the items.
(No need to set when you are adding items directly into .aspx
page.)

DataSourceID
ID of the datasource component to provide data. (Only used
when you have any DataSource component on the page, like
SqlDataSource, AccessDataSource etc.)

DataSource
The datasource that populates the items in the dropdown box.
(Generally used when you are dynamically generating the items
from Database.)

AutoPostBack
true or false. If true, the form is automatically posted back to the
server when user changes the dropdown list selection. It will also
fire OnSelectedIndexChanged method.

AppendDataBoundItems
true or false. If true, the statically added item (added from .aspx
page) is maintained when adding items dynamically (from code
behind file) or items are cleared.

OnSelectedIndexChanged
Method name that fires when user changes the selection of the
dropdown box. (Fires only when AutoPostBack=true.)

<asp:DropDownList ID="DropDownList1" runat="server">
<asp:ListItem Text="Red" Value="red"></asp:ListItem>
<asp:ListItem Text="Blue" Value="blue"></asp:ListItem>
<asp:ListItem Text="Green" Value="green"></asp:ListItem>
</asp:DropDownList>

ListBox control

ListBox control is used to give a single or multiple select options to the user from multiple
listed items.

All properties and its working resembles DropDownList box. However, ListBox has two extra
properties called Rows and SelectionMode. ListBox control is used to give a single or
multiple select option to the user (based on the property set) from multiple listed items.
You can specify its height and width in pixel by setting its height and width but you will not
be able give mutliple select option to the user. When it is rendered on the page, it is
implemented through <select/> HTML tag. It is also called as Combo box.

You can add its option items by directly writing into .aspx page directly or dynamically add
at run time or bind through database.

Following are some important properties that are very useful.

Rows No. of rows (items) can be set to display in the List.

SelectionMode
Single or Multiple. If multiple, it allows user to select multiple
items from the list by holding Ctrl or Shift key.

SelectedValue Get the value of the Selected item from the dropdown box.

SelectedIndex Gets or Sets the index of the selected item in the dropdown box.

SelectedItem Gets the selected item from the list.

Items Gets the collection of items from the dropdown box.

DataTextField
Name of the data source field to supply the text of the items. (No
need to set when you are adding items directly into .aspx page.)

DataValueField
Name of the data source field to supply the value of the items.
(No need to set when you are adding items directly into .aspx
page.)

DataSourceID
ID of the datasource component to provide data. (Only used
when you have any DataSource component on the page, like
SqlDataSource, AccessDataSource etc.)

DataSource
The datasource that populates the items in the listbox box.
(Generally used when you are dynamically generating the items
from Database.)

AutoPostBack
true or false. If true, the form is automatically posted back to the
server when user changes the dropdown list selection. It will also
fire OnSelectedIndexChanged method.

AppendDataBoundItems
true or false. If true, the statically added item (added from .aspx
page) is maintained when adding items dynamically (from code
behind file) or items are cleared.

OnSelectedIndexChanged
Method name that fires when user changes the selection of the
dropdown box. (Fires only when AutoPostBack=true.)

<asp:ListBox ID="ListBox1" runat="server">
 <asp:ListItem Text="Red" Value="red"></asp:ListItem>
 <asp:ListItem Text="Blue" Value="blue"></asp:ListItem>
 <asp:ListItem Text="Green" Value="green"></asp:ListItem>
</asp:ListBox>

CheckBox control

CheckBox control is used to give option to the user.

Following are some important properties that are very useful.

AutoPostBack
Form is automatically posted back when CheckBox is checked or
Unchecked.

CausesValidation
true/false. If true, Form is validated if Validation control has been used
in the form.

Checked true/false. If true, Check box is checked by default.

OnCheckedChanged
Fires when CheckBox is checked or Unchecked. This works only if
AutoPostBack property is set to true.

ValidationGroup Used to put a checkbox under a particular validation group. It is used
when you have many set of form controls and by clicking a paricular
button you want to validate a particular set of controls only.

<asp:CheckBox ID="checkbox2" runat="Server" Text="Click, if Office address is same as

Home address" AutoPostBack="True"

OnCheckedChanged="PutHomeAddressAsOfficeAddress" BorderColor="brown"

BorderWidth="1" CausesValidation="True" />

CheckBoxList control

CheckBoxList control is a single control that groups a collection of checkable list items, all

are rendered through an individual <input type=checkbox></input>.

Following are some important properties that are very useful.

SelectedValue Gets the value of first selected item.

SelectedIndex Gets or Sets the index of the first selected item.

SelectedItem Gets the first selected item

TextAlign Gets or Sets the alignment of the checkbox text.

DataTextField
Name of the data source field to supply the text of the items. (No
need to set when you are adding items directly into .aspx page.)

DataValueField
Name of the data source field to supply the value of the items.
(No need to set when you are adding items directly into .aspx
page.)

DataSourceID
ID of the datasource component to provide data. (Only used
when you have any DataSource component on the page, like
SqlDataSource, AccessDataSource etc.)

DataSource
The datasource that populates the items in the checkboxlist box.
(Generally used when you are dynamically generating the items
from Database.)

AutoPostBack
true/false. If true, the form is automatically posted back to the
server when user click any of the checkbox. It will also fire
OnSelectedIndexChanged method.

AppendDataBoundItems
true/false. If true, the statically added item (added from .aspx
page) is maintained when adding items dynamically (from code
behind file) or items are cleared.

OnSelectedIndexChanged
Method name that fires when user click any of the checkbox in
the list. (Fires only when AutoPostBack=true.)

Items Gets the colleciton of the items from the list.

RepeatLayout
table/flow. Gets or Sets the layout of the chekboxes when
rendered to the page.

RepeatColumns
Gets or Sets the no. of columns to display when the control is
rendered.

RepeatDirection
Horizontal/Vertical. Gets or Sets the the value to indicate
whether the control will be rendered horizontally or vertically.

<asp:CheckBoxList ID="CheckBoxList1" runat="Server">

 <asp:ListItem Text="Red" Value="red"></asp:ListItem>

 <asp:ListItem Text="Blue" Value="blue"></asp:ListItem>

 <asp:ListItem Text="Green" Value="green"></asp:ListItem>

 </asp:CheckBoxList>

RadioButton control

RadioButton control is used to give single select option to the user from multiple items.

Following are some important properties that are very useful.

AutoPostBack
Form is automatically posted back when Radio button selection is
changed.

CausesValidation
true/false. If true, Form is validated if Validation control has been used
in the form.

Checked true/false. If true, Radio button is selected by default.

OnCheckedChanged
Fires when Radio button selection changes. This works only if
AutoPostBack property is set to true.

ValidationGroup Used to put a radio button under a particular validation group. It is
used when you have many set of form controls and by clicking a
paricular button you want to validate a particular set of controls only.

GroupName It is used a group a set of radion buttons so only one of them can be
selected at a time.

<asp:RadioButton ID="RadioButton7" runat="Server" GroupName="1stGroup" Text="Red"

Checked="True" />

<asp:RadioButton ID="Radio8" runat="Server" GroupName="1stGroup" Text="Blue" />

RadioButtonList control

RadioButtonList control is a single control that groups a collection of radiobuttons, all are

rendered through an individual <input type=radio></input>.

Following are some important properties that are very useful.
(RadioButtonList controls supports the same set of properties as the CheckBoxList control
does.

SelectedValue Get the value first selected item.

SelectedIndex Gets or Sets the index of the first selected item.

SelectedItem Gets the first selected item

TextAlign Gets or Sets the alignment of the radiobutton text.

DataTextField
Name of the data source field to supply the text of the items. (No
need to set when you are adding items directly into .aspx page.)

DataValueField
Name of the data source field to supply the value of the items.
(No need to set when you are adding items directly into .aspx

page.)

DataSourceID
ID of the datasource component to provide data. (Only used
when you have any DataSource component on the page, like
SqlDataSource, AccessDataSource etc.)

DataSource
The datasource that populates the items in the radiobuttonlist.
(Generally used when you are dynamically generating the items
from Database.)

AutoPostBack
true/false. If true, the form is automatically posted back to the
server when user click any of the radiobutton. It will also fire
OnSelectedIndexChanged method.

AppendDataBoundItems
true/false. If true, the statically added item (added from .aspx
page) is maintained when adding items dynamically (from code
behind file) or items are cleared.

OnSelectedIndexChanged
Method name that fires when user click any of the radiobutton in
the list. (Fires only when AutoPostBack=true.)

Items Gets the colleciton of the items from the list.

RepeatLayout
table/flow. Gets or Set the layout of the radiobuttons when
rendered to the page.

RepeatColumns
Get or Sets the no. of columns to display when the control is
rendered.

RepeatDirection
Horizontal/Vertical. Gets or Sets the the value to indicate
whether the control will be rendered horizontally or vertically.

<asp:RadioButtonList ID="RadioButtonList1" runat="Server">

 <asp:ListItem Text="Red" Value="red"></asp:ListItem>

 <asp:ListItem Text="Blue" Value="blue"></asp:ListItem>

 <asp:ListItem Text="Green" Value="green"></asp:ListItem>

</asp:RadioButtonList>

Image control

Image control is used to place an image on the page.

Following are some important properties that are very useful.

ImageUrl Url of image location.

AlternetText
Appears if image not loaded properly or if image is missing in the specified
location.

Tooltip Text message Appearing on mouse over the image

ImageAlign Used to align the Text beside image.

<asp:Image ID="Image2" runat="Server" ImageUrl="~/images/Dot.gif" AlternateText="Dot

Logo"ImageAlign="textTop" ToolTip="Go to Dot Home page" />

ImageMap control

ImageMap control is used to create an image that contains clickable hotspot region.

Following are some important properties that are very useful.

ImageUrl Url of image location.

AlternetText Appears if image not loaded properly

Tooltip Appears when on mouse over the image

ImageAlign Used to align the Text beside image.

HotSpotMode
PostBack/Navigate When Navigate, the user is navigated to a different
URL. In case of PostBack, the page is posted back to the server.

OnClick
Attach a server side event that fires after clicking on image when
HostSpotMode is PostBack.

PostBackValue
You can access it in the server side click event through ImageMapEventArgs.
(eg. e.PostBackValue)

<asp:ImageMap ID="ImageMap1" runat="Server" ImageUrl="controldata/gotocontrols.gif"

OnClick="FireImageMapClick">

 <asp:RectangleHotSpot AlternateText="Label" Left="10" Top="33" Right="75" Bottom="10"

NavigateUrl="~/tutorials/controls/label.aspx" />

 <asp:RectangleHotSpot AlternateText="Button" Left="80" Top="33" Right="150"

Bottom="10" NavigateUrl="~/tutorials/controls/button.aspx" />

 <asp:RectangleHotSpot AlternateText="ImageButton" Left="155" Top="33" Right="275"

Bottom="10" NavigateUrl="~/tutorials/controls/imagebutton.aspx" />

 </asp:ImageMap>

Asp: Table control

Table control is used to structure a web pages. In other words to divide a page into several

rows and colums to arrange the information or images.

Table control is used to structure a web pages. In other words to divide a page into several
rows and colums to arrange the information or images. When it is rendered on the page, it
is implemented through <table> HTML tag.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height etc.
are implemented through style properites of <table> tag.

We can simply use HTML <table> control instead of using asp:Table control. However many
of one benefits of using asp:Table control is we can dynamically add rows or columns at the
runtime or change the appearance of the table.
You can skip ID property of the TableRow or TableCell, however it is advisable to write these
property otherwise you will not be able to play with these controls.

Following are some important properties that are very useful.

BackImageUrl Used to Set background image of the table

Caption Used to write the caption of the table.

<asp:Table ID="Table2" runat="Server" CellPadding="2" CellSpacing="1"

BorderColor="CadetBlue" Caption="Demo of asp:Table control" BorderWidth="1"

BorderStyle="Dashed">

<asp:TableRow ID="TableRow2" runat="Server" BorderWidth="1">

<asp:TableCell ID="TableCell4" runat="Server" BorderWidth="1">

Row 1 - Cell 1 </asp:TableCell>

<asp:TableCell ID="TableCell5" runat="Server">

Row 1 - Cell 2 </asp:TableCell> </asp:TableRow>

<asp:TableRow ID="TableRow3" runat="Server">

<asp:TableCell ID="TableCell6" runat="Server">

Row 2 - Cell 1 </asp:TableCell>

<asp:TableCell ID="TableCell7" runat="Server">

Row 2 - Cell 2 </asp:TableCell> </asp:TableRow> </asp:Table>

BulletedList control

BulletedList control is used to display the data in a list prefixed with bullet characters.

Following are some important properties that are very useful.

DisplayMode HyperLink/LinkButton/Text. Determines how to display the items.

FirstBulletNumber
Sets a starting number for Bulleted list when BulletStyle is set to
Numbering.

Items Gets the colleciton of the items in the list control.

BulletStyle
Circle/CustomImage/Disc/LowerAlpha/LowerRoman/Numbered/Squar
e/UpperAlpha/UpperRoman. Determines the style of the bullet.

AppendDataBoundI
tems

Determines whether statically defined items should remain and shown
when adding items dynamically.

DataTextField
Name of the field to set as items text. Used when DisplayMode is
Hyperlink or LinkButton.

DataValueField
Name of the field to set as items value. Used when DisplayMode is
Hyperlink or LinkButton.

BulletImageUrl Used to set the Bullet Image when BulletStyle is CustomImage.

<asp:BulletedList ID="BulletedList3" runat="Server" BorderColor="Blue" BorderWidth="1">
 <asp:ListItem Text="Item 1"></asp:ListItem>
 <asp:ListItem Text="Item 2"></asp:ListItem>
 <asp:ListItem Text="Item 3"></asp:ListItem
</asp:BulletedList>

Literal control

Literal control is the rarely used control which is used to put static text on the web page.

Ideally Literal control is the rarely used control which is used to put static text on the web

page.

When it is rendered on the page, it is implemented just as a simple text.

Unlike asp:Label control, there is no property like BackColor, ForeColor, BorderColor,

BorderStyle, BorderWidth, Height etc. of Literal control. That makes it more powerful, you

can even put a pure

HTML contents into it.

Select color to change the background color the cell Ex. Just a text inside Literal Control

// CODE BEHIND
 // Fires when Button is clicked
protected void ChangeBackColor(object sender, EventArgs e)
{ Literal1.Text = " bgcolor='" + dropStatic.SelectedValue + "'";
litText.Text = "<div style='background-color:white;color:#000000'>Literl Control is
powerful</div>";}

Calendar control
Calendar control is used to display one month calendar and allows to navigate backword &
forward through dates, and months.

There are many properties of Calendar control to customize the functionality and
appearance. However, these are some important properties that are very useful.

Properties Description

Caption Gets or sets the caption for the calendar control.

CaptionAlign Gets or sets the alignment for the caption.

CellPadding
Gets or sets the number of spaces between the data and the cell
border.

CellSpacing Gets or sets the space between cells.

DayHeaderStyle
Gets the style properties for the section that displays the day of the
week.

DayNameFormat Gets or sets format of days of the week.

DayStyle Gets the style properties for the days in the displayed month.

FirstDayOfWeek Gets or sets the day of week to display in the first column.

NextMonthText
Gets or sets the text for next month navigation control. The default
value is >.

NextPrevFormat
Gets or sets the format of the next and previous month navigation
control.

OtherMonthDayStyle
Gets the style properties for the days on the Calendar control that are
not in the displayed month.

PrevMonthText
Gets or sets the text for previous month navigation control. The
default value is <.

SelectedDate Gets or sets the selected date.

SelectedDates Gets a collection of DateTime objects representing the selected dates.

SelectedDayStyle Gets the style properties for the selected dates.

SelectionMode
Gets or sets the selection mode that specifies whether the user can
select a single day, a week or an entire month.

SelectMonthText
Gets or sets the text for the month selection element in the selector
column.

SelectorStyle Gets the style properties for the week and month selector column.

SelectWeekText
Gets or sets the text displayed for the week selection element in the
selector column.

ShowDayHeader
Gets or sets the value indicating whether the heading for the days of
the week is displayed.

ShowGridLines
Gets or sets the value indicating whether the gridlines would be
shown.

ShowNextPrevMonth
Gets or sets a value indicating whether next and previous month
navigation elements are shown in the title section.

ShowTitle Gets or sets a value indicating whether the title section is displayed.

TitleFormat Gets or sets the format for the title section.

Titlestyle Get the style properties of the title heading for the Calendar control.

TodayDayStyle Gets the style properties for today's date on the Calendar control.

TodaysDate Gets or sets the value for today's date.

UseAccessibleHeader
Gets or sets a value that indicates whether to render the table header
<th> HTML element for the day headers instead of the table data <td>
HTML element.

VisibleDate Gets or sets the date that specifies the month to display.

WeekendDayStyle Gets the style properties for the weekend dates on the Calendar

control.

The Calendar control has the following three most important events that allow the
developers to program the calendar control. They are:

Events Description

SelectionChanged It is raised when a day, a week or an entire month is selected.

DayRender
It is raised when each data cell of the calendar control is
rendered.

VisibleMonthChanged It is raised when user changes a month.

Panel control

Panel control is generally used to keep a set of controls into it.

Following are some important properties that are very useful.

GroupingText Its used to set the caption of the group of controls inside the panel.

Visible true/false. Used to hide or show the panel.

Login control
Login control provides a ready to use user interface that can be used as a Login interface in
the web site.
Following are some important properties that are very useful.

Properties of the Login Control

TitleText Indicates the text to be displayed in the heading of the control.

InstructionText Indicates the text that appears below the heading of the control.

UserNameLabelText Indicates the label text of the username text box.

PasswordLabelText Indicates the label text of the password text box.

FailureText Indicates the text that is displayed after failure of login attempt.

UserName Indicates the initial value in the username text box.

LoginButtonText Indicates the text of the Login button.

LoginButtonType Button/Link/Image. Indicates the type of login button.

DestinationPageUrl Indicates the URL to be sent after login attempt successful.

DisplayRememberMe
true/false. Indicates whether to show Remember Me checkbox or
not.

VisibleWhenLoggedIn
true/false. If false, the control is not displayed on the page when
the user is logged in.

CreateUserUrl Indicates the url of the create user page.

CreateUserText Indicates the text of the create user link.

PasswordRecoveryUrl Indicates the url of the password recovery page.

PasswordRecoveryText Indicates the text of the password recovery link.

Style of the Login Control

CheckBoxStyle Indicates the style property of the Remember Me checkbox.

FailureStyle Indicates the style property of the failure text.

TitleTextStyle Indicates the style property of the title text.

LoginButtonStyle Indicates the style property of the Login button.

TextBoxStyle Indicates the style property of the TextBox.

LabelStyle Indicates the style property of the labels of text box.

HyperLinkStyle Indicates the style property of the hyperlink in the control.

InstructionTextStyle
Indicates the style property of the Instruction text that appears
below the heading of the control.

Events of the Login Control

LoggingIn Fires before user is going to authenticate.

LoggedIn Fires after user is authenticated.

LoginError Fires after failure of login attempt.

Authenticate
Fires to authenticate the user. This is the function where you need
to write your own code to validate the user.

Log In

User Name:

Password:

Remember me next time.

Register User

Forget password?

 // Login Control ////////////////////////////
<asp:Login ID="Login1" runat="server" BackColor="#F7F6F3" BorderColor="#E6E2D8"
BorderPadding="4"
 BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana" Font-Size="0.8em"
ForeColor="#333333" OnAuthenticate="Login1_Authenticate"
OnLoginError="Login1_LoginError">
 <TitleTextStyle BackColor="#5D7B9D" Font-Bold="True" Font-Size="0.9em"
ForeColor="White" />
 <LoginButtonStyle BackColor="#FFFBFF" BorderColor="#CCCCCC" BorderStyle="Solid"
BorderWidth="1px"
 Font-Names="Verdana" Font-Size="0.8em" ForeColor="#284775" />
</asp:Login>

LoginView control

LoginView control is very simple yet very powerful and customizable. It allows user to
customize its view for both anonymous user and logged in user.

LoginView Control ////////////////////////////
<asp:LoginView ID="LoginView1" runat="Server">
 <AnonymousTemplate>
 Welcome, Guest
 <asp:LoginStatus ID="LoginStatus1" runat="Server" />

 </AnonymousTemplate>

http://www.dotnetfunda.com/tutorials/controls/createuser.aspx
http://www.dotnetfunda.com/tutorials/controls/receoverypassword.aspx

 <LoggedInTemplate>
 Welcome,
 <asp:LoginName ID="LoginName1" runat="Server" />
 <asp:LoginStatus ID="LoginStatus1" runat="Server" />
 </LoggedInTemplate>

File Upload Control

ASP.NET has two controls that allow users to upload files to the web server. Once the server
receives the posted file data, the application can save it, check it, or ignore it. The following
controls allow the file uploading:

• HtmlInputFile - an HTML server control
• FileUpload - and ASP.NET web control

Both controls allow file uploading, but the FileUpload control automatically sets the
encoding of the form, whereas the HtmlInputFile does not do so.
In this tutorial, we use the FileUpload control. The FileUpload control allows the user to
browse for and select the file to be uploaded, providing a browse button and a text box for
entering the filename.

Once, the user has entered the filename in the text box by typing the name or browsing, the
SaveAs method of the FileUpload control can be called to save the file to the disk.
The basic syntax of FileUpload is:

<asp:FileUpload ID= "Uploader" runat = "server" />

The FileUpload class is derived from the WebControl class, and inherits all its members.
Apart from those, the FileUpload class has the following read-only properties:

Properties Description

FileBytes Returns an array of the bytes in a file to be uploaded.

FileContent Returns the stream object pointing to the file to be uploaded.

FileName Returns the name of the file to be uploaded.

HasFile Specifies whether the control has a file to upload.

PostedFile Returns a reference to the uploaded file.

The posted file is encapsulated in an object of type HttpPostedFile, which could be accessed
through the PostedFile property of the FileUpload class.
The HttpPostedFile class has the following frequently used properties:

Properties Description

ContentLength Returns the size of the uploaded file in bytes.

ContentType Returns the MIME type of the uploaded file.

FileName Returns the full filename.

InputStream Returns a stream object pointing to the uploaded file.

For Example
 Dim strname, strpath, strfullpath As String
 strname = ""
 If FileUpload1.HasFile Then

 strname = FileUpload1.FileName
 strpath = Server.MapPath("~/image/")
 strfullpath = strpath + strname
 FileUpload1.SaveAs(strfullpath)
 End If

Request:

Information or message send by client to server is known as request.

The request object is an instance of the System.Web.Httprequest class.

This object represents the values and properties of the http request that cause your page to

be loaded.

It contains all the URL parameters and all other information sent by a client.

Http request properties:

1. Application path and Physical path:-

Application path gets the ASP.Net applications virtual directory (URL). While physical

path gets the real directory.

2. Browser:-

This provides a link to an http browser capabilities object which contains properties

describing various browser features, such as supports for activates control, cookies,

VB script and frames.

3. Cookies:-

This gets the collection of cookies sent with this request.

4. Form:-

This represents the collection of form variable that were posted back to the page. In

almost all cases, you will retrieve this information from control properties instead of

using this collection.

5. IsLocal:-

This returns true, if the user is requesting the page from the current computer.

6. Querystring:-

This provides the parameters that were passed along with the Querystring.

7. URL and URL Reffer:-

This provides a URL object that represent the current address for the page and the

page were the user is coming from (the previous page that link to this page)

8. User Host address and User Host name:-

This get the IP address and the DNS name of the remote client.

You could also access this information the server variables collection. However, this

information may not always be available.

Response:

Information send by server to client is known as Response.

The response object is a instance of the system.web.httpresponse class and it represents

the web server response to a client request.

The http response does till provide important functions namely cookie features and the

redirect method. The redirect method allows you to send the user to another page.

Here is an example,

You can redirect to a file in the current directory Response.Redirect(“default2.aspx”)

You can redirect to other website Response.Redirect(“http://www.google.com”)

The Redirect() method requires a round-trip. Essentially, it sends a message to the browser

that instructs it to request a news page.

If you want to transfer the user to another page in the same web application, you can use a

faster approach with the Server.Transfer() method.

Http response members:

1. Cookies:-

This is the collection of cookies send with the response. You can use this property to

add additional cookies.

2. IsClientConnected:-

This is a Boolean value indicating whether the client is still connected to the server. If

it is not, you might want to stop a time consuming operation.

3. Write(), BinaryWrite() and WriteFile():-

This method allows you to write the text or binary content directory to the response

string. You can even write the content of a file.

4. Redirect:-

This method transfers the user to another page in your application or a different

website.

Server:

The server object is an instance of the System.Web.HttpServerUtility class.

Http server utility methods:

1. MachineName:-

A property representing the computer name of the computer on which the page is

running. This is the name of webserver computer. Uses to identify itself to rest of the

network.

2. GetLastError:-

Retrieves the exception object for the most recently encountered error, (all or a null

reference if there is not one). This error must have occurred while processing the

current request and it must not have been handled.

3. HTML Encode and HTML Decode:-

Changes an ordinary string with a legal HTML characters.

4. URL Encode and URL Decode:-

Changes an ordinary string into string with legal URL character.

5. MapPath():-

Returns the physical file path the co-responds to specified virtual file path on the

web server.

6. Transfer():-

The transfer execution to another webpage in the current application. This is similar

to Response.Redirect(). But, it is faster.

http://www.google.com/

It cannot be used to transfer the page to a site on another web server or to a non

ASP.Net page (such as an HTML page or an ASP page)

The transfer method is quickest to redirect user to another page in your

application.When you use this method a round-trip is not involved. Instead the

ASP.Net engine simply loads the new page and begins processing it.

As a result the URL i.e. displayed in the client browsers won’t change.

You can transfer to a file in the current web application.

i.e.Server.Transfer(“newpage.aspx”)

You can’t redirect to another website. This attempt will cause an error.

i.e.Server.Transfer(“http://www.google.com”)

 The MapPath() is another useful method of the server object.

For e.g. Imagine you want to load a file name info.txt from the current virtual

directory.

 Instead of hard coding path, you can use Request.ApplicationPath to get the
current relative virtual directory and Server.MapPath to convert this to an absolute
physical path.
 Here, is an example

 Dim physicalpath as string

Physicalpath=Server.MapPath(“~/data/info.txt”)

Difference between Server.Transfer and Response.Redirect:

Response.Redirect Server.Transfer

Response.Redirect involves a round-trip to
the server.

Server.Transfer avoids the round-trip.
It just changes the focus of the web server to
different page and transforms the page
processing to a different page.

Response.Redirect can be used for both
.aspx and HTML pages.

Server.Transfer can be used only for .aspx
page.

Response.Redirect can be used to redirect a
user to an external website.

Server.Transfer can be used only on sites
running on the same server.
You can’t use Server.Transfer to redirect the
user to a page running on different server.

Response.Redirect changes the URL in the
browser. So they can be bookmark.

Serever.Transfer retains the original URL in
the browser.
It just replaces the content of the previous
page with new page.

HTML Server Control:

This are controls which are defined in the namespace System.Web.UI.HtmlControls

There are 20 different HTML server control. They are divided into different catagories based

on whether they are input control or container control. Following diagram shows this

http://www.google.com/

hierarchy.

Fig: HTML Server Control

The HTML Control Class:

All the HTML server controls derives from the HTML base class HTML control. The following

are set of common properties of HTML control class.

i. Attribute:-

Allow to access or add attribute in the control tag.

ii. Disabled:-

It sets or gets the control disabled state. If true then the control Is usually grayed

and not usable.

iii. Style:-

Returns a collection of CSS attributes that are applied to the control.

iv. Tagname:-

Returns the control tag name.

The HTML Container Control Class:

Any HTML tag that has both an opening and closing tag can contain other HTML content or

controls i.e. anchor tag <a> which usually wraps text or an image with the text.

<a>…..

There are other tag like <div>….</div> which is also use as a container tag.

In addition to this we have bold tag. ….

In addition to this we can use this tag to map the HTML server control class by using the

attribute runat=”server”.

In this case we can interact with this tag using the HTML generic control.

The following are the 2 main properties of HTML container control:-

i. InnerHTML:-

Returns or sets the HTML tags inside the opening and closing tags. When you use

the property, all characters are left as it is. This means you can embedded HTML

markup.

ii. InnerText:-

Returns or sets the text inside the opening and closing tags. When you use this

property, any characters that would be interacted as special HTML syntax are

automatically replaced with the HTML entity equivalents.

The HTML Input Control Class:

The HTML input control class allow for user interaction. It include checkboxes, textboxes,

button and list boxes. The type attribute indicate the type of input control as in

<input type=”text”> (a textbox), <input type=”file”> (control for uploading file).

The HTML Input Control properties:

i. Name:-

Gets the unique identifier name for the HTML input control.

ii. Type:-

Gets or sets the type of an HTML input control. For e.g. If this property is set to

text, the HTML input control is textbox for data entry.

iii. Value:-

Gets or sets the value associated with input control.

The HTML Server Control Classes:

HTML server controls and the specific properties and events that each one adds to the base

class.

Runat=”server” will allow to access particular HTML control at coding file.

HTML server control classes:-

Tag declaration .Net class Specific member

 HTML anchor HREF, target, title, name,
server click event.

<button runat=”server”> HTML Button CausesValidation,
ValidationGroup, Server click
event.

<Form runat=”server”> HTML Form Name, method, target,
DefaultButton, DefaultFocus

 HTML Image Align, alt, border, height, src,

width.

<input type=”button” runat=”server”> HTML input button Name, type, value,
CausesValidation,
ValidationGroup, server click
event.

<input type=”reset” runat=”server”> HTML input reset Name, type, value.

<input type=”submit” runat=”server”> HTML input
submit

Name, type, value,
CausesValidation,
ValidationGroup, server click
event

<input type=”checkbox”
runat=”server”>

HTML input
checkbox

Check, type, name, value,
server click event

<input type=”file” runat=”server”> HTML input file Accept,maxlength, name,
posted file, size, type, value.

<input type=”hidden” runat=”server”> HTML input
hidden

Name, type, value, server
change event.

<input type=”image” runat=”server”> HTML
inputimablege

Align, alt, border, name, src,
type, value,
CausesValidation,
ValidationGroup, sercer click
event

<input type=”radio” runat=”server”> HTML input radio
button

Check, type, name, value,
server change event

<input type=”text” runat=”server”> HTML input text Maxlength, name, type,
value, serverChange event

<input type=”password”
runat=”server”>

HTML input
password

Maxlength, name, type,
value, serverChange event

<select runat=”server”> HTML select Multiple, selectedindex, size,
value, datasource,
datatextfield, datavaluefield,
items(collection), server
change event

<table runat=”server”> HTML table Align, bgcolor, border,
border-color, cellpadding,
cellspacing, height, nowrap,
width, rows(colloction).

<th runat=”server”> HTML table cell Align, bgcolor, border,
colspan, rowspan, nowrap,
valign

<tr runat=”server”> HTML table row Align, bgcolor, height, valign,
cells (collection)

<textarea runat=”server”> HTML text area Cols, name, rows, value,
server change event.

Any other <html> with runat=”server”
attribute

HTML generic
control

None.

ImageMap:

ImageMap control is used to create an image that contains clickable hotspot region.

When user click on the region, the user is either sent to a URL or a sub program is

called. When it is rendered on the page, it is implemented through HTML tag.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height

etc. are implemented through style properites of .

Following are some important properties that are very useful.

ImageUrl Url of image location.

AlternetText Appears if image not loaded properly

Tooltip Appears when on mouse over the image

ImageAlign Used to align the Text beside image.

HotSpotMode
PostBack/Navigate When Navigate, the user is navigated to a different URL. In case of

PostBack, the page is posted back to the server.

OnClick
Attach a server side event that fires after clicking on image when HostSpotMode is

PostBack.

PostBackValue
You can access it in the server side click event through ImageMapEventArgs. (eg.

e.PostBackValue)

Clicking on

 <asp:ImageMap ID="ImageMap1" runat="Server"

ImageUrl="controldata/gotocontrols.gif" OnClick="FireImageMapClick">

 <asp:RectangleHotSpot AlternateText="Label" Left="10"

Top="33" Right="75" Bottom="10" NavigateUrl="~/tutorials/controls/label.aspx" />

 <asp:RectangleHotSpot AlternateText="Button" Left="80"

Top="33" Right="150" Bottom="10" NavigateUrl="~/tutorials/controls/button.aspx" />

 <asp:RectangleHotSpot AlternateText="ImageButton"

Left="155" Top="33" Right="275" Bottom="10"

NavigateUrl="~/tutorials/controls/imagebutton.aspx" />

 <asp:RectangleHotSpot AlternateText="Fires server side

Click Event. Postback value is ListBox" Left="300" Top="40" Right="400" Bottom="0"

NavigateUrl="~/tutorials/controls/listbox.aspx" HotSpotMode="PostBack"

PostBackValue="ListBox" /></asp:ImageMap>

Asp Table:

Table control is used to structure a web pages. In other words to divide a page into

several rows and columns to arrange the information or images. When it is rendered on

the page, it is implemented through <table> HTML tag.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height

etc. are implemented through style properites of <table> tag.

We can simply use HTML <table> control instead of using asp:Table control. However

many of one benefits of using asp:Table control is we can dynamically add rows or

columns at the runtime or change the appearance of the table.

You can skip ID property of the TableRow or TableCell, however it is advisable to write

these property otherwise you will not be able to play with these controls.

Following are some important properties that are very useful.

BackImageUrl Used to Set background image of the table

Caption Used to write the caption of the table.

Demo of asp:Table control

Row 1 - Cell 1 Row 1 - Cell 2

Row 2 - Cell 1 Row 2 - Cell 2

Add One Row and 2 Column
Change Table Back Color

<asp:Table ID="Table2" runat="Server" CellPadding="2" CellSpacing="1"

 BorderColor="CadetBlue" Caption="Demo of asp:Table control" BorderWidth="1"

BorderStyle="Dashed">

 <asp:TableRow ID="TableRow2" runat="Server" BorderWidth="1">

 <asp:TableCell ID="TableCell4" runat="Server" BorderWidth="1">

 Row 1 - Cell 1

 </asp:TableCell>

 <asp:TableCell ID="TableCell5" runat="Server">

 Row 1 - Cell 2

 </asp:TableCell>

 </asp:TableRow>

 <asp:TableRow ID="TableRow3" runat="Server">

 <asp:TableCell ID="TableCell6" runat="Server">

 Row 2 - Cell 1

 </asp:TableCell>

 <asp:TableCell ID="TableCell7" runat="Server">

 Row 2 - Cell 2

 </asp:TableCell>

 </asp:TableRow>

 </asp:Table>

BulletedList :
BulletedList control is used to display the data in a list prefixed with bullet characters.

The item can be statically written or can be bound with the datasource. When it is

rendered on the page, it is implemented through <table> HTML tag.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth, Height

etc. are implemented generally through style properites of tag, However it depends

on BulletStyle property.

Following are some important properties that are very useful.

DisplayMode HyperLink/LinkButton/Text. Determines how to display the items.

FirstBulletNumber Sets a starting number for Bulleted list when BulletStyle is set to Numbering.

Items Gets the colleciton of the items in the list control.

BulletStyle
Circle/CustomImage/Disc/LowerAlpha/LowerRoman/Numbered/Square/UpperAlpha/

UpperRoman. Determines the style of the bullet.

javascript:__doPostBack('ctl00$PlaceHolderForContents$lnl1','')

AppendDataBoundIt

ems

Determines whether statically defined items should remain and shown when adding

 items dynamically.

DataTextField
Name of the field to set as items text. Used when DisplayMode is Hyperlink or

LinkButton.

DataValueField
Name of the field to set as items value. Used when DisplayMode is Hyperlink or

LinkButton.

BulletImageUrl Used to set the Bullet Image when BulletStyle is CustomImage.

Literal:

 Ideally Literal control is the rarely used control which is used to put static text on the

web page. When it is rendered on the page, it is implemented just as a simple text.

Unlike asp:Label control, there is no property like BackColor, ForeColor, BorderColor,

BorderStyle, BorderWidth, Height etc. of Literal control. That makes it more

powerful, you can even put a pure HTML contents into it.

Select color to change the background color the cell
Red

Change Background Color

Ex. Just a text

inside Literal

Control

 // Set the background color of the cell from server side

event

 <td> <asp:Literal ID="Literal2" runat="Server" />

 Ex. <asp:Literal ID="Literal3" runat="Server" Text="Just

a text inside Literal Control"></asp:Literal>

 </td>

 </tr>

 // CODE BEHIND

 // Fires when Button is clicked

 Literal1.Text = " bgcolor='" + dropStatic.SelectedValue + "'";

 litText.Text = "<div style='background-color:white;color:#000000'>Literl

Control is powerful</div>";

Page 1 of 7

Use of ADO.NET objects directly in Visual Basic code.
There are two ways to access & manipulate data of database. First method is visually (with
graphical tools) & second method is via coding (using ADO.NET objects directly in coding).
 ADO .NET objects are Connection Object, Command object, DataAdapter object,
DataSet objects, DataReader Object, DataTable Object, DataRow Object, DataColumn Object,
etc.
 (1) Connection Objects :

The Connection object provides connectivity (physical connection) to a data source
(database). Using its method, you can open & close the connection, change the database &
manage transactions.

Connection class exist for ODBC (OdbcConnection), OLE DB (OledbConnection), SQL
Server (SqlConnection) &Oracle (OracleConnection)
Property :
(1) ConnectionString : It is the string that is used to connect (open) a database when the open
method is executed.
 ConnectionString property of OledbConnection object has arguments like Provider, Data
Source, Database, User ID, Password.
Example ConnectionString property of OleDbConnection class to connect MS Access:
Imports System.Data.Oledb
…………………………………………………….
Dim Con As New OleDbConnection
…………………………………………………….
Con = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
'D:\SAI_DB.mdb'") Con.Open()
…………………………………………………….
Example ConnectionString property of OleDbConnection class To connect Oracle :
Imports System.Data.OleDb
…………………………………………………….
Dim Con As New OleDbConnection
…………………………………………………….
Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User ID=SCOTT;
PASSWORD=TIGER”
Con.Open
…………………………………………………….

(2) ConnectionTimeout : The maximum time the Connection object attempts to make the
connection before throwing an exception. (before terminating the attempt and generating an
error). By default is 15 seconds.
(3) DataSource : It is used to specify the server name of the computer on which the database is
running. When connecting to an access database, this specifies the path & database name.
(4) State : Gets (returns) the current state of the connection. For example we get Closed, if the
connection is closed. & we get Open, if the connection is open.

Page 2 of 7

MsgBox(Con.State.ToString)
(5) ServerVersion :Gets the version of the server.
(6) Provider : This property represents the name of the provider.

Provider parameter specifies the driver that uses to communicate with the database.
The most common drivers are Microsoft.Jet.OLEDB.4.0 for Access, SQLOLEDB for SQL server
&MSDAORA for Oracle.
Method :
(1) Open : Opens a database connection with the property settings specified by the
ConnectionString.
(2) Close : Closes the connection to the data source. After the connection is close no
transaction can be perform on the database data.
 Con.Close()
 Con.Dispose() ‘Releases the resources used by the connection object.
 Con = Nothing ‘Release your reference to the connection object
(3) BeginTransaction : Starts (begins) a database transaction.
(2) Command Objects :

The Command object is used to execute SQL statements (Select, Insert, Update &
Delete) as well as stored procedure.In addition to the DML statements, you can also execute
DDL statements that change the structure of the database.

You can also use the Parameters collection in the Command class to pass parameters to
stored procedures or SQL statements.

Command object exist for ODBC (OdbcCommand), OLE DB (OledBCommand), SQL Server
(SqlCommand) & Oracle (OracleCommand).
Property :

(1) CommandText : It is the string, contains either SQL statements or name of the stored
procedure to be executed.

(2) CommandType : It represents the type of the Command object. Depending upon the
command type Command object executes the command. The different command types
are as follows.

StoredProcedure :The name of a stored procedure.
TableDirect : The name of a table.
Text : SQL statements. (Default)

For example : Cmd.CommandType = CommandType.Text

(3) Connection : The name of the active Connection object, through which the command is
to be executed.

(4) Parameters : The parameters property contains a collection of parameters for the SQL
statements or stored procedure.

Methods :

Page 3 of 7

(1) ExecuteNonQuery : Executes commands that do not return data rows. But it returns
number of rowsaffected by the commands. (Such as SQL INSERT, DELETE, UPDATE, and
SET statements).

(2) ExecuteScalar : Calculates and returns a single value, such as a sum, min, max from a
database. Used for aggregate function.

(3) ExecuteReader : Executes SQL commands that return rows. ExecuteReader method is
used to create data reader.

(4) Cancel : Cancels the execution of the command.

Example 1 :

 Imports System.Data.OleDb
…………………………………………………………………….

 Dim Con As New OleDbConnection
 Dim Cmd As New OleDbCommand
…………………………………………………………………….

Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User ID=SCOTT;
PASSWORD=TIGER”
Con.Open
…………………………………………………………………….

 Dim SAI_STR As String = "Insert Into Employee Values(…………………”
 Cmd = New OleDbCommand(SAI_STR, Con)

 Cmd.ExecuteNonQuery()
 …………………………………………………………………….
 (3) Data Adapter Objects :

The DataAdapter object provides the bridge between the DataSet object and the data
source (database) for retrieving and saving data.

The DataAdapter’s sole purpose is to retrieves data from the database, then populates
(fill) the Datasets & also used to send (propagate) the Datasets changes to the database. (The
DataAdapter object has Fill method to load data from the data source into the dataset, and the
Update method to send changes you've made in the dataset back to the data source).

The DataAdapter contains four command objects: SelectCommand, InsertCommand,
UpdateCommand, and DeleteCommand. The DataAdapter uses the SelectCommand to fill a
DataSet & the remaining three commands to transmit changes back to the data source.

Data adapter object exist for ODBC (ODBCDataAdapter), OLE DB (OleDbDataAdapter),
SQL Server (SqlDataAdapter) & Oracle (OracleDataAdapter).

Property :

(1) SelectCommand : The name of the Command object used to retrieve rows from the
data source.

(2) InsertCommand : The name of the Command object used to insert rows in the data
source.

Page 4 of 7

(3) UpdateCommand : The name of the Command object used to update rows in the data
source.

(4) DeleteCommand : The name of the Command object used to delete rows in the data
source.

Methods :
(1) Fill : . The Fill method which loads data from the data source (database) into the Dataset. If
the Connection is closed before Fill is called, it is opened to retrieve data and then closed.
Syntax 1:
OleDbDataAdapter.Fill(DataSet)
Syntax 2:
OleDbDataAdapter.Fill(DataTable)
Syntax 3:
OleDbDataAdapter.Fill(DataSet, TableName)
(2) Update : Update method is used to send changes you've made in the dataset back to the
data source (database).
Syntax 1:

 OleDbDataAdapte.Update(DataSet)
Syntax 2:
OleDbDataAdapter.Update(DataTable)
Example :

Imports System.Data.OleDb
……….………

Dim Con As New OleDbConnection
Dim DA As New OleDbDataAdapter
Dim DT As New DataTable

……….………
Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User ID=SCOTT;
 PASSWORD=TIGER”
 Con.Open
……….………

 DA = New OleDbDataAdapter("SELECT * FROM STUD", CON)
 DT = New DataTable
 DA.Fill(DT)
 DataGridView1.DataSource = DT

……….………
(4) DataSet Objects :

It is the major component of ADO.NET. DataSet is a memory-resident representation of data. A
dataset is a disconnected cache of data, and, that is stored in memory.DataSet is always
disconnected from the data source. It can contain data from multiple sources.

Page 5 of 7

As we have seen in ADO.NET object model, The DataSet composed of two primary
objects: the DataTableCollection, accessed through Tables property, and
DataRelationCollection accessed through the Relations property. The DataTableCollection
contains zero or more DataTable objects, which are in turn made up of three collections:
DataColumnColection, DataRowCollection, and ConstraintCollection. The
DataRelationCollection contains zero or more DataRelation objects.

The dataset is a disconnected, in-memory representation of data. An advantage of this
is that we do not need to have a continuous connection to the database.

Property :
(1) Relations : It is the collection of DataRelation objects, which defines the relationship of the

DataTables within the dataset.
(2) Tables : It is the collection of DataTables contained in the dataset.

Method :
(1) AcceptChanges : Accepts (Commits) all the pending changes made to the dataset.
(2)RejectChanges: Roll back all changes pending in the DateSet. Rolls back the changes made to
the dataset since it was created or since the AcceptChanges method was called.
(3) Copy : Copies the structure & contents of the DataSet.
(4) Clear : Empties all the tables in the DataSet.
(5) Reset: Returns the DataSet back to its original state.
(6) CreateDataReader : Returns a DataTableReader from the DataSet, allowing you to read-
only, forward-only access to the data. The DataTableReader is functionally identical
DataReader.

Example :

Imports System.Data.OleDb
……………………………………………………………………………………….

Dim Con As New OleDbConnection
Dim DA As New OleDbDataAdapter
Dim DS as New DataSet

…………………………………………………………………………………………
 Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User
ID=SCOTT; PASSWORD=TIGER”
 Con.Open
…………………………………………………………………………………………

DA = New OleDbDataAdapter("SELECT * FROM STUD", CON)
 DS = New DataSet()
 DA.Fill(DS,”STUD”)
DataGridView1.DataSource = DS
DataGridView1.DataMember=”STUD”

Page 6 of 7

(5) DataReader Objects :
The DataReader in addition to datasets, there are also datareaders, which are

extremely fast, read-only, forward only low-overhead way of retrieving information from the
database. You can only move through records with in ascending ordermeans you cannot go
backward. ExecuteReader method of a command object is used to create data reader.

DataReader is appropriate when you are processing rows individually and then
discarding them. For example, Report generators, you get a performance benefit from
DataReader. DataReader is best suited for retrieving huge amounts of data, as the data is not
cached in the memory.

Property :
(1) FieldCount : Gets the number of columns in the current row.
(2) HasRows : Returns a Boolean value indicating whether the DataReader contains rows of

data.
(3) IsClosed : Indicates whether the DataReader is closed.
(4) Item : Gets the value of a column(field). For example If employee table has three fields,

EmpNo, EmpName & City, then EmpNo is Item(0), EmpName is Item(1) & City is Item(2).

Method :

(1) Close : Closes the data reader.
 (2) GetName : Gets (returns)the name of the specified column.
 (3)GetValue : Gets a field's value (column’s value) in its native format.
 (4) GetValues : Gets all columns in the current row.
 (5) IsDBNull : Indicates if a column contains nonexistent (or missing) values.
 (6) Read : Read method returns true if there are more rows. It advances the DataReader to
the next record.

Example :Create Emp Table in Oracle. Emp(EmpNo, EmpName, City). We want to display only
the name of all employees into the ListBox1, so we have to write code as follows.
Imports System.Data.OleDb
…………………………………………………………………………………………..

 Dim Con As New OleDbConnection
 Dim Cmd As New OleDbCommand
 Dim DR As OleDbDataReader

……………………………………………………………………………………..
 Con.ConnectionString = "Provider=MSDAORA;Data Source=OMSAI1;User ID=
 SCOTT; PASSWORD=TIGER”

Page 7 of 7

 Con.Open()
 Cmd = New OleDbCommand("SELECT EmpNo, EmpName, City FROM
EMP", Con)
 DR = Cmd.ExecuteReader()

 'Now we want to add all Emp. Name into the ListBox1
 While DR.Read
 ListBox1.Items.Add(DR.Item(1))
 End While

……………………………………………………………………………………..
(6) DataTable Objects :

Datasets are made up of DataTable objects.Data in the DataSet is stored in memory in
the form of DataTable Objects.

The DataTableCollection contains zero or more DataTable objects, which are in turn
made up of three collections: DataColumnColection, DataRowCollection, and
ConstraintCollection (used to ensure integrity of data , ForeignKeyConstraint &
UniqueConstraint)
(7) DataRow Objects :
DataRow objects represent rows in a DataTable object. You use DataRow objects to get access
to, insert, delete, and update the records in a table.
(8) DataColumn Objects :

DataColumn objects represent the columns, that is, the fields, in a data table.
(9) DataRelation Objects :

The DataRelation class supports data relations between data tables.The
DataRelationCollection contains zero or more DataRelation objects. It is accessed through the
Relations property.

Visual Basic .NET has following features

 Rich set of Classes: Visual Basic comes with thousands of built-in classes.
 Provides fully Object Oriented Programming environment.
 Multi Language & multi device support.
 Powerful, Flexible, Simplified Data AccesswithADO .NET class.
 XML support: It supports for writing, manipulating & transforming XML documents.
 Simplified Deployment
 With an improved integrated development environment (IDE) you can build robust

applications quickly & easily.

Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) is a style sheet language used to describe the look

and formatting of a document written in a markup language

CSS information can be provided by various sources. CSS style information can be
either attached as a separate document or embedded in the HTML document.
Multiple style sheets can be imported. Different styles can be applied depending on
the output device being used.

Priority scheme for CSS sources (from highest to lowest priority):

• Author styles (provided by the web page author), in the form of:
o Inline styles, inside the HTML document, style information on a single

element, specified using the "style" attribute
o Embedded style, blocks of CSS information inside the HTML itself
o External style sheets, i.e., a separate CSS file referenced from the

document
• User style:

o A local CSS file the user specifies with a browser option, which acts as
an override applied to all document.

The style sheet with the highest priority controls the content display. Declarations not
set in the highest priority source are passed on by a source of lower priority such as
the user agent style. This process is called cascading.

One of the goals of CSS is also to allow users greater control over presentation.

• <LINK : The HTML's standard link tag.
• REL="stylesheet" : The link type
• TYPE="text/css" : Advisory content type
• HREF="../CSS/Format.CSS"> : This is our most important element, this is the

file name of our CSS file. The '../CSS' is not of particular meaning; it's just the
name of the folder inside which our CSS file is stored and which can be
anything or even nothing.

http://en.wikipedia.org/wiki/Style_sheet_language
http://en.wikipedia.org/wiki/Markup_language

What are the commonly used methods of Dataadapter
in ADO.NET?

Dataadapter has several methods associated with it.

Most commonly used methods among them are listed below:

• Fill: Fill method is used to fetch records from the database and update them

into the datatables of dataset. Uses SelectCommand for execution. Syntax for Fill

method is : sampleAdapter.Fill(employee,”Employee”);

Here sampleAdapter is a SqlDataAdapter containing select query for Employee,

employee is the dataset and Employee is the database table.

• FillSchema: FillSchema method is used to create an empty table in dataset

containing the same schema as that of a specific table in the database.

Constraints of the corresponding database table is also copied and reflected in the

datatable of dataset. Uses SelectCommand for execution but copies only the

schema of the table and not the data. Syntax for this method is shown below:

sampleAdapter.FillSchema(empDataSet, SchemaType.Source, "Employee");

Here empDataSet is the dataset and Employee is the database table name.

• Update: Manipulated records of the dataset are updated back in the database

using this method. Records that are inserted, updated and deleted from the

dataset are pushed into the database using this method. Uses InsertCommand or

UpdateCommand or DeleteCommand for the above mentioned purpose. Syntax

for Update method is shown below:

sampleAdapter.Update(employeeTable);

Before this statement, sampleAdapter will include an UpdateCommand.

employeeTable is the datatable of the dataset.

• Dispose: This method is used to release all resources used by the dataadapter.

Here is the syntax:

sampleAdapter.Dispose();

Data Binding

ASP.NET adds a feature that allows you to pop data directly into HTML

elements and fully formatted controls. It’s called data binding.

Types of ASP.NET Data Binding

Two types of ASP.NET data binding exist: single-value binding and repeated-

value binding.

Single-value data binding is by far the simpler of the two, whereas repeated-

value binding provides the foundation for the most advanced ASP.NET data

controls.

Single-Value, or “Simple,” Data Binding

You can use single-value data binding to add information anywhere on an

ASP.NET page. You can even place information into a control property or as

plain text inside an HTML tag. Single-value data binding doesn’t necessarily

have anything to do with ADO.NET. Instead, single-value data binding allows

you to take a variable, a property, or an expression and insert it dynamically

into a page.

Single-value data binding is really just a different approach to dynamic text. To

use it, you add special data binding expressions into your .aspx files. These

expressions have the following

format:

<%# expression_goes_here %>

This may look like a script block, but it isn’t. If you try to write any code inside

this tag, you will receive an error. The only thing you can add is a valid data

binding expression.

For example, if you have a public or protected variable named Country in your

page, you could write the following:

<%# Country %>

When you call the DataBind() (me.databind()) method for the page, this text

will be replaced with the value for Country (for example, Spain).

Repeated-Value, or “List,” Binding

Repeated-value data binding allows you to display an entire table (or just a

single field from a table). Unlike single-value data binding, this type of data

binding requires a special control that supports it. Typically, this will be a list

control such as CheckBoxList or ListBox, but it can also be a much more

sophisticated control such as the GridView You’ll know that a control supports

repeated-value data binding if it provides a DataSource property. As with

single-value binding, repeated value binding doesn’t necessarily need to use

data from a database, and it doesn’t have to use the ADO.NET objects. For

example, you can use repeated-value binding to bind data from a collection or

an array.

Although using simple data binding is optional, repeated-value binding is so

useful that almost every ASP.NET application will want to use it somewhere.

Repeated-value data binding uses one of the special list controls included with

ASP.NET. You link one of these controls to a data list source (such as a field in

a data table), and the control automatically creates a full list using all the

corresponding values.

To create a data expression for list binding, you need to use a list control that

explicitly supports data binding. Luckily, ASP.NET provides a whole

collection, many of which you’ve probably already used in other applications

or examples:

ListBox,DropDownList, CheckBoxList, and RadioButtonList: These web

controls provide a list for a single-column of information.

GridView,DetailsView, and FormView: These rich web controls allow you to

provide repeating lists or grids that can display more than one column (or field)

of information

at a time.

How Data Binding Works

Data binding works a little differently depending on whether you’re using

single-value or repeated-value binding. In single-value binding, a data binding

expression is inserted into the HTML markup in the .aspx file (not the code-

behind file).

Once you specify data binding, you need to activate it. You accomplish this

task by calling the DataBind() method. The DataBind() method is a basic piece

of functionality supplied in the Control class. It automatically binds a control

and any child controls that it contains.With repeated-value binding, you can use

the DataBind() method of the specific list control you’re using.

The Page Life Cycle with Data Binding

Data source controls can perform two key tasks:

• They can retrieve data from a data source and supply it to linked controls.

• They can update the data source when edits take place in linked controls.

To use the data source controls, you need to understand the page life cycle. The

following

steps explain the sequence of stages your page goes through in its lifetime. The

two steps in bold (4 and 6) are the steps where the data source controls will

spring into action:

1. The page object is created (based on the .aspx file).

2. The page life cycle begins, and the Page.Init and Page.Load events fire.

3. All other control events fire.

4. The data source controls performing updates. If a row is being updated,

the Updating and Updated events fire. If a row is being inserted, the

Inserting and Inserted events fire. If a row is being deleted, the Deleting

and Deleted events fire.

5. The Page.PreRender event fires.

6. The data source controls perform any queries and insert the retrieved

data in the linked controls. The Selecting and Selected events fire at this

point.

7. The page is rendered and disposed.

DataList
DataList control displays data using user-defined layout. However there are many

added advantages in comparison with Repeater control in terms of graphical layout.

One of the main advantage of DataList control is it supports directional rendering

(Horizontal/Vertical) also. It has many properties and several events attached. We can

say DataList is the advanced version of Repeater control.

Following are some important properties that are very useful.

AlternatingItemTemplate Template to define the rendering of every alternate item.

FooterTemplate Template to define how to render the footer.

HeaderTemplate Template to define how to render the header.

Items Gets the collection of DataList Items.

ItemTemplate Template to define how items are rendered.

SeparatorTemplate
Template to define how separator between items will be

rendered.

DEMO : DataList

Name : jjh

Address : jhjh

Phone : jhhjj

City : jjkjk

|||

Name : MallaReddy

Address : Hyd

Phone : 12345

City : Hyd

|||

Name : mkmk

Address : ji

Phone : eee

City : eee

|||

Name : mndsam

Address : dmsna

Phone : mndsa

City : msna

|||

Name : name

Address : home

Phone : 7006

City :

|||

Name : qqqq

Address : 1223

Phone : 115

City : 14545

|||

// DataList Control ////////////////////////////

<asp:DataList ID="DataList1" runat="Server"

DataSourceID="SqlDataSource1" DataKeyField="AutoID" Width="100%"

 RepeatColumns="2" RepeatDirection="horizontal"

RepeatLayout="table" CellPadding="2" CellSpacing="1"

 BorderWidth="1">

 <ItemTemplate>

 <table width="100%" style="background-color:#efefef;">

 <tr>

 <td>

 Name : <%# Eval("Name") %>

 Address : <%# Eval("Address") %>

 Phone : <%# Eval("Phone") %>

 City : <%# Eval("City") %>

 </td>

 </tr>

 </table>

 </ItemTemplate>

 <AlternatingItemTemplate>

 <table width="100%">

 <tr>

 <td>

 Name : <%# Eval("Name") %>

 Address : <%# Eval("Address") %>

 Phone : <%# Eval("Phone") %>

 City : <%# Eval("City")% >

 </td>

 </tr>

 </table>

 </AlternatingItemTemplate>

 <SeparatorTemplate>

 |||

 </SeparatorTemplate>

</asp:DataList>

// SqlDataSource Control ////////////////////////////

 <asp:SqlDataSource ID="SqlDataSource1" runat="server"

ConnectionString='<%$ ConnectionStrings:ConnStr %>'

 SelectCommand="Select * FROM emp ORDER BY [Name]">

 </asp:SqlDataSource>

The DataSet Class

The dataset represents a subset of the database. It does not have a continuous connection to the

database. To update the database a reconnection is required. The DataSet contains DataTable

objects and DataRelation objects. The DataRelation objects represent the relationship between

two tables.

Following table shows some important properties of the DataSet class:

Properties Description

CaseSensitive
Indicates whether string comparisons within the data tables are case-

sensitive.

IsInitialized Indicates whether the DataSet is initialized.

Relations Returns the collection of DataRelation objects.

Tables Returns the collection of DataTable objects.

The following table shows some important methods of the DataSet class:

Methods Description

AcceptChanges
Accepts all changes made since the DataSet

was loaded or this method was called.

BeginInit
Begins the initialization of the DataSet. The

initialization occurs at run time.

Clear Clears data.

Clone

Copies the structure of the DataSet,

including all DataTable schemas, relations,

and constraints. Does not copy any data.

Copy Copies both structure and data.

EndInit Ends the initialization of the data set.

Equals(Object)
Determines whether the specified Object is

equal to the current Object.

Finalize Free resources and perform other cleanups.

GetChanges

Returns a copy of the DataSet with all

changes made since it was loaded or the

AcceptChanges method was called.

GetChanges(DataRowState)

Gets a copy of DataSet with all changes

made since it was loaded or the

AcceptChanges method was called, filtered

by DataRowState.

GetDataSetSchema
Gets a copy of XmlSchemaSet for the

DataSet.

GetObjectData

Populates a serialization information object

with the data needed to serialize the

DataSet.

GetType Gets the type of the current instance.

GetXML Returns the XML representation of the data.

GetXMLSchema
Returns the XSD schema for the XML

representation of the data.

HasChanges()

Gets a value indicating whether the DataSet

has changes, including new, deleted, or

modified rows.

Merge()

Merges the data with data from another

DataSet. This method has different

overloaded forms.

ReadXML()

Reads an XML schema and data into the

DataSet. This method has different

overloaded forms.

ReadXMLSchema(0)

Reads an XML schema into the DataSet.

This method has different overloaded

forms.

RejectChanges
Rolls back all changes made since the last

call to AcceptChanges.

WriteXML()

Writes an XML schema and data from the

DataSet. This method has different

overloaded forms.

WriteXMLSchema()

Writes the structure of the DataSet as an

XML schema. This method has different

overloaded forms.

DataSet Vs DataReader

or
Connectionless object and Connection Oriented Object

Asp.net developer uses DataSet and DataReader to fetch data from the data source while

developing asp.net application. But most of them don’t know exactly what are the main

difference between DataSet andDataReader and what to use and when to use out of these two.

Both DataSet and DataReader are widely used in asp.net applications for the same purpose i.e.

to get/fetch the data from the database. But one has to know the best practices in developing fast,

reliable and scalable application. The DataSet and DataReader which are as follows:

DataSet Vs DataReader

DataReader Dataset

DataReader is Connection Oriented object. Data SET is connectionless object

DataReader is used to retrieve read-only

(cannot update/manipulate data back to

datasource) and forward-only (cannot read

backward/random) data from a database.

Dataset is used to manipulate data

 D DtaReader is like a forward only recordset.

It fetches one row at a time so very less

network cost compare to DataSet

Da DataSet which fetches all the rows at a time

i.e. it fetches all data from the datasource at a

time to its memory area.

 As one row at a time is stored in memory

in DataReader it increases application

performance and reduces system overheads

while there is more system overheads

in DataSet .

D DataSet as it fetches all the data from the

datasource at a time in memory so it has more

system overhead.

 As DataReader is forward only, we can’t

fetch random records as we can’t move back

and forward

in In DataSet we can move back and forward

and fetch records randomly as per requirement.

DataReader fetches data from a single table Da DataSet can fetch more the one table in it.

As DataReader can have data from a single

table so no relationship can be maintained.

W While relationship between multiple tables

can be maintained in DataSet.

DataReader is read only so no transaction like

insert, update and delete is possible

W While inert, update, delete transactions are

possible in DataSet.

DataReader is require small memory compare

dataset object

DataSet is a bulky object that requires lot of

memory space as compared to DataReader

 DataReader is a connected architecture: The

data is available as long as the connection with

database exists

W while DataSet is a disconnected architecture

that automatically opens the connection,

fetches the data into memory and closes the

connection when done.

 DataReader requires connection to be open

and close manually in code

W While DataSet automatically handles it.

Da DataReader can't be serialized so we can not

store in Session.

 D DataSet can be serialized and represented in

XML so it can easily store in session.

DataReader will be the best choice where we

need to show the data to the user which

requires no manipulation.

 While DataSet is best suited where there is

possibility of manipulation on the data.

DataReader can only be read once so it can be

bound to a single control and requires data to

be retrieved for each control.

 When you need to navigate through the data

multiple times then DataSet is better choice

e.g. we can fill data in multiple controls

DataTable
Introduction

DataTable is a central object in the ADO.NET library. If you are working with

ADO.NET - accessing data from database, you can not escape from DataTable. Other

objects that use DataTable are DataSet and DataView. In this tutorials, I will explain

how to work with DataTable. I have tried to cover most of the frequently used activity

in the DataTable, I hope you will like it.

Creating a DataTable

To create a DataTable, you need to use System.Data namespace, generally when you

create a new class or page, it is included by default by the Visual Studio. Lets write

following code to create a DataTable object. Here, I have pased a string as the

DataTable name while creating DataTable object.
// instantiate DataTable

Dim dTable As New DataTable("Emp")

Creating Columns in the DataTable

To create column in the DataTable, you need to use DataColumn object. Instantiate

the DataColumn object and pass column name and its data type as parameter. Then

call add method of DataTable column and pass the DataColumn object as parameter.

' create columns for the DataTable

Dim auto As New DataColumn("AutoID", GetType(System.Int32))

dTable.Columns.Add(auto)

' create another column

Dim name As New DataColumn("Name", GetType(String))

dTable.Columns.Add(name)

' create one more column

Dim address As New DataColumn("Address", GetType(String))

dTable.Columns.Add(address)

Using DataRow object

Look at the code below, I have created a DataRow object above the loop and I am

assiging its value to the dTable.NewRow() inside the loop. After specifying columns

value, I am adding that row to the DataTable using dTable.Rows.Add method.
' populate the DataTable using DataRow object

Dim row As DataRow = Nothing

For i As Integer = 0 To 4

 row = dTable.NewRow()

 row("AutoID") = i + 1

 row("Name") = i & " - Ram"

 row("Address") = "Ram Nagar, India - " & i

 dTable.Rows.Add(row)

Next

Properties

javascript:void(0)

 Name Description

 CaseSensitive Indicates whether string comparisons within the table are case-

sensitive.

 ChildRelations Gets the collection of child relations for this DataTable.

 Columns Gets the collection of columns that belong to this table.

 Constraints Gets the collection of constraints maintained by this table.

 DataSet Gets the DataSet to which this table belongs.

 DefaultView Gets a customized view of the table that may include a filtered view,

or a cursor position.

 IsInitialized Gets a value that indicates whether the DataTable is initialized.

 ParentRelations Gets the collection of parent relations for this DataTable.

 PrimaryKey Gets or sets an array of columns that function as primary keys for

the data table.

 Rows Gets the collection of rows that belong to this table.

 TableName Gets or sets the name of the DataTable.

Methods

 Name Description

 AcceptChanges Commits all the changes made to this table since the last time

AcceptChanges was called.

 BeginInit Begins the initialization of a DataTable that is used on a form or

used by another component. The initialization occurs at runtime.

 BeginLoadData Turns off notifications, index maintenance, and constraints while

loading data.

 Clear Clears the DataTable of all data.

 Clone Clones the structure of the DataTable, including all DataTable

schemas and constraints.

 Copy Copies both the structure and data for this DataTable.

 Dispose Overloaded. Releases the resources used

 EndInit Ends the initialization of a DataTable that is used on a form or used

by another component. The initialization occurs at runtime.

 Equals Overloaded. Determines whether two Object instances are equal.

 GetChanges Overloaded. Gets a copy of the DataTable containing all changes

made to it since it was last loaded, or since AcceptChanges was

called.

 GetType Gets the Type of the current instance.

 Merge Overloaded. Merge the specified DataTable with the current

DataTable.

 NewRow Creates a new DataRow with the same schema as the table.

 ReadXml Overloaded. Reads XML schema and data into the DataTable.

 RejectChanges Rolls back all changes that have been made to the table since it was

loaded, or the last time AcceptChanges was called.

 Reset Resets the DataTable to its original state.

 Select Overloaded. Gets an array of DataRow objects.

 WriteXml Overloaded. Writes the current contents of the DataTable as XML.

http://msdn.microsoft.com/en-us/library/system.data.datatable.casesensitive%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.childrelations%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.columns%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.constraints%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.dataset%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.defaultview%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.isinitialized%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.parentrelations%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.primarykey%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.rows%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.tablename%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.acceptchanges%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.acceptchanges%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.begininit%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.beginloaddata%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.clear%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.clone%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.copy%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.marshalbyvaluecomponent.dispose%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.endinit%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.object.equals%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.object%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.getchanges%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.object.gettype%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.type%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.merge%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.newrow%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.readxml%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.rejectchanges%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.reset%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.select%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.datatable.writexml%28v=VS.80%29.aspx

FormView
FormView is a new data-bound control that is nothing but a templated version of

DetailsView control. The major difference between DetailsView and FormView is,

here user need to define the rendering template for each item.

Following are some important properties that are very useful.

Templates of the FormView Control

EditItemTemplate The template that is used when a record is being edited.

InsertItemTemplate The template that is used when a record is being created.

ItemTemplate The template that is used to render the record to display only.

Methods of the FormView Control

ChangeMode
ReadOnly/Insert/Edit. Change the working mode of the control

from the current to the defined FormViewMode type.

InsertItem
Used to insert the record into database. This method must be

called when the DetailsView control is in insert mode.

UpdateItem
Used to update the current record into database. This method

must be called when DetailsView control is in edit mode.

DeleteItem Used to delete the current record from database.

Try Inserting Records into Database

AutoID

Name

Address

Phone

City

 // FormView control ////////////////////////////////

 <asp:FormView ID="FormView1" runat="server" CellPadding="4"

ForeColor="#333333"

 DataKeyNames="AutoID" DataSourceID="SqlDataSource1"

AllowPaging="true">

 <FooterStyle BackColor="#507CD1" Font-Bold="True"

ForeColor="White" />

 <RowStyle BackColor="#EFF3FB" />

 <PagerStyle BackColor="#2461BF" ForeColor="White"

HorizontalAlign="Center" />

 <HeaderStyle BackColor="#507CD1" Font-Bold="True"

ForeColor="White" />

 <ItemTemplate>

 <table border="1">

 <tr>

 <td>AutoID</td>

 <td><%# Eval("AutoID") %></td>

 </tr>

 <tr>

 <td>Name</td>

 <td><%# Eval("Name") %></td>

 </tr>

 <tr>

 <td> </td>

 <td>

 <asp:Button ID="btnEdit" runat="Server"

CommandName="Edit" Text="Edit" />

 <asp:Button ID="btnInsert" runat="Server"

CommandName="New" Text="New" />

 <asp:Button ID="btnDelete" runat="Server"

CommandName="Delete" Text="Delete" OnClientClick="return confirm('Are

you sure to Delete?');" />

 </td>

 </tr>

 </table>

 </ItemTemplate>

 </asp:SqlDataSource>

Asp:GridView control

It provides more flexibility in displaying and working with data from your database in
comparison with any other controls. The GridView control enables you to connect to a
datasource and display data is tabular format, however you have bunch of options to customize
the look and feel. When it is rendered on the page, generally it is implemented through <table>
HTML tag.

Following are some important properties that are very useful.

Behavior Properties of the GridView Control

AllowPaging true/false. Indicate whether the control should support paging.

AllowSorting true/false. Indicate whether the control should support sorting.

SortExpression
Gets the current sort expression (field name) that determines
the order of the row.

SortDirection
Gets the sorting direction of the column sorted currently
(Ascending/Descending).

DataSource
Gets or sets the data source object that contains the data to
populate the control.

DataSourceID
Indicate the bound data source control to use (Generally used
when we are using SqlDataSource or AccessDataSource to bind
the data, See 1st Grid example).

AutoGenerateEditButton
true/false. Indicates whether a separate column should be
added to edit the record.

AutoGenerateDeleteButton
true/false. Indicates whether a separate column should be
added to delete the record.

AutoGenerateSelectButton
true/false. Indicate whether a separate column should be
added to selecat a particular record.

AutoGenerateColumns
true/false. Indicate whether columns are automatically created
for each field of the data source. The default is true.

Style Properties of the GridView Control

AlternatingRowStyle
Defines the style properties for every alternate row in the
GridView.

EditRowStyle
Defines the style properties for the row in EditView (When you
click Edit button for a row, the row will appear in this style).

RowStyle Defines the style properties of the rows of the GridView.

PagerStyle
Defines the style properties of Pager of the GridView. (If
AllowPaging=true, the page number row appears in this style)

EmptyDataRowStyle Defines the style properties of the empty row, which appears if

there is no records in the data source.

HeaderStyle
Defines the style properties of the header of the GridView. (The
column header appears in this style.)

FooterStyle Defines the style properties of the footer of GridView.

Appearance Properties of the GridView Control

CellPadding
Indicates the space in pixel between the cells and the border of
the GridView.

CellSpacing Indicates the space in pixel between cells.

GridLines
Both/Horizontal/Vertical/None. Indicates whether GrdiLines
should appear or not, if yes Horizontal, Vertical or Both.

HorizontalAlign Indicates the horizontal align of the GridView.

EmptyDataText
Indicates the text to appear when there is no record in the data
source.

ShowFooter Indicates whether the footer should appear or not.

ShowHeader
Indicates whether the header should appear or not. (The
column name of the GridView)

BackImageUrl
Indicates the location of the image that should display as a
background of the GridView.

Caption Gets or sets the caption of the GridView.

CaptionAlign
left/center/right. Gets or sets the horizontal position of the
GridView caption.

State Properties of GridView Control

Columns
Gets the collection of objects that represent the columns in the
GridView.

EditIndex
Gets or sets the 0-based index that identifies the row currently
to be edited.

FooterRow
Returns a GridViewRow object that represents the footer of the
GridView.

HeaderRow
Returns a GridViewRow object that represents the header of
the GridView.

PageCount
Gets the number of the pages required to display the reocrds of
the data source.

PageIndex Gets or sets the 0-based page index.

PageIndex
Gets or sets the number of records to display in one page of
GridView.

Rows
Gets a collection of GridViewRow objects that represents the
currently displayed rows in the GridView.

DataKeyNames
Gets an array that contains the names of the primary key field
of the currently displayed rows in the GridView.

DataKeys
Gets a collection of DataKey objects that represent the value of
the primary key fields set in DataKeyNames property of the
GridView.

Events associated with GridView Control

PageIndexChanging,
PageIndexChanged

Both events occur when the page link is clicked. They fire
before and after GridView handles the paging operation
respectively.

RowCommand Fires when a button is clicked on any row of GridView.

RowDeleting,RowDeleted
Both events fires when Delete button of a row is clicked. They
fire before and after GridView handles deleting operaton of the
row respectively.

RowEditing
Fires when a Edit button of a row is clicked but before the
GridView hanldes the Edit operation.

RowUpdating, RowUpdated
Both events fire when a update button of a row is clicked. They
fire before and after GridView control update operation
respectively.

Sorting, Sorted
Both events fire when column header link is clicked. They fire
before and after the GridView handler the Sort operation
respectively.

What is IIS - Internet Information Server

Internet Information Server

Internet Information Server (IIS) is one of the most popular web servers from Microsoft that
is used to host and provide Internet-based services to ASP.NET and ASP Web applications. A
web server is responsible for providing a response to requests that come from users. When
a request comes from client to server IIS takes that request from users and process it and
send response back to users.

Internet Information Server (IIS) has it's own ASP.NET Process Engine to handle the ASP.NET
request. The way you configure an ASP.NET application depends on what version of IIS the
application is running on.

Internet Information Server (IIS) includes a set of programs for building and administering
Web applications, search engines, and support for writing Web-based applications that
access databases such as SQL Server. With IIS, you can make your computer to work as a
Web server and provides the functionality to develop and deploy ASP.NET Web applications
on the server. You can also set security for a particular Website for specific Users and
Computer in order to protect it from unauthorized access.

What is Virtual Directory

Virtual Directory

A virtual directory is a directory name that you specify in IIS and map to physical directory
on a local server's hard drive or a directory on another server (remote server). You can use
Internet Information Services Manager to create a virtual directory for an ASP.NET Web
application that is hosted in IIS.

The virtual directory name becomes part of the application's URL. It is a friendly name, or
alias because an alias is usually shorter than the real path of the physical directory and it is
more convenient for users to type. A virtual directory receives queries and directs them to
the appropriate backend identity repositories. It integrates identity data from multiple
heterogeneous data stores and presents it as though it were coming from one source.

How to create a virtual directory by using IIS Manager

1. In IIS Manager, expand the local computer and the Web site to which you want to add a
virtual directory.

2. Right-click the site or folder in which you want to create the virtual directory, click New,
and then click Virtual Directory.

3. In the Add Virtual Directory dialog box, at a minimum enter information in the Alias and
Physical path and then click OK.

By default, Internet Information Server uses configuration from Web.config files in the
physical directory to which the virtual directory is mapped, as well as in any child directories
in that physical directory

1

The Login Controls:-
There are following Login controls developed by the Microsoft which are used in ASP.NET
Website as given below:-

1. Login
2. LoginView
3. LoginStatus
4. Loginname
5. PasswordRecovery
6. ChangePassword
7. CreateUserWizard

1.) The Login Control:-
The Login control provides a user interface which contains username and password,
that authenticate the username and password and grant the access to the desired
 services on the basis of the credentials.
There are used some methods ,properties and events in this Login control, You can
check manually after drag and drop this control on your web form as given below:-

Properties of the Login Control

TitleText Indicates the text to be displayed in the heading of the control.

InstructionText Indicates the text that appears below the heading of the control.

UserNameLabelText Indicates the label text of the username text box.

PasswordLabelText Indicates the label text of the password text box.

FailureText Indicates the text that is displayed after failure of login attempt.

UserName Indicates the initial value in the username text box.

LoginButtonText Indicates the text of the Login button.

LoginButtonType Button/Link/Image. Indicates the type of login button.

DestinationPageUrl Indicates the URL to be sent after login attempt successful.

DisplayRememberMe true/false. Indicates whether to show Remember Me checkbox or not.

VisibleWhenLoggedIn
true/false. If false, the control is not displayed on the page when the
user is logged in.

CreateUserUrl Indicates the url of the create user page.

CreateUserText Indicates the text of the create user link.

PasswordRecoveryUrl Indicates the url of the password recovery page.

PasswordRecoveryText Indicates the text of the password recovery link.

2

Events of the Login Control

LoggingIn Fires before user is going to authenticate.

LoggedIn Fires after user is authenticated.

LoginError Fires after failure of login attempt.

Authenticate
Fires to authenticate the user. This is the function where you need to write your
own code to validate the user.

‘Code in Authenticate Event

 If Login1.UserName = "rofel" And Login1.Password = "bca" Then
 Response.Redirect("default.aspx")
 Else
 Login1.FailureText = "Enter Correct User name and Password"
 End If

2. The LoginView Control

The LoginView control is a web server control used for displaying the two different views of a
web page. It helps to alter the page view for different logged in users. The current user’s status
information is stored in the control. The control displays appropriate information depending on
the user.

The LoginView class provides the LoginView control. The methods, properties and events
provided by the login class are as listed below:

Methods of the LoginView class

1. DataBind: It helps user to bind the data source through the LoginView control.
2. OnViewChanged: It raises the ViewChanged event after the view for the control is

changed.
3. OnViewChanging: It raises the ViewChanging event before the LoginView control

changes the view.

3

Properties of the LoginView class

1. Controls: It accesses the ControlCollection object containing the child controls for the
LoginView control

2. EnableTheming: It access or specifies the value indicating the themes to be applied to
the control

3. RoleGroups: It access the collection of role groups associated with the content
templates

Events of the LoginView class

1. ViewChanged: It is initiated when the view is changed
2. ViewChanging: It is initiated when the view is in the process to be changed.

The LoginView control at the design time is as shown below:

3. The LoginStatus Control

It specifies that a particular user has logged into the web site. The login status is displayed as a
text. The login text is displayed as a hyperlink but provides the navigation to the login page. The
authentication section of the web.config file is useful for accessing the login page URL.

The LoggedIn and LoggedOut are the rwo status provided by the LoginStatus control.
TheLoginStatus class provides the control. The methods, properties and events for the control
are as mentioned below:

Methods of the LoginStatus Control

1. OnLoggedOut: It raises the event when the logout link is clicked by the user.
2. OnLoggingOut: It raises the event when the user clicks the logout link of the control.

Properties of the LoginStatus Control

1. LoginImageUrl: It accesses or specifies the URL of the image used for the login link.
2. LoginText: It access the text added for the login link
3. LogoutAction: It retrieves the value for determining the action when the user logs out of

the web site.
4. LogoutText: It retrieves the text used for logout the link

4

Events of the LoginStatus Control

1. LogginOut: It is initiated when the user sends the logout request to the server.
2. LoggedOut: It is initiated by the LoginStatus class when the user logout process is

completed

The LoginStatus control at the design time is as shown below:

4. LoginName Control

It is used for displaying the name of the authenticated users. The Page.User.Identity.Name is
used for returning the user name. The control is not displayed if it does not contain any logged
in user. The LoginName class is used for the control.

The control does not contain any method, property or events associated with it. The
FormatString property is used for displaying the string in the control.

The LoginName control at the design time is as shown below:

5. PasswordRecovery Control

It is used to recover or reset the password for the user. The password is sent through an email
as a message at the registration time. The Membership service is used for creating and
resetting the password.

The control contains the following three views.

1. Question: It refers the view where the user can enter the answer to the security
question.

2. UserName: It refers to the view where the user can enter the username for the
password to be recovered.

3. Success: It represents the view where the message is displayed to the user.

5

The control contains various properties, methods and events as mentioned below:

Methods of the PasswordRecovery Control

1. OnSendingMail: It raises the SendingMail event when the user is verified and the
password is sent to the user.

2. OnUserLookupErrror: It raises the UserLookupError when the username does not match
with the one stored in the database,

3. OnSendMailError: It raises an error when the mail message is not sent to the user.
4. OnVerifyingUser: It raises the event once the username is submitted, and the

membership provider verification is pending.

Properties of the control

1. Answer: The answer provided by the user to confirm the password recovery through the
valid user

2. FailureTextStyle: It accesses the reference to the collection of properties defining the
error text look

3. HelpPageIconUrl: It image to be displayed for the link to the password is retrieved

Events of the control

1. SendingMail: It is initiated when the server is sending an email message containing the
password once the answer is correct

2. AnswerLookupError: It is initiated when the user answer to the question is incorrect
3. VerifyingAnswer: It is initiated when the user has submitted the answer to the password

recovery confirmation question

The PasswordRecovery control at the design time is as shown below:

6. CreateUserWizard Control

The control uses the Membership service for creation of a new user. The control can be
extended to the existing Wizard control. The control can be customized through templates and
properties.
Some of the properties, methods and events related to the control are as mentioned below:

6

Properties of the Control

1. Answer: It retrieves or specifies the answer to the password recovery confirmation
question.

2. CompleteStep: It shows the final step of the process for creating the user account.
3. ContinueButtonText: It accesses or specifies the collection of properties defining the

look of the control
4. Email: It retrieves the email address of the user
5. LoginCreatedUser: It accesses or specifies the value indicating the new user login once

the account is created.

Events of the control

1. CreatedUser: It is initiated after the membership service provider has created a new
user account

2. CreatingUser: It is initiated before the membership service provider is called for creating
user account

3. SendingMail: It is initiated before sending the conformation email on the successful
creation of the account

4. SendMailError: It is initiated when the SMTP error occurs during the mail sent to the
user.

The CreateUserWizard control at the design time is as shown below:

7. ChangePassword Control

The control helps user to change the password. The user adds the current password and adds
the new password. If the old password is incorrect, the new one cannot be added.

Properties of the control

7

1. CancelDestinationPageUrl: It accesses or retrieves the URL of the page that the user is
shown once it clicks the Cancel button.

2. CurrentPassword: It retrieves the current password of a user.
3. DisplayUserName: It retrieves the value indicating whether the ChangePassword control

should be display the control and label
4. NewPassword: It retrieves the new password entered by the user
5. UserName: It shows the username for which the password is to be modified.

Events of the control

1. ChangedPassword: It is initiated when the password is changed for the user account.
2. ChangePasswordError: It is initiated when there is an error in changing the password for

the user account
3. SendMailError: It is initiated when the SMTP error occurs during sending an email

message

The ChangePassword control at the design time is as shown below:

Implementing Authentication in ASP.NET login controls

Consider an example to demonstrate the login controls in an ASP.NET application. Perform the
following steps to demonstrate the implementation of the login controls in application.

1. Place the login control in the .aspx form and change the AutoFormat style property to
Classic.

2. Click the Smart Tag and open the Login Tasks and select the Administer Website option.

8

3. Click the Security link in the window

4. Click the Use the security Setup Wizard to configure security step by step link to open

the setup wizard
5. Click Next button in the welcome the security setup wizard.

9

6. Click the From the Internet radio button and click the Next button.

7. Click the Next button in the Advance provider settings page.

8. Select the Enable roles for this web site check box and click the Next button

9. Add the details in the text boxes and click the Create User button to create the user

account.

10

10. Select the All Users radio button in the Rule applies to section.
11. Click the Add this Rule button. Click Next button

12. Click Finish button, click Close button
13. Add the LoginName and LoginStatus controls on the web page
14. Set the LogoutAction property to Redirect, click the smart tag of the LoginStatus control

and select the Logged In option from the Views drop down list.
15. Execute the application and enter the username and password in the text boxes. Click

Log In button.
16. The following output is displayed when the application is executed on the server.

1

What are Master Pages ?

Master pages let you make a consistent layout for your application, you can make one master page that

holds the layout/look & feel and common functionality of your whole application and upon

this master page, you can build all the other pages, we call these pages Content Pages. So simply you

can build your master page and then build content pages, and while creating the content pages you bind

them to the master page you have created before, those two pages are merged at runtime to give you the

rendered page.

Master Pages and ContentPlaceHolders

The master page has the extension .master and it's actually an aspx page but with the

directive <%@Master Language="vb"%>, instead of the standard page directive, almost the

attributes of the Master directive are the same as that of the page, you can add any kind of controls the

same as you design .aspx pages,

Every MasterPage should include at least one ContentPlaceHolder, this control is a placeholder for

the content that will be merged at runtime, noting that the content page is just an aspx standard page but

you should supply the attribute MasterPageFile to the page directive to bind the content page to

the master page, for example:

<%@ Page Language="VB" MasterPageFile="~/MasterPages/SiteLayout.master"%>

Content Server Control

Inside the content pages you will find one Content server control added by default, actually when you add

controls you add them to the content server control. For example,

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"

 Runat="Server">

The attribute ContentPlaceHolderID is very important as it decides what content will be bound to

which ContentPlaceHolder on the master page, this is a very nice way to decide the location of

where the contents will be displayed; so this way you can have multiple content on one content page and

also multiple ContentPlaceHolders on the master page.

Note: The content pages don't include the common tags as <Body>, <Head>,etc. Remember that, that

was the same with user controls, as after merging, there should be only one Body and Head tags.

Master Page Content Page

Output Page

2

Terminology

Let us look at the basic terminology that needs to be understood before jumping into master

pages:

• Masterpage: Gives us a way to create common set of UI elements that are required on

multiple pages of our website.

• ContentPage: The ASP.NET web page that will use master page to have the common UI

elements displayed on rendering itself.

• ContentPlaceHolder: A control that should be added on the MasterPage which will

reserve the area for the content pages to render their contents.

• ContentControl: A control which will be added on content pages to tell these pages that

the contents inside this control will be rendered where the MasterPage's

ContentPlaceHolder is located.

Creating a MasterPage

To create a master page, we need to:

1. Go to "Add New Item".

2. Select the MasterPage.

3. Let's say our master page is MasterPageOne.Master.

4. We will now add a menu bar on this master page on top of the page. This Menu bar will

be common to all the pages (since it is in Masterpage).

5. Once we have menubar added, we can have content pages use the master page.

6. Let's add few content pages like default.aspx, about.aspx, Contact.aspx. (We are simply

creating some dummy pages with no functionality as we want to see the masterpage

working, but these content pages can have any level of complex logic in them).

3

7. When we add these content pages, we need to remember to select the option of "Use

master Page".

and select the master page.

Now let's look at the stuff that is important. When we look at the MasterPage, we will see that

masterpage has a ContentPlaceHolder control. All the code that is common for the content

pages is outside the ContentPlaceHolder control (in our case, a simple menubar).

Adding the ContentPages

If we look at our content pages, we will find a simple Content control added to each content

page. This is the area where we will be adding our controls to be rendered along with the master

page.

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"

Runat="Server">

<h2>This is a the CONTACT page.</h2>

</asp:Content>

4

Advantages of Master Page

 1. You can make updates in one place as they allow you to centralize the common functionality of your

pages.

2. With the help of Master pages, it is easy to create one set of controls and code and apply the results

to a set of pages.

For example, you can use controls on the master page to create a menu that applies to all pages.

3. You can provide an object model which allows you to customize the master page from individual

content pages.

Nested Master Pages
You can use more then one master page on your website. When more than one

master page is used, you can make use of nested master pages.

For example, consider your company has a number of business partners or franchise companies. In such a
scenario, you can define the layout and design for the standard elements such as logos, menus, copyright
notices on the main master page of your company’s website. The franchise companies can then also define
their own master pages and then nest their master page with the master page of your company.

Understanding Nested Master Pages:

When a master page contains a reference of another master page, then it is called a "nested master
page". A single master page can have a reference of multiple master pages or a number of master pages
can be componentized into a single master page. There is no limit to the number of child master pages in a
project. The child masters can contain some unique properties of their own, besides using the layout and
other properties of their parent master.

Menu
The Menu control is used to create a menu of hierarchical data that can be used to

navigate through the pages. The Menu control conceptually contains two types of

items. First is StaticMenu that is always displayed on the page, Second is

DynamicMenu that appears when opens the parent item.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle, BorderWidth,

Height etc. are implemented through style properites of <table, tr, td/> tag.

Following are some important properties that are very useful.

Properties of Menu Control

DataSourceID
Indicates the data source to be used (You can use .sitemap

file as datasource).

Text Indicates the text to display in the menu.

Tooltip
Indicates the tooltip of the menu item when you mouse

over.

Value
Indicates the node displayed value (usually unique id to use

in server side events)

NavigateUrl Indicates the target location to send the user when menu

item is clicked. If not set you can handle MenuItemClick

event to decide what to do.

Target
If NavigationUrl property is set, it indicates where to open

the target location (in new window or same window).

Selectable
true/false. If false, this item can't be selected. Usually in

case of this item has some child.

ImageUrl Indicates the image that appears next to the menu item.

ImageToolTip
Indicates the tooltip text to display for image next to the

item.

PopOutImageUrl
Inidcates the image that is displayed right to the menu item

when it has some subitems.

Styles of Menu Control

StaticMenuStyle
Sets the style of the parent box in which all menu items

appears.

DynamicMenuStyle
Sets the style of the parent box in which dynamic menu

items appears.

StaticMenuItemStyle Sets the style of the individual static menu items.

DynamicMenuItemStyle Sets the style of the individual dynamic menu items.

StaticSelectedStyle Sets the style of the selected static items.

DynamicSelectedStyle Sets the style of the selecdted dynamic items.

StaticHoverStyle Sets the mouse hovering style of the static items.

DynamicHoverStyle Sets the mouse hovering style of the dynamic items

(subitems).

// Menu Control ////////////////////////////

<asp:Menu ID="Menu1" runat="Server" DataSourceID="SiteMapDataSource1"

 Orientation="Horizontal" BackColor="#B5C7DE"

DynamicHorizontalOffset="2" Font-Names="Verdana" Font-Size="0.8em"

ForeColor="#284E98" StaticDisplayLevels="2"

StaticSubMenuIndent="10px"

 >

 <StaticMenuItemStyle HorizontalPadding="5px"

VerticalPadding="2px" />

 <DynamicHoverStyle BackColor="#284E98" ForeColor="White"

/>

 <DynamicMenuStyle BackColor="#B5C7DE" />

 <StaticSelectedStyle BackColor="#507CD1" />

 <DynamicSelectedStyle BackColor="#507CD1" />

 <DynamicMenuItemStyle HorizontalPadding="5px"

VerticalPadding="2px" />

 <StaticHoverStyle BackColor="#284E98" ForeColor="White"

/>

 </asp:Menu>

// SiteMapDataSource Control ////////////////////////////

 <asp:SiteMapDataSource ID="SiteMapDataSource1" runat="Server"

/>

ASP.NET Page Directory

The asp.net application folder is contains list of specified folder that you can use of specific type of files or

content in an each folder. The root folder structure is as following

• BIN
• App_Code
• App_GlobalResources
• App_LocalResources
• App_WebReferences
• App_Data
• App_Browsers
• App_Themes

Bin Directory

It is contains all the precompiled .Net assemblies like DLLs that the purpose of application uses.

App_Code Directory

It is contains source code files like .cs or .vb that are dynamically compiled for use in your application.

These source code files are usually separate components or a data access library

App_GlobalResources Directory

It is contains to stores global resources that are accessible to every page.

App_LocalResources Directory

It is serves the same purpose as app_globalresources, exept these resources are accessible for their

dedicated page only

App_WebReferences Directory

It is stores reference to web services that the web application uses.

App_Data Directory

It is reserved for data storage and also mdf files, xml file and so on.

App_Browsers Directory

It is contains browser definitions stored in xml files. These xml files define the capabilities of client side

browsers for different rendering actions.

App_Themes Directory

It is contains collection of files like .skin and .css files that used to application look and feel appearance.

ASP.NET Page Life Cycle

When a page is requested, it is loaded into the server memory, processed, and sent to the

browser. Then it is unloaded from the memory. At each of these steps, methods and events are

available, which could be overridden according to the need of the application. In other words,

you can write your own code to override the default code.

Following are the different stages of an ASP.NET page:

• Page request - When ASP.NET gets a page request, it decides whether to parse and

compile the page, or there would be a cached version of the page; accordingly the

response is sent.

• Starting of page life cycle - At this stage, the Request and Response objects are set. If

the request is an old request or post back, the IsPostBack property of the page is set to

true. The UICulture property of the page is also set.

• Page initialization - At this stage, the controls on the page are assigned unique ID by

setting the UniqueID property and the themes are applied. For a new request, postback

data is loaded and the control properties are restored to the view-state values.

• Page load - At this stage, control properties are set using the view state and control state

values.

• Validation - Validate method of the validation control is called and on its successful

execution, the IsValid property of the page is set to true.

• Postback event handling - If the request is a postback (old request), the related event

handler is invoked.

• Page rendering - At this stage, view state for the page and all controls are saved. The

page calls the Render method for each control and the output of rendering is written to

the OutputStream class of the Response property of page.

• Unload - The rendered page is sent to the client and page properties, such as Response

and Request, are unloaded and all cleanup done.

ASP.NET Page Life Cycle Events

At each stage of the page life cycle, the page raises some events, which could be coded. An event

handler is basically a function or subroutine, bound to the event, using declarative attributes such

as Onclick or handle.

Following are the page life cycle events:

• PreInit - PreInit is the first event in page life cycle. It checks the IsPostBack property

and determines whether the page is a postback. It sets the themes and master pages,

creates dynamic controls, and gets and sets profile property values. This event can be

handled by overloading the OnPreInit method or creating a Page_PreInit handler.

• Init - Init event initializes the control property and the control tree is built. This event can

be handled by overloading the OnInit method or creating a Page_Init handler.

• InitComplete - InitComplete event allows tracking of view state. All the controls turn on

view-state tracking.

• LoadViewState - LoadViewState event allows loading view state information into the

controls.

• LoadPostData - During this phase, the contents of all the input fields are defined with

the <form> tag are processed.

• PreLoad - PreLoad occurs before the post back data is loaded in the controls. This event

can be handled by overloading the OnPreLoad method or creating a Page_PreLoad

handler.

• Load - The Load event is raised for the page first and then recursively for all child

controls. The controls in the control tree are created. This event can be handled by

overloading the OnLoad method or creating a Page_Load handler.

• LoadComplete - The loading process is completed, control event handlers are run, and

page validation takes place. This event can be handled by overloading the

OnLoadComplete method or creating a Page_LoadComplete handler

• PreRender - The PreRender event occurs just before the output is rendered. By handling

this event, pages and controls can perform any updates before the output is rendered.

• PreRenderComplete - As the PreRender event is recursively fired for all child controls,

this event ensures the completion of the pre-rendering phase.

• SaveStateComplete - State of control on the page is saved. Personalization, control state

and view state information is saved. The HTML markup is generated. This stage can be

handled by overriding the Render method or creating a Page_Render handler.

• UnLoad - The UnLoad phase is the last phase of the page life cycle. It raises the UnLoad

event for all controls recursively and lastly for the page itself. Final cleanup is done and

all resources and references, such as database connections, are freed. This event can be

handled by modifying the OnUnLoad method or creating a Page_UnLoad handler.

What is Repeater Control?

Repeater Control is a control which is used to display the repeated list of items

Uses of Repeater Control

Repeater Control is used to display repeated list of items that are bound to the control and it’s

same as gridview and datagridview. Repeater control is lightweight and faster to display data

when compared with gridview and datagrid. By using this control we can display data in custom

format but it’s not possible in gridview or datagridview and it doesn’t support for paging and

sorting.

The Repeater control works by looping through the records in your data source and then

repeating the rendering of it’s templates called item template. Repeater control contains different

types of template fields those are

Repeater Control Templates

Repeater controls provides different kinds of templates which helps in determining the layout of
control's content. Templates generate markup which determine final layout of content.

Repeater control is an iterative control in the sense it loops each record in the DataSource and
renders the specified template (ItemTemplate) for each record in the DataSource collection. In
addition, before and after processing the data items, the Repeater emits some markup for the
header and the footer of the resulting structure

Repeater control supports five templates which are as follows:

1) itemTemplate 2) AlternatingitemTemplate 3) HeaderTemplate 4) FooterTemplate

5) SeperatorTemplate

ItemTemplate: ItemTemplate defines how the each item is displays from data source collection.

AlternatingItemTemplate: AlternatingItemTemplates is used to change the background color and
styles of AlternatingItems in DataSource collection

HeaderTemplate: HeaderTemplate is used to display Header text for DataSource collection and
apply different styles for header text.

FooterTemplate: FooterTemplate is used to display footer element for DataSource collection

SeparatorTemplate: SeparatorTemplate will determine separator element which separates each
Item in Item collection. Usually, SeparateTemplate will be
 html element or <hr> html element.

DEMO : Repeater

This is the Header of the Repeater Control

6477 Jjh Jhjh jhhjj jjkjk

6474 MallaReddy Hyd 12345 Hyd

6480 Mkmk Ji eee eee

6476 Mndsam Dmsna mndsa msna

 // Repeater control /////////////////////////////

 <asp:Repeater ID="Repeater1" runat="server"

DataSourceID="SqlDataSource1">

 <HeaderTemplate>

 <h3>This is the Header of the Repeater Control</h3>

 </HeaderTemplate>

 <AlternatingItemTemplate>

 <table border="1" style="background-color:#c0c0c0;" width="100%">

<tr>

<td style="width:10%;"><%# Eval("AutoID") %></td>

<td style="width:25%;"><%# Eval("Name") %></td>

<td style="width:40%;"><%# Eval("Address") %></td></tr></table>

 </AlternatingItemTemplate>

 <ItemTemplate>

 <table border="1" width="100%">

 <tr><td style="width:10%;"><%# Eval("AutoID") %></td>

 <td style="width:25%;"><%# Eval("Name") %></td>

 <td style="width:40%;"><%#

Eval("Address") %></td></tr></table></ItemTemplate></asp:Repeater>

 // SqlDataSource control /////////////////////////////

 <asp:SqlDataSource ID="SqlDataSource1" runat="server"

ConnectionString='<%$ ConnectionStrings:ConnStr %>'

 SelectCommand="Select * FROM emp ORDER BY [Name]">

 </asp:SqlDataSource>

Request/Response Programming

The server control architecture is built on top of a more fundamental processing
architecture, which may be called request/response. Understanding
request/response is important to solidify our overall grasp of ASP.NET. Also, in
certain programming situations request/response is the natural approach.

HttpRequest Class

The System.Web namespace contains a useful class HttpRequest that can be used to
read the various HTTP values sent by a client during a Web request. These HTTP
values would be used by a classical CGI program in acting upon a Web request, and
they are the foundation upon which higher level processing is built. Table 14–1
shows some of the public instance properties of HttpRequest. If you are familiar with
HTTP, the meaning of these various properties should be largely self-explanatory.
Refer to the .NET Framework documentation of the HttpRequest class for full details
about these and other properties.

TABLE 14–1 Public Instance Properties of HttpRequest

Property Meaning

AcceptTypes String array of client-supported MIME accept types

Browser Information about client's browser capabilities

ContentLength Length in bytes of content sent by the client

Cookies Collection of cookies sent by the client

Form Collection of form variables

Headers Collection of HTTP headers

HttpMethod
HTTP transfer method used by client (e.g., GET or
POST)

Params
Combined collection of QueryString, Form,
ServerVariables, andCookies items

Path Virtual request of the current path

QueryString Collection of HTTP query string variables

ServerVariables Collection of Web server variables

The Request property of the Page class returns a HttpRequest object. You may then
extract whatever information you need, using the properties of HttpRequest. For
example, the following code determines the length in bytes of content sent by the
client and writes that information to the Response object.

Dim length As Integer = Request.ContentLength

Response.Write("ContentLength = " & length & "
")

COLLECTIONS

A number of useful collections are exposed as properties of HttpRequest. The
collections are of type NamedValueCollection (in System.Collec-tions.Specialized namespace).
You can access a value from a string key. For example, the following code extracts
values for the QUERY_STRING and HTTP_USER_AGENT server variables using the
ServerVariables collection.

Dim strQuery As String = _
 Request.ServerVariables("QUERY_STRING")
Dim strAgent as String = _
 Request.ServerVariables("HTTP_USER_AGENT")

Server variables such as these are at the heart of classical Common Gateway
Interface (CGI) Web server programming. The Web server passes information to a
CGI script or program by using environment variables. ASP.NET makes this low-level
information available to you, in case you need it.

A common task is to extract information from controls on forms. In HTML, controls
are identified by a name attribute, which can be used by the server to determine the
corresponding value. The way in which form data is passed to the server depends on
whether the form uses the HTTP GET method or the POST method.

With GET, the form data is encoded as part of the query string. The QueryString
collection can then be used to retrieve the values. With POST, the form data is
passed as content after the HTTP header. The Forms collection can then be used to
extract the control values. You could use the value of the REQUEST_METHOD server
variable (GET or POST) to determine which collection to use (the QueryString collection
in the case of GET and the Forms collection in case of POST).

With ASP.NET you don't have to worry about which HTTP method was used in the
request. ASP.NET provides a Params collection, which is a combination (union in the
mathematical sense) of the ServerVariables, Que-ryString, Forms, and Cookies collections.

EXAMPLE PROGRAM

We illustrate all these ideas with a simple page Squares.aspx that displays a column of
squares.

<!-- Squares.aspx -->
<%@ Page Language="VB" Trace="true"%>
<script runat="server">
Sub Page_Init(sender As Object, e As EventArgs)
 Dim strQuery As String = _
 Request.ServerVariables("QUERY_STRING")
 Response.Write("QUERY_STRING = " & strQuery & "
")
 Dim strAgent as String = _
 Request.ServerVariables("HTTP_USER_AGENT")

 Response.Write("HTTP_USER_AGENT = " & strAgent & "
")
 Dim length As Integer = Request.ContentLength
 Response.Write("ContentLength = " & length & "
")
 Dim strCount As String = Request.Params("txtCount")
 Dim count As Integer = Convert.ToInt32(strCount)
 Dim i As Integer
 For i = 1 To count
 Response.Write(i*i)
 Response.Write("
")
 Next
End Sub
</script>

How many squares to display is determined by a number submitted on a form. The
page GetSquares.aspx submits the request using GET, and PostSquares.aspx submits the
request using POST. These two pages have the same user interface, illustrated in
Figure 14–11.

Figure 14-11 Form for requesting a column of squares.

Here is the HTML for GetSquares.aspx. Notice that we are using straight HTML. Except
for the Page directive, which turns tracing on, no features of ASP.NET are used.

<!-- GetSquares.aspx -->
<%@ Page Trace = "true" %>
<html>
<head>
</head>
<body>
<P>This program will print a column of squares</P>
<form

method="get" action = Squares.aspx

>
How many:
<INPUT type=text size=2 value=5

name=txtCount

>
<P></P>
<INPUT type=submit value=Squares

name=cmdSquares

>
</form>
</body>
</html>

javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig11.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig11.gif')

The form tag has attributes specifying the method (GET or POST) and the action
(target page). The controls have a name attribute, which will be used by server code
to retrieve the value.

Run GetSquares.aspx and click Squares. You will see some HTTP information displayed,
followed by the column of squares. Tracing is turned on, so details about the request
are displayed by ASP.NET. Figure 14–12 illustrates the output from this GET request.

Figure 14-12 Output from a GET request.

You can see that form data is encoded in the query string, and the content length is 0.
If you scroll down on the trace output, you will see much information. For example,
the QueryString collection is shown.

Now run PostSquares.aspx and click Squares. Again you will then see some HTTP
information displayed, followed by the column of squares. Tracing is turned on, so

details about the request are displayed by ASP.NET. Figure 14–13
illustrates the output from this POST request.

Figure 14-13 Output from a POST request.

You can see that now the query string is empty, and the content length is 29. The
form data is passed as part of the content, following the HTTP header information. If
you scroll down on the trace output, you will see that now there is a Form collection,
which is used by ASP.NET to provide access to the form data in the case of a POST
method.

By comparing the output of these two examples, you can clearly see the difference
between GET and POST, and you can also see the data structures used by ASP.NET to
make it easy for you to extract data from HTTP requests.

HttpResponse Class

The HttpResponse class encapsulates HTTP response information that is built as part of
an ASP.NET operation. The Framework uses this class when it is creating a response
that includes writing server controls back to the client. Your own server code may
also use the Write method of the Response object to write data to the output stream
that will be sent to the client. We have already seen many illustrations of
Response.Write.

REDIRECT

The HttpResponse class has a useful method, Redirect, that enables server code to
redirect an HTTP request to a different URL. A simple redirection without passing any
data is trivial—you need only call the Redirect method and pass the URL. An example
of such usage would be a reorganization of a

javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig12.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig12.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig13.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig13.gif')

Web site, where a certain page is no longer valid and the content has been moved to
a new location. You can keep the old page live by simply redirecting traffic to the
new location.

It should be noted that redirection always involves an HTTP GET request, like
following a simple link to a URL. (POST arises as an option when submitting form
data, where the action can be specified as GET or POST.) A more interesting case
involves passing data to the new page. One way to pass data is to encode it in the
query string. You must preserve standard HTTP conventions for the encoding of the
query string. The class HttpUtility provides a method UrlEncode, which will properly
encode an individual item of a query string. You must yourself provide code to
separate the URL from the query string with a "?" and to separate items of the query
string with "&".

The folder Hotel provides an example of a simple Web application that illustrates this
method of passing data in redirection. The file default.aspx provides a form for
collecting information to be used in making a hotel reservation. The reservation itself
is made on the page Reservation1.aspx. You may access the starting default.aspx page
through the URL

http://localhost/Chap14/Hotel/

As usual, we provide a link to this page in our home page of example programs.
Figure 14–14 illustrates the starting page of our simple hotel reservation example.

Figure 14-14 Starting page for making a hotel reservation.

Here is the script code that is executed when the Make Reservation button is clicked.

e As EventArgs)
 Dim query As String = "City=" & _
 HttpUtility.UrlEncode(txtCity.Text)
 query += "&Hotel=" & _
 HttpUtility.UrlEncode(txtHotel.Text)
 query += "&Date=" & _
 HttpUtility.UrlEncode(txtDate.Text)
 query += "&NumberDays=" & _
 HttpUtility.UrlEncode(txtNumberDays.Text)
 Response.Redirect("Reservation1.aspx?" + query)
End Sub

We build a query string, which gets appended to the Reservation1.aspx URL, separated
by a "?". Note the ampersand that is used as a separator of items in the query string.
We use the HttpUtility.UrlEncode method to encode the individual items. Special
encoding is required for the slashes in the date and for the space in the name San
Jose. Clicking the button brings up the reservation page. You can see the query string
in the address window of the browser. Figure 14–15 illustrates the output shown by
the browser.

javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig14.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig14.gif')
javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig15.gif')

Figure 14-15 Browser output from making a hotel reservation

Our program does not actually make the reservation; it simply prints out the
parameters passed to it.

<%@ Page language="VB" Debug="true" Trace="false" %>
<script runat="server">
 Sub Page_Load(sender As Object, e As EventArgs)
 Response.Write("Making reservation for ...")
 Response.Write("
")
 Dim city As String = Request.Params("City")
 Response.Write("City = " & city)
 Response.Write("
")
 Dim hotel As String = Request.Params("Hotel")
 Response.Write("Hotel = " & hotel)
 Response.Write("
")
 Dim strDate As String = Request.Params("Date")
 Response.Write("Date = " & strDate)
 Response.Write("
")
 Dim strDays As String = Request.Params("NumberDays")
 Response.Write("NumberDays = " & strDays)
 Response.Write("
")
 End Sub
</script>
<HTML>
<body>
</body>
</HTML>

javascript:popUp('/content/images/chap14_0130933821/elementLinks/14fig15.gif')

1

State Management Techniques in ASP.NET

This article discusses various options for state management for web applications

developed using ASP.NET. Generally, web applications are based on stateless

HTTP protocol which does not retain any information about user requests. In

typical client and server communication using HTTP protocol, page is created

each time the page is requested.

Developer is forced to implement various state management techniques when

developing applications which provide customized content and which

"remembers" the user.

Here we are here with various options for ASP.NET developer to implement state

management techniques in their applications. Broadly, we can classify state

management techniques as client side state management or server side state

management. Each technique has its own pros and cons. Let's start with

exploring client side state management options.

Client side State management Options:

ASP.NET provides various client side state management options like Cookies,

QueryStrings (URL), Hidden fields, View State and Control state (ASP.NET 2.0).

Let's discuss each of client side state management options.

Bandwidth should be considered while implementing client side state

management options because they involve in each roundtrip to server. Example:

Cookies are exchanged between client and server for each page request.

Cookie:

A cookie is a small piece of text stored on user's computer. Usually, information is

stored as name-value pairs. Cookies are used by websites to keep track of

visitors. Every time a user visits a website, cookies are retrieved from user

machine and help identify the user.

Let's see an example which makes use of cookies to customize web page.

if (Request.Cookies["UserId"] != null)

 lbMessage.text = "Dear" + Request.Cookies["UserId"].Value + ", Welcome to

our website!";

else

 lbMessage.text = "Guest,welcome to our website!";

If you want to store client's information use the below code

Response.Cookies["UserId"].Value=username;

Advantages:

• Simplicity

Disadvantages:

• Cookies can be disabled on user browsers

2

• Cookies are transmitted for each HTTP request/response causing overhead

on bandwidth

• Inappropriate for sensitive data

Hidden fields:

Hidden fields are used to store data at the page level. As its name says, these

fields are not rendered by the browser. It's just like a standard control for which

you can set its properties. Whenever a page is submitted to server, hidden fields

values are also posted to server along with other controls on the page. Now that

all the asp.net web controls have built in state management in the form of view

state and new feature in asp.net 2.0 control state, hidden fields functionality

seems to be redundant. We can still use it to store insignificant data. We can use

hidden fields in ASP.NET pages using following syntax

protected System.Web.UI.HtmlControls.HtmlInputHidden Hidden1;

//to assign a value to Hidden field
Hidden1.Value="Create hidden fields";
//to retrieve a value
string str=Hidden1.Value;

Advantages:

• Simple to implement for a page specific data

• Can store small amount of data so they take less size.

Disadvantages:

• Inappropriate for sensitive data

• Hidden field values can be intercepted(clearly visible) when passed over a

network

View State:

View State can be used to store state information for a single user. View State is

a built in feature in web controls to persist data between page post backs. You

can set View State on/off for each control using EnableViewState property. By

default, EnableViewState property will be set to true. View state mechanism

poses performance overhead. View state information of all the controls on the

page will be submitted to server on each post back. To reduce performance

penalty, disable View State for all the controls for which you don't need state.

(Data grid usually doesn't need to maintain state). You can also disable View

State for the entire page by adding EnableViewState=false to @page

directive. View state data is encoded as binary Base64 - encoded which add

approximately 30% overhead. Care must be taken to ensure view state for a

page is smaller in size. View State can be used using following syntax in an

ASP.NET web page.

// Add item to ViewState
ViewState["myviewstate"] = myValue;

//Reading items from ViewState

Response.Write(ViewState["myviewstate"]);

3

Advantages:

• Simple for page level data

• Encrypted

• Can be set at the control level

Disadvantages:

• Overhead in encoding View State values

• Makes a page heavy

Query strings:

Query strings are usually used to send information from one page to another

page. They are passed along with URL in clear text. Now that cross page posting

feature is back in asp.net 2.0, Query strings seem to be redundant. Most

browsers impose a limit of 255 characters on URL length. We can only pass

smaller amounts of data using query strings. Since Query strings are sent in clear

text, we can also encrypt query values. Also, keep in mind that characters that

are not valid in a URL must be encoded using Server.UrlEncode.

Let's assume that we have a Data Grid with a list of products, and a hyperlink in

the grid that goes to a product detail page, it would be an ideal use of the Query

String to include the product ID in the Query String of the link to the product

details page (for example, productdetails.aspx?productid=4).

When product details page is being requested, the product information can be

obtained by using the following codes:

string productid;

productid=Request.Params["productid"];

Advantages:

• Simple to Implement

Disadvantages:

• Human Readable

• Client browser limit on URL length

• Cross paging functionality makes it redundant

• Easily modified by end user

Server Side State management:

As name implies, state information will be maintained on the server. Application,

Session, Cache and Database are different mechanisms for storing state on the

server.

Care must be taken to conserve server resources. For a high traffic web site with

large number of concurrent users, usage of sessions object for state management

can create load on server causing performance degradation

4

Application object:

Application object is used to store data which is visible across entire application

and shared across multiple user sessions. Data which needs to be persisted for

entire life of application should be stored in application object.

In classic ASP, application object is used to store connection strings. It's a great

place to store data which changes infrequently. We should write to application

variable only in application_Onstart event (global.asax) or application.lock event

to avoid data conflicts. Below code sample gives idea

Application.Lock();
Application("mydata")="mydata";
Application.UnLock();

Session object:

Session object is used to store state specific information per client basis. It is

specific to particular user. Session data persists for the duration of user session

you can store session's data on web server in different ways. Session state can be

configured using the <session State> section in the application's web.config file.

Configuration information:

<sessionState mode = <"inproc" | "sqlserver" | "stateserver">

 cookieless = <"true" | "false">

 timeout = <positive integer indicating the session timeout in minutes>

 sqlconnectionstring = <SQL connection string that is only used in the SQLServer

mode>

 server = <The server name that is only required when the mode is State

Server>

 port = <The port number that is only required when the mode is State Server>

Mode:

This setting supports three options. They are InProc, SQLServer, and State

Server

Cookie less:

This setting takes a Boolean value of either true or false to indicate whether the

Session is a cookie less one.

Timeout:

This indicates the Session timeout vale in minutes. This is the duration for which

a user's session is active. Note that the session timeout is a sliding value;

Default session timeout value is 20 minutes

SqlConnectionString:

This identifies the database connection string that names the database used for

mode SQLServer.

Server:

5

In the out-of-process mode State Server, it names the server that is running the

required Windows NT service: aspnet_state.

Port:

This identifies the port number that corresponds to the server setting for mode

State Server. Note that a port is an unsigned integer that uniquely identifies a

process running over a network.

You can disable session for a page using EnableSessionState attribute. You can

set off session for entire application by setting mode=off in web.config file to

reduce overhead for the entire application.

Session state in ASP.NET can be configured in different ways based on various

parameters including scalability, maintainability and availability

• In process mode (in-memory)- State information is stored in memory of

web server

• Out-of-process mode- session state is held in a process called

aspnet_state.exe that runs as a windows service.

• Database mode â€“ session state is maintained on a SQL Server database.

In process mode:

This mode is useful for small applications which can be hosted on a single server.

This model is most common and default method to store session specific

information. Session data is stored in memory of local web server

Configuration information:

<sessionState mode="Inproc"
 sqlConnectionString="data source=server;user

id=freelance;password=freelance"
 cookieless="false" timeout="20" />

Advantages:

• Fastest mode

• Simple configuration

Disadvantages:

• Session data will be lost if the worker process or application domain

recycles

• Not ideal for web gardens and web farms

Out-of-process Session mode (state server mode):

This mode is ideal for scalable and highly available applications. Session state is

held in a process called aspnet_state.exe that runs as a windows service which

listens on TCP port 42424 by default. You can invoke state service using services

MMC snap-in or by running following net command from command line.

Net start aspnet_state

Configuration information:

6

<sessionState mode="StateServer"

 StateConnectionString="tcpip=127.0.0.1:42424"

 sqlConnectionString="data source=127.0.0.1;user id=freelance;

password=freelance"

 cookieless="false" timeout="20"/>

Advantages:

• Supports web farm and web garden configuration

• Session data is persisted across application domain recycles. This is

achieved by using separate worker process for maintaining state

Disadvantages:

• Out-of-process mode provides slower access compared to In process

• Requires serializing data

SQL-Backed Session state:

ASP.NET sessions can also be stored in a SQL Server database. Storing sessions

in SQL Server offers resilience that can serve sessions to a large web farm that

persists across IIS restarts.

SQL based Session state is configured with aspnet_regsql.exe. This utility is

located in .NET Framework's installed directory

 C:\<windows>\microsoft.net\framework\<version>. Running this utility will

create a database which will manage the session state.

Configuration Information:

<sessionState mode="SQLServer"
 sqlConnectionString="data source=server;user

id=freelance;password=freelance"
 cookieless="false" timeout="20" />

Advantages:

• Supports web farm and web garden configuration

• Session state is persisted across application domain recycles and even IIS

restarts when session is maintained on different server.

Disadvantages:

• Requires serialization of objects

Choosing between client side and Server side management techniques is driven

by various factors including available server resources, scalability and

performance. We have to leverage both client side and server side state

management options to build scalable applications.

When leveraging client side state options, ensure that little amount of

insignificant information is exchanged between page requests.

Various parameters should be evaluated when leveraging server side state

options including size of application, reliability and robustness. Smaller the

application, In process is the better choice. We should account in the overheads

7

involved in serializing and deserializing objects when using State Server and

Database based session state. Application state should be used religiously.

The GridView
The GridView is an extremely flexible grid control that displays a multicolumn table.
Each record in your data source becomes a separate row. Each field in the record
becomes a separate column.
This functionality includes features for automatic paging, sorting, selecting, and
editing. The GridView is also the only data control that can show more than one
record at a time.

Defining Columns
By default, the GridView.AutoGenerateColumns property is True, and the GridView
creates a column for each field. This automatic column generation is good for
creating
quick test pages, but it doesn’t give you the flexibility you’ll usually want. For
example, what if you want to hide columns, change their order, or configure some
aspect of their display, such as the formatting or heading text? In all these cases, you
need to set AutoGenerateColumns to False and define the columns in the <Columns>
section of the GridView control tag.

Table 15-1. Column Types
Column Description
BoundField: This column displays text from a field in the data source.
ButtonField :This column displays a button for each item in the list.
CheckBoxField: This column displays a check box for each item in the list. It’s used
automatically for True/False fields (in SQL Server, these are fields that use the bit
data type).
CommandField: This column provides selection or editing buttons.
HyperlinkField: This column displays its contents (a field from the data source or
static text) as a hyperlink.
ImageField: This column displays image data from a binary field (providing it can be
successfully interpreted as a supported image format).
TemplateField: This column allows you to specify multiple fields, custom controls,
and arbitrary HTML using a custom template. It gives you the highest degree of
control but requires the most work.
Following are some important properties that are very useful.

Behavior Properties of the GridView Control

AllowPaging
true/false. Indicate whether the control should
support paging.

AllowSorting
true/false. Indicate whether the control should
support sorting.

SortExpression
Gets the current sort expression (field name) that
determines the order of the row.

SortDirection
Gets the sorting direction of the column sorted
currently (Ascending/Descending).

DataSource
Gets or sets the data source object that contains the
data to populate the control.

DataSourceID

Indicate the bound data source control to use
(Generally used when we are using SqlDataSource or
AccessDataSource to bind the data, See 1st Grid
example).

AutoGenerateEditButton
true/false. Indicates whether a separate column
should be added to edit the record.

AutoGenerateDeleteButton
true/false. Indicates whether a separate column
should be added to delete the record.

AutoGenerateSelectButton
true/false. Indicate whether a separate column
should be added to selecat a particular record.

AutoGenerateColumns
true/false. Indicate whether columns are
automatically created for each field of the data
source. The default is true.

Style Properties of the GridView Control

AlternatingRowStyle
Defines the style properties for every alternate row in
the GridView.

EditRowStyle
Defines the style properties for the row in EditView
(When you click Edit button for a row, the row will
appear in this style).

RowStyle
Defines the style properties of the rows of the
GridView.

PagerStyle
Defines the style properties of Pager of the GridView.
(If AllowPaging=true, the page number row appears in
this style)

EmptyDataRowStyle
Defines the style properties of the empty row, which
appears if there is no records in the data source.

HeaderStyle
Defines the style properties of the header of the
GridView. (The column header appears in this style.)

FooterStyle Defines the style properties of the footer of GridView.

Appearance Properties of the GridView Control

CellPadding
Indicates the space in pixel between the cells and the
border of the GridView.

CellSpacing Indicates the space in pixel between cells.

GridLines
Both/Horizontal/Vertical/None. Indicates whether
GridLines should appear or not, if yes Horizontal,
Vertical or Both.

HorizontalAlign Indicates the horizontal align of the GridView.

EmptyDataText
Indicates the text to appear when there is no record
in the data source.

ShowFooter Indicates whether the footer should appear or not.

ShowHeader
Indicates whether the header should appear or not.
(The column name of the GridView)

BackImageUrl
Indicates the location of the image that should display
as a background of the GridView.

Caption Gets or sets the caption of the GridView.

CaptionAlign
left/center/right. Gets or sets the horizontal position
of the GridView caption.

State Properties of GridView Control

Columns
Gets the collection of objects that represent the
columns in the GridView.

EditIndex Gets or sets the 0-based index that identifies the row

currently to be edited.

FooterRow
Returns a GridViewRow object that represents the
footer of the GridView.

HeaderRow
Returns a GridViewRow object that represents the
header of the GridView.

PageCount
Gets the number of the pages required to display the
reocrds of the data source.

PageIndex Gets or sets the 0-based page index.

PageIndex
Gets or sets the number of records to display in one
page of GridView.

Rows
Gets a collection of GridViewRow objects that
represents the currently displayed rows in the
GridView.

DataKeyNames
Gets an array that contains the names of the primary
key field of the currently displayed rows in the
GridView.

DataKeys
Gets a collection of DataKey objects that represent
the value of the primary key fields set in
DataKeyNames property of the GridView.

Events associated with GridView Control

PageIndexChanging,
PageIndexChanged

Both events occur when the page link is clicked. They
fire before and after GridView handles the paging
operation respectively.

RowCancelingEdit
Fires when Cancel button is clicked in Edit mode of
GridView.

RowCommand Fires when a button is clicked on any row of GridView.

RowCreated Fires when a new row is created in GridView.

RowDataBound Fires when row is bound to the data in GridView.

RowDeleting,RowDeleted
Both events fires when Delete button of a row is
clicked. They fire before and after GridView handles
deleting operaton of the row respectively.

RowEditing
Fires when a Edit button of a row is clicked but before
the GridView hanldes the Edit operation.

RowUpdating, RowUpdated
Both events fire when a update button of a row is
clicked. They fire before and after GridView control
update operation respectively.

Sorting, Sorted
Both events fire when column header link is clicked.
They fire before and after the GridView handler the
Sort operation respectively.

For Eample:
<asp:GridView ID="GridView1" runat="server" DataSourceID="SqlDataSource1"
AllowPaging="True" AllowSorting="True" AutoGenerateEditButton="true"
PageSize="8">
 <Columns>
<asp:BoundField DataField="name" HeaderText="name" SortExpression="name" />
 </Columns>

 </asp:GridView>

1

Themes

One of the neat features of ASP.NET 2.0 is themes, which enable you to define the
appearance of a set of controls once and apply the appearance to your entire web
application. For example, you can utilize themes to define a common appearance for
all of the CheckBox controls in your application, such as the background and
foreground color, in one central location. By leveraging themes, you can easily create
and maintain a consistent look throughout your web site. Themes are extremely
flexible in that they can be applied to an entire web application, to a page, or to an
individual control. Theme files are stored with the extension .skin, and all the themes
for a web application are stored in the special folder named App_Themes.

The implementation of themes in ASP.NET 2.0 is built around two areas: skins and
themes. A skin is a set of properties and templates that can be applied to controls. A
theme is a set of skins and any other associated files (such as images or stylesheets).
Skins are control-specific, so for a given theme there could be a separate skin for
each control within that theme. Any controls without a skin inherit the default look.
There are two types of themes:

• Customization themes: These types of themes are applied after the
properties of the control are applied, meaning that the properties of the
themes override the properties of the control itself.

• Stylesheet themes: You can apply this type of theme to a page in exactly the
same manner as a customization theme. However, stylesheet themes don’t
override control properties, thus allowing the control to use the theme
properties or override them.

Characteristics of ASP.NET 2.0 Themes

Some of the important characteristics of ASP.NET 2.0 themes are:

• Themes make it simple to customize the appearance of a site or page using
the same design tools and methods used when developing the page itself,
thus obviating the need to learn any special tools or techniques to add and
apply themes to a site.

• As mentioned previously, you can apply themes to controls, pages, and even
entire sites. You can leverage this feature to customize parts of a web site
while retaining the identity of the other parts of the site.

• Themes allow all visual properties to be customized, thus ensuring that when
themed, pages and controls can achieve a consistent style.

• Customization themes override control definitions, thus changing the look
and feel of controls. Customization themes are applied with the Theme
attribute of the Page directive.

• Stylesheet themes don’t override control definitions, thus allowing the
control to use the theme properties or override them. Stylesheet themes are
applied with the StylesheetTheme attribute of the Page directive.

Now that you have an understanding of the concepts behind themes, the next
section provides you with a quick example of creating a theme and utilizing it from
an ASP.NET page.

2

Creating a Simple Theme

To create a theme and apply it to a specific page, go through the following steps:

1. Create a folder called ControlThemes under the App_Themes folder.
2. Create a file with the extension .skin and add all the controls (that you want

to use in a page) and their style properties. Or you can also create individual
skin files for each and every control. When you are defining skin files,
remember to remove the ID attribute from all of the controls’ declarations.
For example, you can use the following code to define the theme for a Button
control:
<asp:Button runat=”server” BackColor=”Black” ForeColor=”White”
Font-Name=”Arial” Font-Size=”10px” />

3. Name the skin file Button.skin and place it under the ControlThemes folder.
Once you have created the .skin file, you can then apply that theme to all the
pages in your application by using appropriate settings in the Web.config file.
To apply the theme to a specific page, all you need to do is to add the Theme
attribute to the Page directive as shown below:
<%@Page Theme=”ControlThemes”%>

That’s all there is to creating a theme and utilizing it in an ASP.NET page. It is also
possible for you to programmatically access the theme associated with a specific
page using the Page.Theme property. Similarly, you can also set the SkinID property
of any of the controls to specify the skin. If the theme does not contain a SkinID
value for the control type, then no error is thrown and the control simply defaults to
its own properties. For dynamic controls, it is possible to set the SkinID property
after they are created.

Themes:

An ASP.NET Theme enables you to apply a consistent style to the pages in your
website. You can use a Theme to control the appearance of both the HTML elements
and ASP.NET controls that appear in a page.

You create a Theme by adding a new folder to a special folder in your application
named App_Themes. Each folder that you add to the App_Themes folder represents
a different Theme. If the App_Themes folder doesn't exist in your application, then
you can create it. It must be located in the root of your application.

A Theme folder can contain a variety of different types of files, including images and
text files. You also can organize the contents of a Theme folder by adding multiple
subfolders to a Theme folder. The most important types of files in a Theme folder
are:-

• Skin Files.
• Cascading Style Sheet Files

A Theme can contain one or more Skin files. A Skin enables you to modify any of the
proprieties of an ASP.NET control that have an effect on its appearance.

mailto:%25@Page

3

For Example, Imagine that you want to show every label in the application to appear
with a yellow background and red color in text. You can create a folder in the
App_Themes folder named Default. Under this folder create a new skin file named
Label.Skin

In the skin file enter the code as in Listing 1.1

Listing 1.1
App_Themes\Default\Label.Skin

<asp:Label BackColor="Yellow" Font-Bold="true" Font-Names="Verdana"
ForeColor="red" runat="server" />

To use that skin in the pages in a website just set the Theme Property in the Page
directive. For example

<%@ Page Language="vb" AutoEventWireup="true" CodeFile="UsingTheme.aspx.vb"
Inherits="UsingTheme" Theme="Default" %>

Rather than add the Themes attribute to each and every page to which you want to
apply Theme, you can register a Theme for all pages in your application in the web
configuration file. For Example

<?xml version="1.0"?>
<configuration>
 <system.web>

 <pages theme="default">
 </pages>
</system.web>

 </configuration>

1

❖ Validation Control

ASP.NET validation controls validate the user input data to ensure that useless,
unauthenticated, or contradictory data don't get stored.

ASP.NET provides the following validation controls:

• RequiredFieldValidator
• RangeValidator
• CompareValidator
• CustomValidator
• RegularExpressionValidator
• ValidationSummary

BaseValidator Class

The validation control classes are inherited from the BaseValidator class hence they inherit its
properties and methods. Therefore, it would help to take a look at the properties and the
methods of this base class, which are common for all the validation controls:

Members Description

ControlToValidate Indicates the input control to validate.

Display Indicates how the error message is shown.

EnableClientScript Indicates whether client side validation will take.

Enabled Enables or disables the validator.

ErrorMessage Indicates error string.

Text Error text to be shown if validation fails.

IsValid Indicates whether the value of the control is valid.

SetFocusOnError It indicates whether in case of an invalid control, the focus
should switch to the related input control.

ValidationGroup The logical group of multiple validators, where this control
belongs.

Validate() This method revalidates the control and updates the IsValid
property.

RequiredFieldValidator

RequiredFieldValidator validator control is used to make a field as mandatory in the form.
Without filling the field user can't submit the form.

Following are some basic properties of all Validator controls

ControlToValidate
Gets or sets the input control to validate (eg. The ID value of asp:TextBox
control).

2

Display

Dynamic/Static. Used to indicate how the area of error message will be
allocated.
Dynamic: Error message area will only be allocated when error will be
displayed. Static: Error messagea area will be allocated in either case.

Enabled true/false. Gets or sets whether to enable the validation control or not.

ErrorMessage
Gets or sets the text of the error message that will be displayed when
validation fails (This is displayed when ValidationSummary validatoin
control is used.).

Text Gets or sets the description of the error message text.

ValidationGroup
Gets or sets the validation group it belongs to. This is used to group a set of
controls.

SetFocusOnError true/false. Used to move focus on the control that fails the validation.

DEMO :

RequiredFieldValidator

Write into TextBox

 <asp:RequiredFieldValidator ID="req1" runat="Server"

ControlToValidate="TextBox1" ErrorMessage="TextBox is Mandatory field"

Text="Please write something in the Box."></asp:RequiredFieldValidator>

RangeValidator

RangeValidator is used to validate if the given data is in between the specified range or not.

Following are main properties of the validation control.

MinimumValue Gets or sets the minimum value of the range.

MaximumValue Gets or sets the maximum value of the range.

Type
Integer/String/Date/Currency/Double. Used to specify the data type to
validate.

ControlToValidate
Gets or sets the input control to validate (eg. The ID value of asp:TextBox
control).

Display

Dynamic/Static. Used to indicate how the area of error message will be
allocated.
Dynamic: Error message area will only be allocated when error will be
displayed. Static: Error messagea area will be allocated in either case.

Enabled true/false. Gets or sets whether to enable the validation control or not.

3

ErrorMessage
Gets or sets the text of the error message that will be displayed when
validation fails (This is displayed when ValidationSummary validatoin
control is used.).

Text Gets or sets the description of the error message text.

ValidationGroup
Gets or sets the validation group it belongs to. This is used to group a set of
controls.

SetFocusOnError true/false. Used to move focus on the control that fails the validation.

DEMO : RangeValidator

Write into TextBox

 <asp:RangeValidator ID="range1" runat="Server"

ControlToValidate="TextBox1" MinimumValue="5" MaximumValue="10"

Display="dynamic" Type="Integer" Text="Integer only" ErrorMessage="Value

must be between 5 to 10"></asp:RangeValidator>

RegularExpressionValidator

RegularExpressionValidator validation control is used to make sure that a textbox will accept a
predefined format of characters. This format can be of any type like you@domain.com (a valid
email address).

Following are main properties of the validation control.

ValidationExpression
Gets or sets the regular expression that will be used to validate input
control data.

ControlToValidate
Gets or sets the input control to validate (eg. The ID value of
asp:TextBox control).

Display

Dynamic/Static. Used to indicate how the area of error message will be
allocated.
Dynamic: Error message area will only be allocated when error will be
displayed. Static: Error messagea area will be allocated in either case.

Enabled true/false. Gets or sets whether to enable the validation control or not.

ErrorMessage
Gets or sets the text of the error message that will be displayed when
validation fails (This is displayed when ValidationSummary validatoin
control is used.).

Text Gets or sets the description of the error message text.

ValidationGroup
Gets or sets the validation group it belongs to. This is used to group a set
of controls.

4

SetFocusOnError true/false. Used to move focus on the control that fails the validation.

The following table summarizes the commonly used syntax constructs for regular expressions:

Character Escapes Description

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a new line.

\ Escape character.

Apart from single character match, a class of characters could be specified that can be matched,
called the metacharacters.

Metacharacters Description

. Matches any character except \n.

[abcd] Matches any character in the set.

[^abcd] Excludes any character in the set.

[2-7a-mA-M] Matches any character specified in the range.

\w Matches any alphanumeric character and underscore.

\W Matches any non-word character.

\s Matches whitespace characters like, space, tab, new line etc.

\S Matches any non-whitespace character.

\d Matches any decimal character.

\D Matches any non-decimal character.

Quantifiers could be added to specify number of times a character could appear.

Quantifier Description

* Zero or more matches.

+ One or more matches.

? Zero or one matches.

{N} N matches.

{N,} N or more matches.

{N,M} Between N and M matches.

5

The syntax of the control is as given:

<asp:RegularExpressionValidator ID="string" runat="server" ErrorMessage="string"
 ValidationExpression="string" ValidationGroup="string"> </asp:RegularExpressionValidator>

CompareValidator

CompareValidator control is used to comapre two values. The value to compare can be either a
value of another control or a constant specified. There are predefined data types that can be
compared like string, integer etc.

 Following are main properties of the validation control.

ControlToCompare
Gets or sets the ID of the control whose value will be compared with the currently
entered value.

Operator
DataTypeCheck/Equal/GreaterThan/GreaterThanEqual/LessThan/LessThanEqual/Not
Equal. Used to specify the comparison operation to peform. In case of
DataTypeCheck, ControlToCompare properties are ingnored.

Display
Dynamic/Static. Used to indicate how the area of error message will be allocated.
Dynamic: Error message area will only be allocated when error will be displayed.
Static: Error messagea area will be allocated in either case.

Enabled true/false. Gets or sets whether to enable the validation control or not.

ErrorMessage
Gets or sets the text of the error message that will be displayed when validation fails
(This is displayed when ValidationSummary validatoin control is used.).

Text Gets or sets the description of the error message text.

ValidationGroup Gets or sets the validation group it belongs to. This is used to group a set of controls.

SetFocusOnError true/false. Used to move focus on to the control that fails the validation.

DEMO : CompareValidator

Write into TextBox

 <asp:CompareValidator ID="CompareValidator1" runat="Server"
ControlToValidate="TextBox2" ControlToCompare="TextBox1" Operator="Equal"
Type="string" Text="Both textbox value should be same." ErrorMessage="Both textbox
values are not equal." Display="Dynamic"></asp:CompareValidator>

CustomValidator

6

CustomValidator control is used to validate an input control with user-defined function either
from server side or client side. Generally, this control is used when you feel that no other
validation controls fit in your requirement.

Following are main properties of the validation control.

ClientValidationFunction
Gets or sets the validation function that will be used in client side
(JavaScript function).

OnServerValidate Method that fires after post back.

ControlToCompare
Gets or sets the ID of the control whose value will be compared with
the currently entered value.

Operator

DataTypeCheck/Equal/GreaterThan/GreaterThanEqual/LessThan/LessT
hanEqual/NotEqual. Used to specify the comparison operation to
peform. In case of DataTypeCheck, ControlToCompare properties are
ingnored.

Display

Dynamic/Static. Used to indicate how the area of error message will be
allocated.
Dynamic: Error message area will only be allocated when error will be
displayed. Static: Error message area will be allocated in either case.

Enabled true/false. Gets or sets whether to enable the validation control or not.

ErrorMessage
Gets or sets the text of the error message that will be displayed when
validation fails (This is displayed when ValidationSummary validatoin
control is used.).

Text Gets or sets the description of the error message text.

ValidationGroup
Gets or sets the validation group it belongs to. This is used to group a
set of controls.

SetFocusOnError true/false. Used to move focus on the control that fails the validation.

DEMO : CustomValidator Show Source Code

Write into TextBox

 <asp:CustomValidator ID="CustomValidator1" runat="Server"
ControlToValidate="TextBox1" ClientValidationFunction="CheckForHardCodedValue"
ErrorMessage="Value doens't match." Text="TextBox value must be [GOLD]"
OnServerValidate="ValidateServerSide"></asp:CustomValidator>
 // JavaScript validation function /////////////////////////
function CheckForHardCodedValue(source, arguments)
 {
 var tID = '<%= TextBox1.ClientID %>';
 if (document.getElementById(tID).value == 'GOLD')

http://www.dotnetfunda.com/misc/codeviewer/default.aspx?pagename=~/tutorials/controls/customvalidator.aspx

7

 arguments.IsValid = true;
 else
 arguments.IsValid = false;
 }
// Server side function to validate /////////////////////////
 protected void ValidateServerSide(object source, ServerValidateEventArgs args)
 {
 if (args.Value.Equals("GOLD"))
 { args.IsValid = true;
 lblMessage.Text += "Page is valid.
"; }
 else
 { args.IsValid = false;
 lblMessage.Text += "Page is NOT valid.
"; } }

ValidationSummary

ValidationSummary control is used to summarize all validation errors on the page and display.

 Following are main properties of the validation control.

ShowMessageBox true/false. Popup alert box with all validation error, if true.

ShowSummary true/false. Display summary of all errors on the page, if true.

DisplayMode
BulletList/List/SingleParagraph. Used to display all validation errors in
specified format.

HeaderText Used to write the header of the error summary.

ValidationGroup
Used to specify the group name of input controls for which summary will
be displayed.

DEMO : ValidationSummary

Write into TextBox

// Form & Validation Control /////////////////////////
 <asp:ValidationSummary ID="ValidationSummary" runat="Server"
ShowMessageBox="true" ShowSummary="true" DisplayMode="List" HeaderText="Following
error occured." />

The web.config File
The web.config file uses a predefined XML format. The entire content of the file is
nested in a root <configuration> element. This element contains a <system.web>
element, which is used for ASP.NET settings. Inside the <system.web> element are
separate elements for each aspect of configuration.
Here’s the basic skeletal structure of the web.config file:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<!-- Configuration sections go here. -->
</system.web>
</configuration>
This example adds a comment in the place where you’d normally find additional
settings. XML comments are bracketed with the <!-- and --> character sequences, as
shown here:
<!-- This is the format for an XML comment. -->
You can include as few or as many configuration sections as you want. For example,
if you need to specify special error settings, you could add just the <customErrors>
group.
Note that the web.config file is case-sensitive, like all XML documents, and starts
every setting with a lowercase letter. This means you cannot write <CustomErrors>
instead of <customErrors>.

If you want an at-a-glance look at all the available settings, head to
C:\WINDOWS\Microsoft.NET\Framework\[Version]\CONFIG directory, and look at
the web.config.comments file. This file consists of XML comments that show the
available options for every possible setting.

The entire contents of a configuration file, whether it is machine.config or
web.config,
is nested in a <configuration> element.

In the web.config, under the <configuration> element, there is another element
<system.web>, which is used for ASP.NET settings and contains separate elements
for each aspect of the configuration.

Important Configuration Tags

<authentication>

This element is used to verify the client's identity when the client requests a page
from the server. This is set at the application level. We have four types of
authentication modes: “None”, “Windows”, “Forms”, and “Passport”.

If we don't need any authentication, this is the setting we use:

<authentication mode="None"/>

<compilation>

In this section, we can configure the settings of the compiler. Here, we can have lots
of attributes, but the most common ones are debug and defaultLanguage. Setting
debug to true means we want the debugging information in the browser, but it has a
performance tradeoff, so normally, it is set as false. And, defaultLanguage tells
ASP.NET which language compiler to use: VB or C#.

<customErrors>

This tags includes the error settings for the application, and is used to give custom
error pages (user-friendly error pages) to end users. In the case that an error occurs,
the website is redirected to the default URL. For enabling and disabling custom
errors, we need to specify the mode attribute.

<customErrors defaultRedirect="url" mode="Off">
 <error statusCode="403" redirect="/accesdenied.html" />
 <error statusCode="404" redirect="/pagenotfound.html" />
</customErrors>

• "On" means this settings is on, and if there is any error, the website is
redirected to the default URL.

• "Off" means the custom errors are disabled.
• "RemoteOnly" shows that custom errors will be shown to remote clients only.

<trace>

As the name suggest, it is used for tracing the execution of an application. We have
here two levels of tracing: page level and application level. Application level enables
the trace log of the execution of every page available in the application. If
pageOutput="true", trace information will be displayed at the bottom of each page.
Else, we can view the trace log in the application root folder, under the name
trace.axd.

<trace enabled="false" requestLimit="10" pageOutput="false"
 traceMode="SortByTime" localOnly="true" />

<appSettings>

This section is used to store custom application configuration like database
connection strings, file paths etc. This also can be used for custom application-wide
constants to store information over multiple pages. It is based on the requirements
of the application.

<appSettings>
 <add key="Emailto" value="me@microsoft.com" />
 <add key="cssFile" value="CSS/text.css" />
</appSettings>

It can be accessed from code like:

ConfigurationSettings.AppSettings("Emailto")

Web Service

What is Web Service?

• Web Service is an application that is designed to interact directly with other applications

over the internet. In simple sense, Web Services are means for interacting with objects

over the Internet.

• Web Service is

o Language Independent

o Protocol Independent

o Platform Independent

o It assumes stateless service architecture.

Example of Web Service

• Weather Reporting: You can use Weather Reporting web service to display weather

information in your personal website.

• Stock Quote: You can display latest update of Share market with Stock Quote on your

web site.

• News Headline: You can display latest news update by using News Headline Web

Service in your website.

• In summary you can any use any web service which is available to use. You can make

your own web service and let others use it. Example you can make Free SMS Sending

Service with footer with your companies advertisement, so whosoever use this service

indirectly advertise your company... You can apply your ideas in N no. of ways to take

advantage of it.

Web Service Communication

Web Services communicate by using standard web protocols and data formats, such as

• HTTP

• XML

• SOAP

Advantages of Web Service Communication

Web Service messages are formatted as XML, a standard way for communication between two

incompatible system. And this message is sent via HTTP, so that they can reach to any machine

on the internet without being blocked by firewall.

Terms which are frequently used with web services

• What is SOAP?

o SOAP are remote function calls that invokes method and execute them on Remote

machine and translate the object communication into XML format. In short,

SOAP are way by which method calls are translate into XML format and sent via

HTTP.

• What is WSDL?

o WSDL stands for Web Service Description Language, a standard by which a web

service can tell clients what messages it accepts and which results it will return.

o WSDL contains every details regarding using web service

▪ Method and Properties provided by web service

▪ URLs from which those method can be accessed.

▪ Data Types used.

▪ Communication Protocol used.

• What is UDDI?

o UDDI allows you to find web services by connecting to a directory.

• What is Discovery or .Disco Files?

o .Disco File (static)

▪ .Disco File contains

▪ URL for the WSDL

▪ URL for the documentation

▪ URL to which SOAP messages should be sent.

▪ A static discovery file is an XML document that contains links to other

resources that describe web services.

o .VsDisco File (dynamic)

▪ A dynamic discovery files are dynamic discovery document that are

automatically generated by VS.Net during the development phase of a

web service.

• What is difference between Disco and UDDI?

o Disco is Microsoft's Standard format for discovery documents which contains

information about Web Services, while UDDI is a multi-vendor standard for

discovery documents which contains information about Web Services.

Steps for Creation of webserive

➢ Craete a web site with suitable name

➢ Right click on solution explorer and selection add new item

➢ From pop window select web service and give suitable name and click on add button

➢ Web service created with default method called “hello world” you can also define your

method here

http://dotnetguts.blogspot.in/2007/09/all-about-web-service-in-net.html

Consumption or Usage:

➢ For adding web service in you application

➢ Rig click on solution explorer select add web reference

➢ Pop window open

➢ Give URL of your web service location and click on go

➢ The web service will available with available method and then click on add reference

button web service will create

For using in your web page

➢ Imports webserive.

➢ Create a object of web serive where you want to use.

➢ By using object pass parameter in web service methods

SiteMapPath
The SiteMapPath control is a site navigation control that reflects data provided
by the SiteMap object. It provides a space-saving way to easily navigate a site
and serves as a point of reference for where the currently displayed page is
within a site. It displays a hierarchical path of hyperlinked page names that provides
an escape up the hierarchy of pages from the current location. The SiteMapPath is
useful for sites that have deep hierarchical page structures, but where a TreeView or
Menu might require too much space on a page.

The SiteMapPath control works directly with your Web site's site map data. If you
use it on a page that is not represented in your site map, it will not be displayed.

The SiteMapPath is made up of nodes. Each element in the path is called a node and
is represented by a SiteMapNodeItem object. The node that anchors the path and
represents the base of the hierarchical tree is called the root node. The node that
represents the currently displayed page is the current node. Any other node between
the current node and root node is a parent node. The following table describes the
three different node types.

Node type Description

root A node that anchors a hierarchical set of nodes.

parent A node that has one or more child nodes, but is not the current node.

current A node that represents the currently displayed page.

Each node displayed by a SiteMapPath is a HyperLink or Literal control that you can
apply a template or style to. The templates and styles are applied to nodes according
to two rules of precedence:

 If a template is defined for a node, it overrides any style defined for the node.
 Templates and styles that are specific to types of nodes override general

templates and styles defined for all nodes.

Templates Provided by sitemap

CurrentNodeStyle:-The Style applied to current node.
NodeStyle:-Th Style Applied to navigation node.
RootNodeStyle:-The Style applied to root node.
CurrentNodeTemplate:- The template applied to current node.
NodeTemplate:- The template applied to navigation node.
RootNodeTemplate:- The template applied to root node.

The SiteMapPath control uses the site map provider identified by the
SiteMapProvider property as its data source for site navigation information. If no

provider is specified, it uses the default provider for the site, identified in the
SiteMap.Provider property. Typically, this is an instance of the default site map
provider for ASP.NET, the XmlSiteMapProvider. If the SiteMapPath control is used
within a site but no site map provider is configured, the control throws an
HttpException exception.

The SiteMapPath control also provides events that you can program against. This
allows you to run a custom routine whenever an event occurs. The following table
lists the events supported by the SiteMapPath control.

Event Description

ItemCreated
Occurs when the SiteMapPath control first creates a
SiteMapNodeItem and associates it with a SiteMapNode.

ItemDataBound
Occurs when a SiteMapNodeItem is bound to site map data
contained by the SiteMapNode.

4.1 Principles of Mathematics by Aryabhata

Introduction: Aryabhata (476 CE) was one of ancient India’s greatest mathematicians and

astronomers. His seminal work, Aryabhatiya, contains sutras (verses) that describe foundational

concepts in mathematics, including arithmetic, geometry, and trigonometry.

4.1.1 Principles of Mathematics: Sutra (Verse 1.1)

Sanskrit Verse (Ganitapāda 1.1)

"Caturadhikaṃ śatamaṣṭaguṇaṃ dvāṣaṣṭistathā sahasrāṇām"

Translation & Interpretation:

This verse introduces a numerical system based on positional decimal values. Aryabhata used

Sanskrit syllables to denote numbers—a cryptic yet efficient system that encoded values and

operations in verse form.

Mathematical Principle:

Introduction to the place value system and the decimal system (based on powers of 10), which

predated similar Western systems by centuries.

4.1.2 Value of Pi: Sutra (Verse 3.1)

Sanskrit Verse (Āryabhatiya 2.10)

"Add four to 100, multiply by 8, and then add 62,000. This is the approximate circumference of a

circle with diameter 20,000."

Calculation:

Mathematical Principle:

This gives an approximation of π accurate to four decimal places — remarkably close to modern

values.

4.1.3 Sine Function: Sutra (Verse 3.2)

Concept:

Aryabhata introduced the concept of ardha-jya (half-chord), which corresponds to the modern

sine function.

Explanation:

He created a table of sines for every 3.75° increment using geometry and interpolation, essential

for astronomical calculations.

Significance:

It marks the first recorded use of the sine function, centuries before its formal appearance in

Arabic and European mathematics.

4.1.4 Trigonometric Functions: Sutra (Verse 3.11)

Concept:

Aryabhata’s work includes the use of sine (jya) and cosine (kojya) to solve problems involving

spherical astronomy.

Mathematical Principle:

Understanding angular measurements, trigonometric ratios, and relationships among sides and

angles of triangles — foundational for astronomy and navigation.

4.2 Ancient Knowledge from the Shulba Sutras (Vedic

Texts)

Overview:

The Shulba Sutras (c. 800 BCE) are part of the Vedas, focusing on geometry for altar

construction. "Shulba" means rope, indicating geometry done via rope-measurement.

4.2.1 Construction of a Square

Method:

Using a rope and pegs, Vedic scholars constructed a square with right angles using basic

geometric techniques, including diagonals and perpendicular bisectors.

Mathematical Principle:

The square's symmetry and use of right angles are essential for altar accuracy and were among

the earliest uses of geometric constructions.

4.2.2 Pythagorean Theorem (Sulbha Sutra 1.2)

Sanskrit Verse:

"The diagonal of a rectangle produces both areas which its length and breadth produce

separately."

Modern Interpretation:

Significance:

This is one of the earliest recorded instances of the Pythagorean theorem, predating Pythagoras

by several centuries.

4.2.3 Area of a Circle

4.2.4 Area of a Triangle

Method:

This was understood through constructions and rope measurements to ensure perpendicularity.

Cultural Relevance:

Used in altar construction for Vedic rituals with precise measurements and symbolic shapes.

4.3 Ancient Knowledge by Brahmagupta

Overview:

Brahmagupta (598–668 CE), a brilliant mathematician, wrote Brahmasphutasiddhanta, which

includes early algebra, number theory, and geometry.

4.3.1 Area of a Cyclic Quadrilateral (Verse 10)

Sanskrit Verse:

"The square root of the product of the semi-perimeter minus each side, multiplied together, gives

the area."

Formula (Brahmagupta’s Formula):

For a cyclic quadrilateral with sides a,b,c,da, b, c, da,b,c,d,

Significance:

This generalized Heron’s formula for all quadrilaterals inscribed in a circle.

	Slide 1: Class:- T.Y.B.C.A SEM-V
	Slide 2: Unit 1. Introduction to ASP.NET
	Slide 3: 1.1 What is ASP.NET
	Slide 4
	Slide 5
	Slide 6: Link for download SQL Express
	Slide 7: 1.2 .NET framework 2.0
	Slide 8: .NET Framework mainly contains two components,
	Slide 9: 1. Common Language Runtime (CLR)
	Slide 10: 2. .NET Framework Class Library (FCL)
	Slide 11
	Slide 12: 3. Common Type System (CTS)
	Slide 13: 4. Common Language Specification (CLS)
	Slide 14: 1.3 Compile Code
	Slide 15: 1.3.1 Code Behind and Inline Coding
	Slide 16
	Slide 17: Code Behind
	Slide 18
	Slide 19: Inline Code
	Slide 20
	Slide 21: 1.4 The Common Language Runtime
	Slide 22: The CLR has the following key features:
	Slide 23: 1.5 Object Oriented Concepts
	Slide 24
	Slide 25: 1.6 Event Driven Programming
	Slide 26: What is ASP.Net Page Lifecycle?
	Slide 27
	Slide 28: ASP.NET Page Life Cycle Events
	Slide 29
	Slide 30
	4.1 Principles of Mathematics by Aryabhata
	4.1.1 Principles of Mathematics: Sutra (Verse 1.1)
	4.1.2 Value of Pi: Sutra (Verse 3.1)
	4.1.3 Sine Function: Sutra (Verse 3.2)
	4.1.4 Trigonometric Functions: Sutra (Verse 3.11)

	4.2 Ancient Knowledge from the Shulba Sutras (Vedic Texts)
	4.2.1 Construction of a Square
	4.2.2 Pythagorean Theorem (Sulbha Sutra 1.2)
	4.2.3 Area of a Circle
	4.2.4 Area of a Triangle

	4.3 Ancient Knowledge by Brahmagupta
	4.3.1 Area of a Cyclic Quadrilateral (Verse 10)

